1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
|
(*
Copyright David C. J. Matthews 1989, 2000, 2009-10, 2012-13, 2015-19
Based on original code:
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Code Generator Routines.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1989
*)
(* This module contains the code vector and operations to insert code into
it. Each procedure is compiled into a separate segment. Initially it is
compiled into a fixed size segment, and then copied into a segment of the
correct size at the end.
This module contains all the definitions of the X86 opCodes and registers.
It uses "codeseg" to create and operate on the segment itself.
*)
functor X86OUTPUTCODE (
structure DEBUG: DEBUGSIG
structure PRETTY: PRETTYSIG (* for compilerOutTag *)
structure CODE_ARRAY: CODEARRAYSIG
) : X86CODESIG =
struct
open CODE_ARRAY
open DEBUG
open Address
open Misc
(* May be targeted at native 32-bit, native 64-bit or X86/64 with 32-bit words
and addresses as object Ids. *)
datatype targetArch = Native32Bit | Native64Bit | ObjectId32Bit
val targetArch =
case PolyML.architecture() of
"I386" => Native32Bit
| "X86_64" => Native64Bit
| "X86_64_32" => ObjectId32Bit
| _ => raise InternalError "Unknown target architecture"
(* Some checks - *)
val () =
case (targetArch, wordSize, nativeWordSize) of
(Native32Bit, 0w4, 0w4) => ()
| (Native64Bit, 0w8, 0w8) => ()
| (ObjectId32Bit, 0w4, 0w8) => ()
| _ => raise InternalError "Mismatch of architecture and word-length"
val hostIsX64 = targetArch <> Native32Bit
infix 5 << <<+ <<- >> >>+ >>- ~>> ~>>+ ~>>- (* Shift operators *)
infix 3 andb orb xorb andbL orbL xorbL andb8 orb8 xorb8
val op << = Word.<< and op >> = Word.>>
val (*op <<+ = LargeWord.<< and *) op >>+ = LargeWord.>>
val op <<- = Word8.<< and op >>- = Word8.>>
val op orb8 = Word8.orb
val op andb8 = Word8.andb
val op andb = Word.andb (* and op andbL = LargeWord.andb *)
and op orb = Word.orb
val wordToWord8 = Word8.fromLargeWord o Word.toLargeWord
(*and word8ToWord = Word.fromLargeWord o Word8.toLargeWord*)
val exp2_16 = 0x10000
val exp2_31 = 0x80000000: LargeInt.int
(* Returns true if this a 32-bit machine or if the constant is within 32-bits.
This is exported to the higher levels. N.B. The test for not isX64
avoids a significant overhead with arbitrary precision arithmetic on
X86/32. *)
fun is32bit v = not hostIsX64 orelse ~exp2_31 <= v andalso v < exp2_31
(* tag a short constant *)
fun tag c = 2 * c + 1;
fun is8BitL (n: LargeInt.int) = ~ 0x80 <= n andalso n < 0x80
local
val shift =
if wordSize = 0w4
then 0w2
else if wordSize = 0w8
then 0w3
else raise InternalError "Invalid word size for x86_32 or x86+64"
in
fun wordsToBytes n = n << shift
and bytesToWords n = n >> shift
end
infix 6 addrPlus addrMinus;
(* All indexes into the code vector have type "addrs". This is really a legacy. *)
type addrs = Word.word
val addrZero = 0w0
(* This is the external label type used when constructing operations. *)
datatype label = Label of { labelNo: int }
(* Constants which are too large to go inline in the code are put in
a list and put at the end of the code. They are arranged so that
the garbage collector can find them and change them as necessary.
A reference to a constant is treated like a forward reference to a
label. *)
datatype code =
Code of
{
procName: string, (* Name of the procedure. *)
printAssemblyCode:bool, (* Whether to print the code when we finish. *)
printStream: string->unit, (* The stream to use *)
lowLevelOptimise: bool, (* Whether to do the low-level optimisation pass *)
profileObject : machineWord (* The profile object for this code. *)
}
(* Exported functions *)
fun lowLevelOptimise(Code{lowLevelOptimise, ...}) = lowLevelOptimise
(* EBP/RBP points to a structure that interfaces to the RTS. These are
offsets into that structure. *)
val memRegLocalMPointer = 0 (* Not used in 64-bit *)
and memRegHandlerRegister = Word.toInt nativeWordSize
and memRegLocalMbottom = 2 * Word.toInt nativeWordSize
and memRegStackLimit = 3 * Word.toInt nativeWordSize
and memRegExceptionPacket = 4 * Word.toInt nativeWordSize
and memRegCStackPtr = 6 * Word.toInt nativeWordSize
and memRegThreadSelf = 7 * Word.toInt nativeWordSize
and memRegStackPtr = 8 * Word.toInt nativeWordSize
and memRegHeapOverflowCall = 10 * Word.toInt nativeWordSize
and memRegStackOverflowCall = 11 * Word.toInt nativeWordSize
and memRegStackOverflowCallEx = 12 * Word.toInt nativeWordSize
(* create and initialise a code segment *)
fun codeCreate (name : string, profObj, parameters) : code =
let
val printStream = PRETTY.getSimplePrinter(parameters, [])
in
Code
{
procName = name,
printAssemblyCode = DEBUG.getParameter DEBUG.assemblyCodeTag parameters,
printStream = printStream,
lowLevelOptimise = DEBUG.getParameter DEBUG.lowlevelOptimiseTag parameters,
profileObject = profObj
}
end
(* Put 1 unsigned byte at a given offset in the segment. *)
fun set8u (b, addr, seg) = byteVecSet (seg, addr, b)
(* Put 4 bytes at a given offset in the segment. *)
(* b0 is the least significant byte. *)
fun set4Bytes (b3, b2, b1, b0, addr, seg) =
let
val a = addr;
in
(* Little-endian *)
byteVecSet (seg, a, b0);
byteVecSet (seg, a + 0w1, b1);
byteVecSet (seg, a + 0w2, b2);
byteVecSet (seg, a + 0w3, b3)
end;
(* Put 1 unsigned word at a given offset in the segment. *)
fun set32u (ival: LargeWord.word, addr, seg) : unit =
let
val b3 = Word8.fromLargeWord (ival >>+ 0w24)
val b2 = Word8.fromLargeWord (ival >>+ 0w16)
val b1 = Word8.fromLargeWord (ival >>+ 0w8)
val b0 = Word8.fromLargeWord ival
in
set4Bytes (b3, b2, b1, b0, addr, seg)
end
(* Put 1 signed word at a given offset in the segment. *)
fun set32s (ival: LargeInt.int, addr, seg) = set32u(LargeWord.fromLargeInt ival, addr, seg)
fun byteSigned ival =
if ~0x80 <= ival andalso ival < 0x80
then Word8.fromInt ival
else raise InternalError "byteSigned: invalid byte"
(* Convert a large-word value to a little-endian byte sequence. *)
fun largeWordToBytes(_, 0) = []
| largeWordToBytes(ival: LargeWord.word, n) =
Word8.fromLargeWord ival :: largeWordToBytes(ival >>+ 0w8, n-1)
fun word32Unsigned(ival: LargeWord.word) = largeWordToBytes(ival, 4)
fun int32Signed(ival: LargeInt.int) =
if is32bit ival
then word32Unsigned(LargeWord.fromLargeInt ival)
else raise InternalError "int32Signed: invalid word"
(* Registers. *)
datatype genReg = GeneralReg of Word8.word * bool
and fpReg = FloatingPtReg of Word8.word
and xmmReg = SSE2Reg of Word8.word
datatype reg =
GenReg of genReg
| FPReg of fpReg
| XMMReg of xmmReg
(* These are the real registers we have. The AMD extension encodes the
additional registers through the REX prefix. *)
val eax = GeneralReg (0w0, false)
val ecx = GeneralReg (0w1, false)
val edx = GeneralReg (0w2, false)
val ebx = GeneralReg (0w3, false)
val esp = GeneralReg (0w4, false)
val ebp = GeneralReg (0w5, false)
val esi = GeneralReg (0w6, false)
val edi = GeneralReg (0w7, false)
val r8 = GeneralReg (0w0, true)
val r9 = GeneralReg (0w1, true)
val r10 = GeneralReg (0w2, true)
val r11 = GeneralReg (0w3, true)
val r12 = GeneralReg (0w4, true)
val r13 = GeneralReg (0w5, true)
val r14 = GeneralReg (0w6, true)
val r15 = GeneralReg (0w7, true)
(* Floating point "registers". Actually entries on the floating point stack.
The X86 has a floating point stack with eight entries. *)
val fp0 = FloatingPtReg 0w0
and fp1 = FloatingPtReg 0w1
and fp2 = FloatingPtReg 0w2
and fp3 = FloatingPtReg 0w3
and fp4 = FloatingPtReg 0w4
and fp5 = FloatingPtReg 0w5
and fp6 = FloatingPtReg 0w6
and fp7 = FloatingPtReg 0w7
(* SSE2 Registers. These are used for floating point in 64-bity mode.
We only use XMM0-6 because the others are callee save and we don't
currently save them. *)
val xmm0 = SSE2Reg 0w0
and xmm1 = SSE2Reg 0w1
and xmm2 = SSE2Reg 0w2
and xmm3 = SSE2Reg 0w3
and xmm4 = SSE2Reg 0w4
and xmm5 = SSE2Reg 0w5
and xmm6 = SSE2Reg 0w6
fun getReg (GeneralReg r) = r
fun mkReg n = GeneralReg n (* reg.up *)
(* The maximum size of the register vectors and masks. Although the
X86/32 has a floating point stack with eight entries it's much simpler
to treat it as having seven "real" registers. Items are pushed to the
stack and then stored and popped into the current location. It may be
possible to improve the code by some peephole optimisation. *)
val regs = 30 (* Include the X86/64 registers even if this is 32-bit. *)
(* The nth register (counting from 0). *)
(* Profiling shows that applying the constructors here creates a lot of
garbage. Create the entries once and then use vector indexing instead. *)
local
fun regN i =
if i < 8
then GenReg(GeneralReg(Word8.fromInt i, false))
else if i < 16
then GenReg(GeneralReg(Word8.fromInt(i-8), true))
else if i < 23
then FPReg(FloatingPtReg(Word8.fromInt(i-16)))
else XMMReg(SSE2Reg(Word8.fromInt(i-23)))
val regVec = Vector.tabulate(regs, regN)
in
fun regN i = Vector.sub(regVec, i) handle Subscript => raise InternalError "Bad register number"
end
(* The number of the register. *)
fun nReg(GenReg(GeneralReg(r, false))) = Word8.toInt r
| nReg(GenReg(GeneralReg(r, true))) = Word8.toInt r + 8
| nReg(FPReg(FloatingPtReg r)) = Word8.toInt r + 16
| nReg(XMMReg(SSE2Reg r)) = Word8.toInt r + 23
datatype opsize = SZByte | SZWord | SZDWord | SZQWord
(* Default size when printing regs. *)
val sz32_64 = if hostIsX64 then SZQWord else SZDWord
fun genRegRepr(GeneralReg (0w0, false), SZByte) = "al"
| genRegRepr(GeneralReg (0w1, false), SZByte) = "cl"
| genRegRepr(GeneralReg (0w2, false), SZByte) = "dl"
| genRegRepr(GeneralReg (0w3, false), SZByte) = "bl"
| genRegRepr(GeneralReg (0w4, false), SZByte) = "ah"
| genRegRepr(GeneralReg (0w5, false), SZByte) = "ch"
| genRegRepr(GeneralReg (0w6, false), SZByte) = "sil" (* Assume there's a Rex code that forces low-order reg *)
| genRegRepr(GeneralReg (0w7, false), SZByte) = "dil"
| genRegRepr(GeneralReg (reg, true), SZByte) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "b"
| genRegRepr(GeneralReg (0w0, false), SZDWord) = "eax"
| genRegRepr(GeneralReg (0w1, false), SZDWord) = "ecx"
| genRegRepr(GeneralReg (0w2, false), SZDWord) = "edx"
| genRegRepr(GeneralReg (0w3, false), SZDWord) = "ebx"
| genRegRepr(GeneralReg (0w4, false), SZDWord) = "esp"
| genRegRepr(GeneralReg (0w5, false), SZDWord) = "ebp"
| genRegRepr(GeneralReg (0w6, false), SZDWord) = "esi"
| genRegRepr(GeneralReg (0w7, false), SZDWord) = "edi"
| genRegRepr(GeneralReg (reg, true), SZDWord) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "d"
| genRegRepr(GeneralReg (0w0, false), SZQWord) = "rax"
| genRegRepr(GeneralReg (0w1, false), SZQWord) = "rcx"
| genRegRepr(GeneralReg (0w2, false), SZQWord) = "rdx"
| genRegRepr(GeneralReg (0w3, false), SZQWord) = "rbx"
| genRegRepr(GeneralReg (0w4, false), SZQWord) = "rsp"
| genRegRepr(GeneralReg (0w5, false), SZQWord) = "rbp"
| genRegRepr(GeneralReg (0w6, false), SZQWord) = "rsi"
| genRegRepr(GeneralReg (0w7, false), SZQWord) = "rdi"
| genRegRepr(GeneralReg (reg, true), SZQWord) = "r" ^ Int.toString(Word8.toInt reg +8)
| genRegRepr(GeneralReg (0w0, false), SZWord) = "ax"
| genRegRepr(GeneralReg (0w1, false), SZWord) = "cx"
| genRegRepr(GeneralReg (0w2, false), SZWord) = "dx"
| genRegRepr(GeneralReg (0w3, false), SZWord) = "bx"
| genRegRepr(GeneralReg (0w4, false), SZWord) = "sp"
| genRegRepr(GeneralReg (0w5, false), SZWord) = "bp"
| genRegRepr(GeneralReg (0w6, false), SZWord) = "si"
| genRegRepr(GeneralReg (0w7, false), SZWord) = "di"
| genRegRepr(GeneralReg (reg, true), SZWord) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "w"
| genRegRepr _ = "unknown" (* Suppress warning because word values are not exhaustive. *)
and fpRegRepr(FloatingPtReg n) = "fp" ^ Word8.toString n
and xmmRegRepr(SSE2Reg n) = "xmm" ^ Word8.toString n
fun regRepr(GenReg r) = genRegRepr (r, sz32_64)
| regRepr(FPReg r) = fpRegRepr r
| regRepr(XMMReg r) = xmmRegRepr r
(* Install a pretty printer. This is simply for when this code is being
run under the debugger. N.B. We need PolyML.PrettyString here. *)
val () = PolyML.addPrettyPrinter(fn _ => fn _ => fn r => PolyML.PrettyString(regRepr r))
datatype argType = ArgGeneral | ArgFP
(* Size of operand. OpSize64 is only valid in 64-bit mode. *)
datatype opSize = OpSize32 | OpSize64
structure RegSet =
struct
(* Implement a register set as a bit mask. *)
datatype regSet = RegSet of word
fun singleton r = RegSet(0w1 << Word.fromInt(nReg r))
fun regSetUnion(RegSet r1, RegSet r2) = RegSet(Word.orb(r1, r2))
fun regSetIntersect(RegSet r1, RegSet r2) = RegSet(Word.andb(r1, r2))
local
fun addReg(acc, n) =
if n = regs then acc else addReg(regSetUnion(acc, singleton(regN n)), n+1)
in
val allRegisters = addReg(RegSet 0w0, 0)
end
val noRegisters = RegSet 0w0
fun inSet(r, rs) = regSetIntersect(singleton r, rs) <> noRegisters
fun regSetMinus(RegSet s1, RegSet s2) = RegSet(Word.andb(s1, Word.notb s2))
val listToSet = List.foldl (fn(r, rs) => regSetUnion(singleton r, rs)) noRegisters
local
val regs =
case targetArch of
Native32Bit => [eax, ecx, edx, ebx, esi, edi]
| Native64Bit => [eax, ecx, edx, ebx, esi, edi, r8, r9, r10, r11, r12, r13, r14]
| ObjectId32Bit => [eax, ecx, edx, esi, edi, r8, r9, r10, r11, r12, r13, r14]
in
val generalRegisters = listToSet(map GenReg regs)
end
(* The floating point stack. Note that this excludes one item so it is always
possible to load a value onto the top of the FP stack. *)
val floatingPtRegisters =
listToSet(map FPReg [fp0, fp1, fp2, fp3, fp4, fp5, fp6(*, fp7*)])
val sse2Registers =
listToSet(map XMMReg [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6])
fun isAllRegs rs = rs = allRegisters
fun setToList (RegSet regSet)=
let
fun testBit (n, bit, res) =
if n = regs
then res
else testBit(n+1, bit << 0w1,
if (regSet andb bit) <> 0w0
then regN n :: res else res)
in
testBit(0, 0w1, [])
end
val cardinality = List.length o setToList
(* Choose one of the set. This chooses the least value which means that
the ordering of the registers is significant. This is a hot-spot
so is coded directly with the word operations. *)
fun oneOf(RegSet regSet) =
let
fun find(n, bit) =
if n = Word.fromInt regs then raise InternalError "oneOf: empty"
else if Word.andb(bit, regSet) <> 0w0 then n
else find(n+0w1, Word.<<(bit, 0w1))
in
regN(Word.toInt(find(0w0, 0w1)))
end
fun regSetRepr regSet =
let
val regs = setToList regSet
in
"[" ^ String.concatWith "," (List.map regRepr regs) ^ "]"
end
(* Install a pretty printer for when this code is being debugged. *)
val () = PolyML.addPrettyPrinter(fn _ => fn _ => fn r => PolyML.PrettyString(regSetRepr r))
end
open RegSet
datatype arithOp = ADD | OR (*|ADC | SBB*) | AND | SUB | XOR | CMP
fun arithOpToWord ADD = 0w0: Word8.word
| arithOpToWord OR = 0w1
| arithOpToWord AND = 0w4
| arithOpToWord SUB = 0w5
| arithOpToWord XOR = 0w6
| arithOpToWord CMP = 0w7
fun arithOpRepr ADD = "Add"
| arithOpRepr OR = "Or"
| arithOpRepr AND = "And"
| arithOpRepr SUB = "Sub"
| arithOpRepr XOR = "Xor"
| arithOpRepr CMP = "Cmp"
datatype shiftType = SHL | SHR | SAR
fun shiftTypeToWord SHL = 0w4: Word8.word
| shiftTypeToWord SHR = 0w5
| shiftTypeToWord SAR = 0w7
fun shiftTypeRepr SHL = "Shift Left Logical"
| shiftTypeRepr SHR = "Shift Right Logical"
| shiftTypeRepr SAR = "Shift Right Arithemetic"
datatype repOps = CMPS8 | MOVS8 | MOVS32 | STOS8 | STOS32 | MOVS64 | STOS64
fun repOpsToWord CMPS8 = 0wxa6: Word8.word
| repOpsToWord MOVS8 = 0wxa4
| repOpsToWord MOVS32 = 0wxa5
| repOpsToWord MOVS64 = 0wxa5 (* Plus Rex.w *)
| repOpsToWord STOS8 = 0wxaa
| repOpsToWord STOS32 = 0wxab
| repOpsToWord STOS64 = 0wxab (* Plus Rex.w *)
fun repOpsRepr CMPS8 = "CompareBytes"
| repOpsRepr MOVS8 = "MoveBytes"
| repOpsRepr MOVS32 = "MoveWords32"
| repOpsRepr MOVS64 = "MoveWords64"
| repOpsRepr STOS8 = "StoreBytes"
| repOpsRepr STOS32 = "StoreWords32"
| repOpsRepr STOS64 = "StoreWords64"
datatype fpOps = FADD | FMUL | FCOM | FCOMP | FSUB | FSUBR | FDIV | FDIVR
fun fpOpToWord FADD = 0w0: Word8.word
| fpOpToWord FMUL = 0w1
| fpOpToWord FCOM = 0w2
| fpOpToWord FCOMP = 0w3
| fpOpToWord FSUB = 0w4
| fpOpToWord FSUBR = 0w5
| fpOpToWord FDIV = 0w6
| fpOpToWord FDIVR = 0w7
fun fpOpRepr FADD = "FPAdd"
| fpOpRepr FMUL = "FPMultiply"
| fpOpRepr FCOM = "FPCompare"
| fpOpRepr FCOMP = "FPCompareAndPop"
| fpOpRepr FSUB = "FPSubtract"
| fpOpRepr FSUBR = "FPReverseSubtract"
| fpOpRepr FDIV = "FPDivide"
| fpOpRepr FDIVR = "FPReverseDivide"
datatype fpUnaryOps = FCHS | FABS | FLD1 | FLDZ
fun fpUnaryToWords FCHS = {rm=0w0:Word8.word, nnn=0w4: Word8.word}
| fpUnaryToWords FABS = {rm=0w1, nnn=0w4}
| fpUnaryToWords FLD1 = {rm=0w0, nnn=0w5}
| fpUnaryToWords FLDZ = {rm=0w6, nnn=0w5}
fun fpUnaryRepr FCHS = "FPChangeSign"
| fpUnaryRepr FABS = "FPAbs"
| fpUnaryRepr FLD1 = "FPLoadOne"
| fpUnaryRepr FLDZ = "FPLoadZero"
datatype branchOps = JO | JNO | JE | JNE | JL | JGE | JLE | JG | JB | JNB | JNA | JA | JP | JNP
fun branchOpToWord JO = 0wx0: Word8.word
| branchOpToWord JNO = 0wx1
| branchOpToWord JB = 0wx2
| branchOpToWord JNB = 0wx3
| branchOpToWord JE = 0wx4
| branchOpToWord JNE = 0wx5
| branchOpToWord JNA = 0wx6
| branchOpToWord JA = 0wx7
| branchOpToWord JP = 0wxa
| branchOpToWord JNP = 0wxb
| branchOpToWord JL = 0wxc
| branchOpToWord JGE = 0wxd
| branchOpToWord JLE = 0wxe
| branchOpToWord JG = 0wxf
fun branchOpRepr JO = "Overflow"
| branchOpRepr JNO = "NotOverflow"
| branchOpRepr JE = "Equal"
| branchOpRepr JNE = "NotEqual"
| branchOpRepr JL = "Less"
| branchOpRepr JGE = "GreaterOrEqual"
| branchOpRepr JLE = "LessOrEqual"
| branchOpRepr JG = "Greater"
| branchOpRepr JB = "Before"
| branchOpRepr JNB= "NotBefore"
| branchOpRepr JNA = "NotAfter"
| branchOpRepr JA = "After"
| branchOpRepr JP = "Parity"
| branchOpRepr JNP = "NoParity"
(* Invert a test. This is used if we want to change the
sense of a test from jumping if the condition is true to
jumping if it is false. *)
fun invertTest JE = JNE
| invertTest JNE = JE
| invertTest JA = JNA
| invertTest JB = JNB
| invertTest JNA = JA
| invertTest JNB = JB
| invertTest JL = JGE
| invertTest JG = JLE
| invertTest JLE = JG
| invertTest JGE = JL
| invertTest JO = JNO
| invertTest JNO = JO
| invertTest JP = JNP
| invertTest JNP = JP
datatype sse2Operations =
SSE2MoveDouble | SSE2MoveFloat | SSE2CompDouble | SSE2AddDouble |
SSE2SubDouble | SSE2MulDouble | SSE2DivDouble |
SSE2Xor | SSE2And | SSE2FloatToDouble | SSE2DoubleToFloat |
SSE2CompSingle | SSE2AddSingle | SSE2SubSingle | SSE2MulSingle | SSE2DivSingle
fun sse2OpRepr SSE2MoveDouble = "SSE2MoveDouble"
| sse2OpRepr SSE2MoveFloat = "SSE2MoveFloat"
| sse2OpRepr SSE2CompDouble = "SSE2CompDouble"
| sse2OpRepr SSE2AddDouble = "SSE2AddDouble"
| sse2OpRepr SSE2SubDouble = "SSE2SubDouble"
| sse2OpRepr SSE2MulDouble = "SSE2MulDouble"
| sse2OpRepr SSE2DivDouble = "SSE2DivDouble"
| sse2OpRepr SSE2Xor = "SSE2Xor"
| sse2OpRepr SSE2And = "SSE2And"
| sse2OpRepr SSE2CompSingle = "SSE2CompSingle"
| sse2OpRepr SSE2AddSingle = "SSE2AddSingle"
| sse2OpRepr SSE2SubSingle = "SSE2SubSingle"
| sse2OpRepr SSE2MulSingle = "SSE2MulSingle"
| sse2OpRepr SSE2DivSingle = "SSE2DivSingle"
| sse2OpRepr SSE2FloatToDouble = "SSE2FloatToDouble"
| sse2OpRepr SSE2DoubleToFloat = "SSE2DoubleToFloat"
(* Primary opCodes. N.B. only opCodes actually used are listed here.
If new instruction are added check they will be handled by the
run-time system in the event of trap. *)
datatype opCode =
Group1_8_A32
| Group1_8_A64
| Group1_32_A32
| Group1_32_A64
| Group1_8_a
| JMP_8
| JMP_32
| CALL_32
| MOVL_A_R32
| MOVL_A_R64
| MOVL_R_A32
| MOVL_R_A64
| MOVL_R_A16
| MOVB_R_A32
| MOVB_R_A64 of {forceRex: bool}
| PUSH_R of Word8.word
| POP_R of Word8.word
| Group5
| NOP
| LEAL32
| LEAL64
| MOVL_32_R of Word8.word
| MOVL_64_R of Word8.word
| MOVL_32_A32
| MOVL_32_A64
| MOVB_8_A
| POP_A
| RET
| RET_16
| CondJump of branchOps
| CondJump32 of branchOps
| SetCC of branchOps
| Arith32 of arithOp * Word8.word
| Arith64 of arithOp * Word8.word
| Group3_A32
| Group3_A64
| Group3_a
| Group2_8_A32
| Group2_8_A64
| Group2_CL_A32
| Group2_CL_A64
| Group2_1_A32
| Group2_1_A64
| PUSH_8
| PUSH_32
| TEST_ACC8
| LOCK_XADD32
| LOCK_XADD64
| FPESC of Word8.word
| XCHNG32
| XCHNG64
| REP (* Rep prefix *)
| MOVZB32 (* Needs escape code. *)
| MOVZW32 (* Needs escape code. *)
| IMUL32 (* Needs escape code. *)
| IMUL64 (* Needs escape code. *)
| SSE2StoreSingle (* movss with memory destination - needs escape sequence. *)
| SSE2StoreDouble (* movsd with memory destination - needs escape sequence. *)
| CQO_CDQ32 (* Sign extend before divide.. *)
| CQO_CDQ64 (* Sign extend before divide.. *)
| SSE2Ops of sse2Operations (* SSE2 instructions. *)
| CVTSI2SD32
| CVTSI2SD64
| HLT (* End of code marker. *)
| IMUL_C8_32
| IMUL_C8_64
| IMUL_C32_32
| IMUL_C32_64
| MOVDFromXMM (* move 32 bit value from XMM to general reg. *)
| MOVQToXMM (* move 64 bit value from general reg.to XMM *)
| PSRLDQ (* Shift XMM register *)
| LDSTMXCSR
| CVTSD2SI32 (* Double to 32-bit int *)
| CVTSD2SI64 (* Double to 64-bit int *)
| CVTSS2SI32 (* Single to 32-bit int *)
| CVTSS2SI64 (* Single to 64-bit int *)
| CVTTSD2SI32 (* Double to 32-bit int - truncate towards zero *)
| CVTTSD2SI64 (* Double to 64-bit int - truncate towards zero *)
| CVTTSS2SI32 (* Single to 32-bit int - truncate towards zero *)
| CVTTSS2SI64 (* Single to 64-bit int - truncate towards zero *)
| MOVSXD
| CMOV32 of branchOps
| CMOV64 of branchOps
fun opToInt Group1_8_A32 = 0wx83
| opToInt Group1_8_A64 = 0wx83
| opToInt Group1_32_A32 = 0wx81
| opToInt Group1_32_A64 = 0wx81
| opToInt Group1_8_a = 0wx80
| opToInt JMP_8 = 0wxeb
| opToInt JMP_32 = 0wxe9
| opToInt CALL_32 = 0wxe8
| opToInt MOVL_A_R32 = 0wx8b
| opToInt MOVL_A_R64 = 0wx8b
| opToInt MOVL_R_A32 = 0wx89
| opToInt MOVL_R_A64 = 0wx89
| opToInt MOVL_R_A16 = 0wx89 (* Also has an OPSIZE prefix. *)
| opToInt MOVB_R_A32 = 0wx88
| opToInt (MOVB_R_A64 _) = 0wx88
| opToInt (PUSH_R reg) = 0wx50 + reg
| opToInt (POP_R reg) = 0wx58 + reg
| opToInt Group5 = 0wxff
| opToInt NOP = 0wx90
| opToInt LEAL32 = 0wx8d
| opToInt LEAL64 = 0wx8d
| opToInt (MOVL_32_R reg) = 0wxb8 + reg
| opToInt (MOVL_64_R reg) = 0wxb8 + reg
| opToInt MOVL_32_A32 = 0wxc7
| opToInt MOVL_32_A64 = 0wxc7
| opToInt MOVB_8_A = 0wxc6
| opToInt POP_A = 0wx8f
| opToInt RET = 0wxc3
| opToInt RET_16 = 0wxc2
| opToInt (CondJump opc) = 0wx70 + branchOpToWord opc
| opToInt (CondJump32 opc) = 0wx80 + branchOpToWord opc (* Needs 0F prefix *)
| opToInt (SetCC opc) = 0wx90 + branchOpToWord opc (* Needs 0F prefix *)
| opToInt (Arith32 (ao,dw)) = arithOpToWord ao * 0w8 + dw
| opToInt (Arith64 (ao,dw)) = arithOpToWord ao * 0w8 + dw
| opToInt Group3_A32 = 0wxf7
| opToInt Group3_A64 = 0wxf7
| opToInt Group3_a = 0wxf6
| opToInt Group2_8_A32 = 0wxc1
| opToInt Group2_8_A64 = 0wxc1
| opToInt Group2_1_A32 = 0wxd1
| opToInt Group2_1_A64 = 0wxd1
| opToInt Group2_CL_A32 = 0wxd3
| opToInt Group2_CL_A64 = 0wxd3
| opToInt PUSH_8 = 0wx6a
| opToInt PUSH_32 = 0wx68
| opToInt TEST_ACC8 = 0wxa8
| opToInt LOCK_XADD32 = 0wxC1 (* Needs lock and escape prefixes. *)
| opToInt LOCK_XADD64 = 0wxC1 (* Needs lock and escape prefixes. *)
| opToInt (FPESC n) = 0wxD8 orb8 n
| opToInt XCHNG32 = 0wx87
| opToInt XCHNG64 = 0wx87
| opToInt REP = 0wxf3
| opToInt MOVZB32 = 0wxb6 (* Needs escape code. *)
| opToInt MOVZW32 = 0wxb7 (* Needs escape code. *)
| opToInt IMUL32 = 0wxaf (* Needs escape code. *)
| opToInt IMUL64 = 0wxaf (* Needs escape code. *)
| opToInt SSE2StoreSingle = 0wx11 (* Needs F3 0F escape. *)
| opToInt SSE2StoreDouble = 0wx11 (* Needs F2 0F escape. *)
| opToInt CQO_CDQ32 = 0wx99
| opToInt CQO_CDQ64 = 0wx99
| opToInt (SSE2Ops SSE2MoveDouble) = 0wx10 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2MoveFloat) = 0wx10 (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2CompDouble) = 0wx2E (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2AddDouble) = 0wx58 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2SubDouble) = 0wx5c (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2MulDouble) = 0wx59 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2DivDouble) = 0wx5e (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2CompSingle) = 0wx2E (* Needs 0F escape. *)
| opToInt (SSE2Ops SSE2AddSingle) = 0wx58 (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2SubSingle) = 0wx5c (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2MulSingle) = 0wx59 (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2DivSingle) = 0wx5e (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2And) = 0wx54 (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2Xor) = 0wx57 (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2FloatToDouble) = 0wx5A (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2DoubleToFloat) = 0wx5A (* Needs F2 0F escape. *)
| opToInt CVTSI2SD32 = 0wx2a (* Needs F2 0F escape. *)
| opToInt CVTSI2SD64 = 0wx2a (* Needs F2 0F escape. *)
| opToInt HLT = 0wxf4
| opToInt IMUL_C8_32 = 0wx6b
| opToInt IMUL_C8_64 = 0wx6b
| opToInt IMUL_C32_32 = 0wx69
| opToInt IMUL_C32_64 = 0wx69
| opToInt MOVDFromXMM = 0wx7e (* Needs 66 0F escape. *)
| opToInt MOVQToXMM = 0wx6e (* Needs 66 0F escape. *)
| opToInt PSRLDQ = 0wx73 (* Needs 66 0F escape. *)
| opToInt LDSTMXCSR = 0wxae (* Needs 0F prefix. *)
| opToInt CVTSD2SI32 = 0wx2d (* Needs F2 0F prefix. *)
| opToInt CVTSD2SI64 = 0wx2d (* Needs F2 0F prefix and rex.w. *)
| opToInt CVTSS2SI32 = 0wx2d (* Needs F3 0F prefix. *)
| opToInt CVTSS2SI64 = 0wx2d (* Needs F3 0F prefix and rex.w. *)
| opToInt CVTTSD2SI32 = 0wx2c (* Needs F2 0F prefix. *)
| opToInt CVTTSD2SI64 = 0wx2c (* Needs F2 0F prefix. *)
| opToInt CVTTSS2SI32 = 0wx2c (* Needs F3 0F prefix. *)
| opToInt CVTTSS2SI64 = 0wx2c (* Needs F3 0F prefix and rex.w. *)
| opToInt MOVSXD = 0wx63
| opToInt (CMOV32 opc) = 0wx40 + branchOpToWord opc (* Needs 0F prefix *)
| opToInt (CMOV64 opc) = 0wx40 + branchOpToWord opc (* Needs 0F prefix and rex.w *)
datatype mode =
Based0 (* mod = 0 *)
| Based8 (* mod = 1 *)
| Based32 (* mod = 2 *)
| Register (* mod = 3 *) ;
(* Put together the three fields which make up the mod r/m byte. *)
fun modrm (md : mode, rg: Word8.word, rm : Word8.word) : Word8.word =
let
val _ = if rg > 0w7 then raise InternalError "modrm: bad rg" else ()
val _ = if rm > 0w7 then raise InternalError "modrm: bad rm" else ()
val modField: Word8.word =
case md of
Based0 => 0w0
| Based8 => 0w1
| Based32 => 0w2
| Register => 0w3
in
(modField <<- 0w6) orb8 (rg <<- 0w3) orb8 rm
end
(* REX prefix *)
fun rex {w,r,x,b} =
0wx40 orb8 (if w then 0w8 else 0w0) orb8 (if r then 0w4 else 0w0) orb8
(if x then 0w2 else 0w0) orb8 (if b then 0w1 else 0w0)
(* The X86 has the option to include an index register and to scale it. *)
datatype indexType =
NoIndex | Index1 of genReg | Index2 of genReg | Index4 of genReg | Index8 of genReg
(* Lock, Opsize and REPNE prefixes come before the REX. *)
fun opcodePrefix LOCK_XADD32 = [0wxF0] (* Requires LOCK prefix. *)
| opcodePrefix LOCK_XADD64 = [0wxF0] (* Requires LOCK prefix. *)
| opcodePrefix MOVL_R_A16 = [0wx66] (* Requires OPSIZE prefix. *)
| opcodePrefix SSE2StoreSingle = [0wxf3]
| opcodePrefix SSE2StoreDouble = [0wxf2]
| opcodePrefix(SSE2Ops SSE2CompDouble) = [0wx66]
| opcodePrefix(SSE2Ops SSE2And) = [0wx66]
| opcodePrefix(SSE2Ops SSE2Xor) = [0wx66]
| opcodePrefix(SSE2Ops SSE2CompSingle) = [] (* No prefix *)
| opcodePrefix(SSE2Ops SSE2MoveDouble) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2AddDouble) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2SubDouble) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2MulDouble) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2DivDouble) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2DoubleToFloat) = [0wxf2]
| opcodePrefix(SSE2Ops SSE2MoveFloat) = [0wxf3]
| opcodePrefix(SSE2Ops SSE2AddSingle) = [0wxf3]
| opcodePrefix(SSE2Ops SSE2SubSingle) = [0wxf3]
| opcodePrefix(SSE2Ops SSE2MulSingle) = [0wxf3]
| opcodePrefix(SSE2Ops SSE2DivSingle) = [0wxf3]
| opcodePrefix(SSE2Ops SSE2FloatToDouble) = [0wxf3]
| opcodePrefix CVTSI2SD32 = [0wxf2]
| opcodePrefix CVTSI2SD64 = [0wxf2]
| opcodePrefix MOVDFromXMM = [0wx66]
| opcodePrefix MOVQToXMM = [0wx66]
| opcodePrefix PSRLDQ = [0wx66]
| opcodePrefix CVTSD2SI32 = [0wxf2]
| opcodePrefix CVTSD2SI64 = [0wxf2]
| opcodePrefix CVTSS2SI32 = [0wxf3]
| opcodePrefix CVTSS2SI64 = [0wxf3]
| opcodePrefix CVTTSD2SI32 = [0wxf2]
| opcodePrefix CVTTSD2SI64 = [0wxf2]
| opcodePrefix CVTTSS2SI32 = [0wxf3]
| opcodePrefix CVTTSS2SI64 = [0wxf3]
| opcodePrefix _ = []
(* A few instructions require an escape. Escapes come after the REX. *)
fun escapePrefix MOVZB32 = [0wx0f]
| escapePrefix MOVZW32 = [0wx0f]
| escapePrefix LOCK_XADD32 = [0wx0f]
| escapePrefix LOCK_XADD64 = [0wx0f]
| escapePrefix IMUL32 = [0wx0f]
| escapePrefix IMUL64 = [0wx0f]
| escapePrefix(CondJump32 _) = [0wx0f]
| escapePrefix(SetCC _) = [0wx0f]
| escapePrefix SSE2StoreSingle = [0wx0f]
| escapePrefix SSE2StoreDouble = [0wx0f]
| escapePrefix(SSE2Ops _) = [0wx0f]
| escapePrefix CVTSI2SD32 = [0wx0f]
| escapePrefix CVTSI2SD64 = [0wx0f]
| escapePrefix MOVDFromXMM = [0wx0f]
| escapePrefix MOVQToXMM = [0wx0f]
| escapePrefix PSRLDQ = [0wx0f]
| escapePrefix LDSTMXCSR = [0wx0f]
| escapePrefix CVTSD2SI32 = [0wx0f]
| escapePrefix CVTSD2SI64 = [0wx0f]
| escapePrefix CVTSS2SI32 = [0wx0f]
| escapePrefix CVTSS2SI64 = [0wx0f]
| escapePrefix CVTTSD2SI32 = [0wx0f]
| escapePrefix CVTTSD2SI64 = [0wx0f]
| escapePrefix CVTTSS2SI32 = [0wx0f]
| escapePrefix CVTTSS2SI64 = [0wx0f]
| escapePrefix(CMOV32 _) = [0wx0f]
| escapePrefix(CMOV64 _) = [0wx0f]
| escapePrefix _ = []
(* Generate an opCode byte after doing any pending operations. *)
fun opCodeBytes(opb:opCode, rx) =
let
val rexByte =
case rx of
NONE => []
| SOME rxx =>
if hostIsX64 then [rex rxx]
else raise InternalError "opCodeBytes: rex prefix in 32 bit mode";
in
opcodePrefix opb @ rexByte @ escapePrefix opb @ [opToInt opb]
end
fun rexByte(opb, rrX, rbX, riX) =
let
(* We need a rex prefix if we need to set the length to 64-bit. *)
val need64bit =
case opb of
Group1_8_A64 => true (* Arithmetic operations - must be 64-bit *)
| Group1_32_A64 => true (* Arithmetic operations - must be 64-bit *)
| Group2_1_A64 => true (* 1-bit shifts - must be 64-bit *)
| Group2_8_A64 => true (* n-bit shifts - must be 64-bit *)
| Group2_CL_A64 => true (* Shifts by value in CL *)
| Group3_A64 => true (* Test, Not, Mul etc. *)
| Arith64 (_, _) => true
| MOVL_A_R64 => true (* Needed *)
| MOVL_R_A64 => true (* Needed *)
| XCHNG64 => true
| LEAL64 => true (* Needed to ensure the result is 64-bits *)
| MOVL_64_R _ => true (* Needed *)
| MOVL_32_A64 => true (* Needed *)
| IMUL64 => true (* Needed to ensure the result is 64-bits *)
| LOCK_XADD64 => true (* Needed to ensure the result is 64-bits *)
| CQO_CDQ64 => true (* It's only CQO if there's a Rex prefix. *)
| CVTSI2SD64 => true (* This affects the size of the integer source. *)
| IMUL_C8_64 => true
| IMUL_C32_64 => true
| MOVQToXMM => true
| CVTSD2SI64 => true (* This affects the size of the integer source. *)
| CVTSS2SI64 => true
| CVTTSD2SI64 => true
| CVTTSS2SI64 => true
| MOVSXD => true
| CMOV64 _ => true
(* Group5 - We only use 2/4/6 and they don't need prefix *)
| _ => false
(* If we are using MOVB_R_A with SIL or DIL we need to force a REX prefix.
That's only possible in 64-bit mode. This also applies with Test and SetCC
but they are dealt with elsewhere. *)
val forceRex =
case opb of
MOVB_R_A64 {forceRex=true} => true (* This is allowed in X86/64 but not in X86/32. *)
| _ => false
in
if need64bit orelse rrX orelse rbX orelse riX orelse forceRex
then [rex{w=need64bit, r=rrX, b=rbX, x = riX}]
else []
end
(* Register/register operation. *)
fun opReg(opb:opCode, (*dest*)GeneralReg(rrC, rrX), (*source*)GeneralReg(rbC, rbX)) =
let
val pref = opcodePrefix opb (* Any opsize or lock prefix. *)
val rex = rexByte(opb, rrX, rbX, false)
val esc = escapePrefix opb (* Generate the ESCAPE code if needed. *)
val opc = opToInt opb
val mdrm = modrm(Register, rrC, rbC)
in
pref @ rex @ esc @ [opc, mdrm]
end
(* Operations on a register where the second "register" is actually an operation code. *)
fun opRegPlus2(opb:opCode, rd: genReg, op2: Word8.word) =
let
val (rrC, rrX) = getReg rd
val pref = opcodePrefix opb (* Any opsize or lock prefix. *)
val rex = rexByte(opb, false, rrX, false)
val opc = opToInt opb
val mdrm = modrm(Register, op2, rrC)
in
pref @ rex @ [opc, mdrm]
end
local
(* General instruction form with modrm and optional sib bytes. rb is an option since the
base register may be omitted. This is used with LEA to tag integers. *)
fun opIndexedGen (opb:opCode, offset: LargeInt.int, rb: genReg option, ri: indexType, (rrC, rrX)) =
let
(* Base encoding. (Based0, 0w5) means "no base" so if we need ebp as the
base we have to use Based8 at least. *)
val (offsetCode, rbC, rbX) =
case rb of
NONE => (Based0, 0w5 (* no base register *), false)
| SOME rb =>
let
val (rbC, rbX) = getReg rb
val base =
if offset = 0 andalso rbC <> 0wx5 (* Can't use ebp with Based0 *)
then Based0 (* no disp field *)
else if is8BitL offset
then Based8 (* use 8-bit disp field *)
else Based32 (* use 32-bit disp field *)
in
(base, rbC, rbX)
end
(* Index coding. esp can't be used as an index so (0w4, false) means "no index".
But r12 (0w4, true) CAN be. *)
val ((riC, riX), scaleFactor) =
case ri of
NoIndex => ((0w4, false), 0w0)
| Index1 i => (getReg i, 0w0)
| Index2 i => (getReg i, 0w1)
| Index4 i => (getReg i, 0w2)
| Index8 i => (getReg i, 0w3)
(* If the base register is esp or r12 we have to use a sib byte even if
there's no index. That's because 0w4 as a base register means "there's
a SIB byte". *)
val modRmAndOptionalSib =
if rbC = 0w4 (* Code for esp and r12 *) orelse riC <> 0w4 orelse riX
then
let
val mdrm = modrm(offsetCode, rrC, 0w4 (* s-i-b *))
val sibByte = (scaleFactor <<- 0w6) orb8 (riC <<- 0w3) orb8 rbC
in
[mdrm, sibByte]
end
else [modrm(offsetCode, rrC, rbC)]
(* Generate the disp field (if any) *)
val dispField =
case (offsetCode, rb) of
(Based8, _) => [Word8.fromLargeInt offset]
| (Based32, _) => int32Signed offset
| (_, NONE) => (* 32 bit absolute used as base *) int32Signed offset
| _ => []
in
opcodePrefix opb @ rexByte(opb, rrX, rbX, riX) @ escapePrefix opb @
opToInt opb :: modRmAndOptionalSib @ dispField
end
in
fun opEA(opb, offset, rb, r) = opIndexedGen(opb, offset, SOME rb, NoIndex, getReg r)
(* Generate a opcode plus a second modrm byte but where the "register" field in
the modrm byte is actually a code. *)
and opPlus2(opb, offset, rb, op2) = opIndexedGen(opb, offset, SOME rb, NoIndex, (op2, false))
and opIndexedPlus2(opb, offset, rb, ri, op2) = opIndexedGen(opb, offset, SOME rb, ri, (op2, false))
fun opIndexed (opb, offset, rb, ri, rd) =
opIndexedGen(opb, offset, rb, ri, getReg rd)
fun opAddress(opb, offset, rb, ri, rd) = opIndexedGen (opb, offset, SOME rb, ri, getReg rd)
and mMXAddress(opb, offset, rb, ri, SSE2Reg rrC) = opIndexedGen(opb, offset, SOME rb, ri, (rrC, false))
and opAddressPlus2(opb, offset, rb, ri, op2) =
opIndexedGen(opb, offset, SOME rb, ri, (op2, false))
end
(* An operation with an operand that needs to go in the constant area, or in the case of
native 32-bit, where the constant is stored in an object and the address of the
object is inline. This just puts in the instruction and the address. The details
of the constant are dealt with in putConst. *)
fun opConstantOperand(opb, (*dest*)GeneralReg(rrC, rrX)) =
let
val pref = opcodePrefix opb (* Any opsize or lock prefix. *)
val rex = rexByte(opb, rrX, false, false)
val esc = escapePrefix opb (* Generate the ESCAPE code if needed. *)
val opc = opToInt opb
val mdrm = modrm(Based0, rrC, 0w5 (* PC-relative or absolute *))
in
pref @ rex @ esc @ [opc, mdrm] @ int32Signed(tag 0)
end
fun immediateOperand (opn: arithOp, rd: genReg, imm: LargeInt.int, opSize) =
if is8BitL imm
then (* Can use one byte immediate *)
opRegPlus2(case opSize of OpSize64 => Group1_8_A64 | OpSize32 => Group1_8_A32, rd, arithOpToWord opn) @ [Word8.fromLargeInt imm]
else if is32bit imm
then (* Need 32 bit immediate. *)
opRegPlus2(case opSize of OpSize64 => Group1_32_A64 | OpSize32 => Group1_32_A32, rd, arithOpToWord opn) @ int32Signed imm
else (* It won't fit in the immediate; put it in the non-address area. *)
let
val opc = case opSize of OpSize64 => Arith64 | OpSize32 => Arith32
in
opConstantOperand(opc(opn, 0w3 (* r/m to reg *)), rd)
end
fun arithOpReg(opn: arithOp, rd: genReg, rs: genReg, opIs64) =
opReg ((if opIs64 then Arith64 else Arith32) (opn, 0w3 (* r/m to reg *)), rd, rs)
type handlerLab = addrs ref
fun floatingPtOp{escape, md, nnn, rm} =
opCodeBytes(FPESC escape, NONE) @ [(md <<- 0w6) orb8 (nnn <<- 0w3) orb8 rm]
datatype trapEntries =
StackOverflowCall
| StackOverflowCallEx
| HeapOverflowCall
(* RTS call. We need to save any registers that may contain addresses to the stack.
All the registers are preserved but not seen by the GC. *)
fun rtsCall(rtsEntry, regSet) =
let
val entry =
case rtsEntry of
StackOverflowCall => memRegStackOverflowCall
| StackOverflowCallEx => memRegStackOverflowCallEx
| HeapOverflowCall => memRegHeapOverflowCall
val regSet = List.foldl(fn (r, a) => (0w1 << Word.fromInt(nReg(GenReg r))) orb a) 0w0 regSet
val callInstr =
opPlus2(Group5, LargeInt.fromInt entry, ebp, 0w2 (* call *))
val regSetInstr =
if regSet >= 0w256
then [0wxca, (* This is actually a FAR RETURN *)
wordToWord8 regSet, (* Low byte*) wordToWord8 (regSet >> 0w8) (* High byte*)]
else if regSet <> 0w0
then [0wxcd, (* This is actually INT n *) wordToWord8 regSet]
else []
in
callInstr @ regSetInstr
end
(* Operations. *)
type cases = word * label
type memoryAddress = { base: genReg, offset: int, index: indexType }
datatype 'reg regOrMemoryArg =
RegisterArg of 'reg
| MemoryArg of memoryAddress
| NonAddressConstArg of LargeInt.int
| AddressConstArg of machineWord
datatype moveSize = Move64 | Move32 | Move8 | Move16 | Move32X
and fpSize = SinglePrecision | DoublePrecision
datatype operation =
Move of { source: genReg regOrMemoryArg, destination: genReg regOrMemoryArg, moveSize: moveSize }
| PushToStack of genReg regOrMemoryArg
| PopR of genReg
| ArithToGenReg of { opc: arithOp, output: genReg, source: genReg regOrMemoryArg, opSize: opSize }
| ArithMemConst of { opc: arithOp, address: memoryAddress, source: LargeInt.int, opSize: opSize }
| ArithMemLongConst of { opc: arithOp, address: memoryAddress, source: machineWord }
| ArithByteMemConst of { opc: arithOp, address: memoryAddress, source: Word8.word }
| ShiftConstant of { shiftType: shiftType, output: genReg, shift: Word8.word, opSize: opSize }
| ShiftVariable of { shiftType: shiftType, output: genReg, opSize: opSize } (* Shift amount is in ecx *)
| ConditionalBranch of { test: branchOps, label: label }
| SetCondition of { output: genReg, test: branchOps }
| LoadAddress of { output: genReg, offset: int, base: genReg option, index: indexType, opSize: opSize }
| TestByteBits of { arg: genReg regOrMemoryArg, bits: Word8.word }
| CallRTS of {rtsEntry: trapEntries, saveRegs: genReg list }
| AllocStore of { size: int, output: genReg, saveRegs: genReg list }
| AllocStoreVariable of { size: genReg, output: genReg, saveRegs: genReg list }
| StoreInitialised
| CallAddress of genReg regOrMemoryArg
| JumpAddress of genReg regOrMemoryArg
| ReturnFromFunction of int
| RaiseException of { workReg: genReg }
| UncondBranch of label
| ResetStack of { numWords: int, preserveCC: bool }
| JumpLabel of label
| LoadLabelAddress of { label: label, output: genReg }
| RepeatOperation of repOps
| DivideAccR of {arg: genReg, isSigned: bool, opSize: opSize }
| DivideAccM of {base: genReg, offset: int, isSigned: bool, opSize: opSize }
| AtomicXAdd of {address: memoryAddress, output: genReg, opSize: opSize }
| FPLoadFromMemory of { address: memoryAddress, precision: fpSize }
| FPLoadFromFPReg of { source: fpReg, lastRef: bool }
| FPLoadFromConst of { constant: machineWord, precision: fpSize }
| FPStoreToFPReg of { output: fpReg, andPop: bool }
| FPStoreToMemory of { address: memoryAddress, precision: fpSize, andPop: bool }
| FPArithR of { opc: fpOps, source: fpReg }
| FPArithConst of { opc: fpOps, source: machineWord, precision: fpSize }
| FPArithMemory of { opc: fpOps, base: genReg, offset: int, precision: fpSize }
| FPUnary of fpUnaryOps
| FPStatusToEAX
| FPLoadInt of { base: genReg, offset: int, opSize: opSize }
| FPFree of fpReg
| MultiplyR of { source: genReg regOrMemoryArg, output: genReg, opSize: opSize }
| XMMArith of { opc: sse2Operations, source: xmmReg regOrMemoryArg, output: xmmReg }
| XMMStoreToMemory of { toStore: xmmReg, address: memoryAddress, precision: fpSize }
| XMMConvertFromInt of { source: genReg, output: xmmReg, opSize: opSize }
| SignExtendForDivide of opSize
| XChng of { reg: genReg, arg: genReg regOrMemoryArg, opSize: opSize }
| Negative of { output: genReg, opSize: opSize }
| JumpTable of { cases: label list, jumpSize: jumpSize ref }
| IndexedJumpCalc of { addrReg: genReg, indexReg: genReg, jumpSize: jumpSize ref }
| MoveXMMRegToGenReg of { source: xmmReg, output: genReg }
| MoveGenRegToXMMReg of { source: genReg, output: xmmReg }
| XMMShiftRight of { output: xmmReg, shift: Word8.word }
| FPLoadCtrlWord of memoryAddress (* Load FP control word. *)
| FPStoreCtrlWord of memoryAddress (* Store FP control word. *)
| XMMLoadCSR of memoryAddress (* Load combined control/status word. *)
| XMMStoreCSR of memoryAddress (* Store combined control/status word. *)
| FPStoreInt of memoryAddress
| XMMStoreInt of { source: xmmReg regOrMemoryArg, output: genReg, precision: fpSize, isTruncate: bool }
| CondMove of { test: branchOps, output: genReg, source: genReg regOrMemoryArg, opSize: opSize }
and jumpSize = JumpSize2 | JumpSize8
type operations = operation list
fun printOperation(operation, stream) =
let
fun printGReg r = stream(genRegRepr(r, sz32_64))
val printFPReg = stream o fpRegRepr
and printXMMReg = stream o xmmRegRepr
fun printBaseOffset(b, x, i) =
(
stream(Int.toString i); stream "("; printGReg b; stream ")";
case x of
NoIndex => ()
| Index1 x => (stream "["; printGReg x; stream "]")
| Index2 x => (stream "["; printGReg x; stream "*2]")
| Index4 x => (stream "["; printGReg x; stream "*4]")
| Index8 x => (stream "["; printGReg x; stream "*8]")
)
fun printMemAddress({ base, offset, index }) = printBaseOffset(base, index, offset)
fun printRegOrMemoryArg printReg (RegisterArg r) = printReg r
| printRegOrMemoryArg _ (MemoryArg{ base, offset, index }) = printBaseOffset(base, index, offset)
| printRegOrMemoryArg _ (NonAddressConstArg c) = stream(LargeInt.toString c)
| printRegOrMemoryArg _ (AddressConstArg c) = stream(Address.stringOfWord c)
fun printOpSize OpSize32 = "32"
| printOpSize OpSize64 = "64"
in
case operation of
Move { source, destination, moveSize } =>
(
case moveSize of
Move64 => stream "Move64 "
| Move32 => stream "Move32 "
| Move8 => stream "Move8 "
| Move16 => stream "Move16 "
| Move32X => stream "Move32X ";
printRegOrMemoryArg printGReg destination; stream " <= "; printRegOrMemoryArg printGReg source
)
| ArithToGenReg { opc, output, source, opSize } =>
(stream (arithOpRepr opc); stream "RR"; stream(printOpSize opSize); stream " "; printGReg output; stream " <= "; printRegOrMemoryArg printGReg source )
| ArithMemConst { opc, address, source, opSize } =>
(
stream (arithOpRepr opc); stream "MC"; stream(printOpSize opSize); stream " ";
printMemAddress address;
stream " "; stream(LargeInt.toString source)
)
| ArithMemLongConst { opc, address, source } =>
(
stream (arithOpRepr opc ^ "MC "); printMemAddress address;
stream " <= "; stream(Address.stringOfWord source)
)
| ArithByteMemConst { opc, address, source } =>
(
stream (arithOpRepr opc); stream "MC8"; stream " ";
printMemAddress address; stream " "; stream(Word8.toString source)
)
| ShiftConstant { shiftType, output, shift, opSize } =>
(
stream(shiftTypeRepr shiftType); stream(printOpSize opSize); stream " "; printGReg output;
stream " by "; stream(Word8.toString shift)
)
| ShiftVariable { shiftType, output, opSize } => (* Shift amount is in ecx *)
(
stream(shiftTypeRepr shiftType); stream(printOpSize opSize); stream " "; printGReg output; stream " by ECX"
)
| ConditionalBranch { test, label=Label{labelNo, ...} } =>
(
stream "Jump"; stream(branchOpRepr test); stream " L"; stream(Int.toString labelNo)
)
| SetCondition { output, test } =>
(
stream "SetCC"; stream(branchOpRepr test); stream " => "; printGReg output
)
| PushToStack source => (stream "Push "; printRegOrMemoryArg printGReg source)
| PopR dest => (stream "PopR "; printGReg dest)
| LoadAddress{ output, offset, base, index, opSize } =>
(
stream "LoadAddress"; stream(printOpSize opSize); stream " ";
case base of NONE => () | SOME r => (printGReg r; stream " + ");
stream(Int.toString offset);
case index of
NoIndex => ()
| Index1 x => (stream " + "; printGReg x)
| Index2 x => (stream " + "; printGReg x; stream "*2 ")
| Index4 x => (stream " + "; printGReg x; stream "*4 ")
| Index8 x => (stream " + "; printGReg x; stream "*8 ");
stream " => "; printGReg output
)
| TestByteBits { arg, bits } =>
( stream "TestByteBits "; printRegOrMemoryArg printGReg arg; stream " 0x"; stream(Word8.toString bits) )
| CallRTS {rtsEntry, ...} =>
(
stream "CallRTS ";
case rtsEntry of
StackOverflowCall => stream "StackOverflowCall"
| HeapOverflowCall => stream "HeapOverflow"
| StackOverflowCallEx => stream "StackOverflowCallEx"
)
| AllocStore { size, output, ... } =>
(stream "AllocStore "; stream(Int.toString size); stream " => "; printGReg output )
| AllocStoreVariable { output, size, ...} =>
(stream "AllocStoreVariable "; printGReg size; stream " => "; printGReg output )
| StoreInitialised => stream "StoreInitialised"
| CallAddress source => (stream "CallAddress "; printRegOrMemoryArg printGReg source)
| JumpAddress source => (stream "JumpAddress "; printRegOrMemoryArg printGReg source)
| ReturnFromFunction argsToRemove =>
(stream "ReturnFromFunction "; stream(Int.toString argsToRemove))
| RaiseException { workReg } => (stream "RaiseException "; printGReg workReg)
| UncondBranch(Label{labelNo, ...})=>
(stream "UncondBranch L"; stream(Int.toString labelNo))
| ResetStack{numWords, preserveCC} =>
(stream "ResetStack "; stream(Int.toString numWords); if preserveCC then stream " preserve CC" else ())
| JumpLabel(Label{labelNo, ...}) =>
(stream "L"; stream(Int.toString labelNo); stream ":")
| LoadLabelAddress{ label=Label{labelNo, ...}, output } =>
(stream "LoadLabelAddress L"; stream(Int.toString labelNo); stream "=>"; printGReg output)
| RepeatOperation repOp => (stream "Repeat "; stream(repOpsRepr repOp))
| DivideAccR{arg, isSigned, opSize} =>
( stream(if isSigned then "DivideSigned" else "DivideUnsigned"); stream(printOpSize opSize); stream " "; printGReg arg)
| DivideAccM{base, offset, isSigned, opSize} =>
( stream(if isSigned then "DivideSigned" else "DivideUnsigned"); stream(printOpSize opSize); stream " "; printBaseOffset(base, NoIndex, offset))
| AtomicXAdd{address, output, opSize} =>
(stream "LockedXAdd"; stream(printOpSize opSize); printMemAddress address; stream " <=> "; printGReg output)
| FPLoadFromMemory{address, precision=DoublePrecision} => (stream "FPLoadDouble "; printMemAddress address)
| FPLoadFromMemory{address, precision=SinglePrecision} => (stream "FPLoadSingle "; printMemAddress address)
| FPLoadFromFPReg {source, lastRef} =>
(stream "FPLoad "; printFPReg source; if lastRef then stream " (LAST)" else())
| FPLoadFromConst{constant, precision} =>
(
case precision of DoublePrecision => stream "FPLoadD " | SinglePrecision => stream "FPLoadS";
stream(Address.stringOfWord constant)
)
| FPStoreToFPReg{ output, andPop } =>
(if andPop then stream "FPStoreAndPop => " else stream "FPStore => "; printFPReg output)
| FPStoreToMemory{ address, precision=DoublePrecision, andPop: bool } =>
(
if andPop then stream "FPStoreDoubleAndPop => " else stream "FPStoreDouble => ";
printMemAddress address
)
| FPStoreToMemory{ address, precision=SinglePrecision, andPop: bool } =>
(
if andPop then stream "FPStoreSingleAndPop => " else stream "FPStoreSingle => ";
printMemAddress address
)
| FPArithR{ opc, source } => (stream(fpOpRepr opc); stream " "; printFPReg source)
| FPArithConst{ opc, source, precision } =>
(stream(fpOpRepr opc); case precision of DoublePrecision => stream "D " | SinglePrecision => stream "S "; stream(Address.stringOfWord source))
| FPArithMemory{ opc, base, offset, precision } =>
(stream(fpOpRepr opc); case precision of DoublePrecision => stream "D " | SinglePrecision => stream "S "; printBaseOffset(base, NoIndex, offset))
| FPUnary opc => stream(fpUnaryRepr opc)
| FPStatusToEAX => (stream "FPStatus "; printGReg eax)
| FPLoadInt { base, offset, opSize} =>
(stream "FPLoadInt"; stream(printOpSize opSize); stream " "; printBaseOffset(base, NoIndex, offset))
| FPFree reg => (stream "FPFree "; printFPReg reg)
| MultiplyR {source, output, opSize } =>
(stream "MultiplyR"; stream(printOpSize opSize); stream " "; printRegOrMemoryArg printGReg source; stream " *=>"; printGReg output)
| XMMArith { opc, source, output } =>
(
stream (sse2OpRepr opc ^ "RM "); printXMMReg output; stream " <= "; printRegOrMemoryArg printXMMReg source
)
| XMMStoreToMemory { toStore, address, precision=DoublePrecision } =>
(
stream "MoveDouble "; printXMMReg toStore; stream " => "; printMemAddress address
)
| XMMStoreToMemory { toStore, address, precision=SinglePrecision } =>
(
stream "MoveSingle "; printXMMReg toStore; stream " => "; printMemAddress address
)
| XMMConvertFromInt { source, output, opSize } =>
(
stream "ConvertFromInt "; stream(printOpSize opSize); stream " "; printGReg source; stream " => "; printXMMReg output
)
| SignExtendForDivide opSize => ( stream "SignExtendForDivide"; stream(printOpSize opSize) )
| XChng { reg, arg, opSize } =>
(stream "XChng"; stream(printOpSize opSize); stream " "; printGReg reg; stream " <=> "; printRegOrMemoryArg printGReg arg)
| Negative { output, opSize } =>
(stream "Negative"; stream(printOpSize opSize); stream " "; printGReg output)
| JumpTable{cases, ...} =>
List.app(fn(Label{labelNo, ...}) => (stream "UncondBranch L"; stream(Int.toString labelNo); stream "\n")) cases
| IndexedJumpCalc { addrReg, indexReg, jumpSize=ref jumpSize } =>
(
stream "IndexedJumpCalc "; printGReg addrReg; stream " += "; printGReg indexReg;
stream (case jumpSize of JumpSize2 => " * 2" | JumpSize8 => " * 8 ")
)
| MoveXMMRegToGenReg { source, output } =>
(
stream "MoveXMMRegToGenReg "; printXMMReg source; stream " => "; printGReg output
)
| MoveGenRegToXMMReg { source, output } =>
(
stream "MoveGenRegToXMMReg "; printGReg source; stream " => "; printXMMReg output
)
| XMMShiftRight { output, shift } =>
(
stream "XMMShiftRight "; printXMMReg output; stream " by "; stream(Word8.toString shift)
)
| FPLoadCtrlWord address =>
(
stream "FPLoadCtrlWord "; stream " => "; printMemAddress address
)
| FPStoreCtrlWord address =>
(
stream "FPStoreCtrlWord "; stream " <= "; printMemAddress address
)
| XMMLoadCSR address =>
(
stream "XMMLoadCSR "; stream " => "; printMemAddress address
)
| XMMStoreCSR address =>
(
stream "XMMStoreCSR "; stream " <= "; printMemAddress address
)
| FPStoreInt address =>
(
stream "FPStoreInt "; stream " <= "; printMemAddress address
)
| XMMStoreInt{ source, output, precision, isTruncate } =>
(
stream "XMMStoreInt";
case precision of SinglePrecision => stream "Single" | DoublePrecision => stream "Double";
if isTruncate then stream "Truncate " else stream " ";
printGReg output; stream " <= "; printRegOrMemoryArg printXMMReg source
)
| CondMove { test, output, source, opSize } =>
(
stream "CondMove"; stream(branchOpRepr test); stream(printOpSize opSize);
printGReg output; stream " <= "; printRegOrMemoryArg printGReg source
)
;
stream "\n"
end
datatype implement = ImplementGeneral | ImplementLiteral of machineWord
fun printLowLevelCode(ops, Code{printAssemblyCode, printStream, procName, ...}) =
if printAssemblyCode
then
(
if procName = "" (* No name *) then printStream "?" else printStream procName;
printStream ":\n";
List.app(fn i => printOperation(i, printStream)) ops;
printStream "\n"
)
else ()
(* val opLen = if isX64 then OpSize64 else OpSize32 *)
(* Code generate a list of operations. The list is in reverse order i.e. last instruction first. *)
fun codeGenerate ops =
let
fun cgOp(Move{source=RegisterArg source, destination=RegisterArg output, moveSize=Move64 }) =
(* Move from one general register to another. N.B. Because we're using the
"store" version of the Move the source and output are reversed. *)
opReg(MOVL_R_A64, source, output)
| cgOp(Move{source=RegisterArg source, destination=RegisterArg output, moveSize=Move32 }) =
opReg(MOVL_R_A32, source, output)
| cgOp(Move{ source=NonAddressConstArg source, destination=RegisterArg output, moveSize=Move64}) =
if targetArch <> Native32Bit
then
(
(* N.B. There is related code in getConstant that deals with PC-relative values and
also checks the range of constants that need to be in the constant area. *)
if source >= 0 andalso source < 0x100000000
then (* Unsigned 32 bits. We can use a 32-bit instruction to set the
value because it will zero extend to 64-bits.
This may also allow us to save a rex byte. *)
let
val (rc, rx) = getReg output
val opb = opCodeBytes(MOVL_32_R rc, if rx then SOME{w=false, r=false, b=rx, x=false} else NONE)
in
opb @ word32Unsigned(LargeWord.fromLargeInt source)
end
else if source >= ~0x80000000 andalso source < 0
then (* Signed 32-bits. *)
(* This is not scanned in 64-bit mode because 32-bit values aren't
big enough to contain addresses. *)
opRegPlus2(MOVL_32_A64, output, 0w0) @ int32Signed source
else (* Too big for 32-bits; put it in the non-word area. *)
opConstantOperand(MOVL_A_R64, output)
)
else (* 32-bit mode. *)
(
(* The RTS scans for possible addresses in MOV instructions so we
can only use MOV if this is a tagged value. If it isn't we have
to use something else such as XOR/ADD. In particular this is used
before LOCK XADD for atomic inc/dec.
We expect Move to preserve the CC so shouldn't use anything that
affects it. There was a previous comment that said that using
LEA wasn't a good idea. Perhaps because it takes 6 bytes. *)
if source mod 2 = 0
then opIndexed(LEAL32, source, NONE, NoIndex, output)
else
let
val (rc, rx) = getReg output
val opb = opCodeBytes(MOVL_32_R rc, if rx then SOME{w=false, r=false, b=rx, x=false} else NONE)
in
opb @ int32Signed source
end
)
| cgOp(Move{ source=NonAddressConstArg source, destination=RegisterArg output, moveSize=Move32}) =
if targetArch <> Native32Bit
then
(
(* N.B. There is related code in getConstant that deals with PC-relative values and
also checks the range of constants that need to be in the constant area. *)
if source >= 0 andalso source < 0x100000000
then (* Unsigned 32 bits. We can use a 32-bit instruction to set the
value because it will zero extend to 64-bits.
This may also allow us to save a rex byte. *)
let
val (rc, rx) = getReg output
val opb = opCodeBytes(MOVL_32_R rc, if rx then SOME{w=false, r=false, b=rx, x=false} else NONE)
in
opb @ word32Unsigned(LargeWord.fromLargeInt source)
end
else if source >= ~0x80000000 andalso source < 0
then (* Signed 32-bits. *)
(* This is not scanned in 64-bit mode because 32-bit values aren't
big enough to contain addresses. *)
opRegPlus2(MOVL_32_A64, output, 0w0) @ int32Signed source
else (* Too big for 32-bits; put it in the non-word area. *)
opConstantOperand(MOVL_A_R64, output)
)
else (* 32-bit mode. *)
(
(* The RTS scans for possible addresses in MOV instructions so we
can only use MOV if this is a tagged value. If it isn't we have
to use something else such as XOR/ADD. In particular this is used
before LOCK XADD for atomic inc/dec.
We expect Move to preserve the CC so shouldn't use anything that
affects it. There was a previous comment that said that using
LEA wasn't a good idea. Perhaps because it takes 6 bytes. *)
if source mod 2 = 0
then opIndexed(LEAL32, source, NONE, NoIndex, output)
else
let
val (rc, rx) = getReg output
val opb = opCodeBytes(MOVL_32_R rc, if rx then SOME{w=false, r=false, b=rx, x=false} else NONE)
in
opb @ int32Signed source
end
)
| cgOp(Move{ source=AddressConstArg _, destination=RegisterArg output, moveSize=Move64 }) =
(
(* The constant area is currently PolyWords. That means we MUST use
a 32-bit load in 32-in-64. *)
targetArch = Native64Bit orelse raise InternalError "Move64 in 32-bit";
(* Put address constants in the constant area. *)
opConstantOperand(MOVL_A_R64, output)
)
| cgOp(Move{ source=AddressConstArg _, destination=RegisterArg output, moveSize=Move32 }) =
(
case targetArch of
Native64Bit => raise InternalError "Move32 - AddressConstArg"
| ObjectId32Bit =>
(* Put address constants in the constant area. *)
(* The constant area is currently PolyWords. That means we MUST use
a 32-bit load in 32-in-64. *)
opConstantOperand(MOVL_A_R32, output)
| Native32Bit =>
(* Immediate constant *)
let
val (rc, _) = getReg output
in
opCodeBytes(MOVL_32_R rc, NONE) @ int32Signed(tag 0)
end
)
| cgOp(Move{source=MemoryArg{base, offset, index}, destination=RegisterArg output, moveSize=Move32 }) =
opAddress(MOVL_A_R32, LargeInt.fromInt offset, base, index, output)
| cgOp(Move{source=MemoryArg{base, offset, index}, destination=RegisterArg output, moveSize=Move64 }) =
opAddress(MOVL_A_R64, LargeInt.fromInt offset, base, index, output)
| cgOp(Move{source=MemoryArg{base, offset, index}, destination=RegisterArg output, moveSize=Move8 }) =
(* We don't need a REX.W bit here because the top 32-bits of a
64-bit register will always be zeroed. *)
opAddress(MOVZB32, LargeInt.fromInt offset, base, index, output)
| cgOp(Move{source=RegisterArg source, destination=RegisterArg output, moveSize=Move8 }) =
let
(* Zero extend an 8-bit value in a register to 32/64 bits. *)
val (rrC, rrX) = getReg output
val (rbC, rbX) = getReg source
(* We don't need a REX.W bit here because the top 32-bits of a
64-bit register will always be zeroed but we may need a REX byte
if we're using esi or edi. *)
val rexByte =
if rrC < 0w4 andalso not rrX andalso not rbX
then NONE
else if hostIsX64
then SOME {w=false, r=rrX, b=rbX, x=false}
else raise InternalError "Move8 with esi/edi"
in
opCodeBytes(MOVZB32, rexByte) @ [modrm(Register, rrC, rbC)]
end
| cgOp(Move{moveSize=Move16, source=MemoryArg{base, offset, index}, destination=RegisterArg output }) =
(* Likewise *)
opAddress(MOVZW32, LargeInt.fromInt offset, base, index, output)
| cgOp(Move{moveSize=Move32X, source=RegisterArg source, destination=RegisterArg output }) =
(* We should have a REX.W bit here. *)
opReg(MOVSXD, output, source)
| cgOp(Move{moveSize=Move32X, source=MemoryArg{base, offset, index}, destination=RegisterArg output }) =
(* We should have a REX.W bit here. *)
opAddress(MOVSXD, LargeInt.fromInt offset, base, index, output)
| cgOp(Move{moveSize=Move32X, ...}) = raise InternalError "cgOp: LoadNonWord Size32Bit"
| cgOp(LoadAddress{ offset, base, index, output, opSize }) =
(* This provides a mixture of addition and multiplication in a single
instruction. *)
opIndexed(case opSize of OpSize64 => LEAL64 | OpSize32 => LEAL32, LargeInt.fromInt offset, base, index, output)
| cgOp(ArithToGenReg{ opc, output, source=RegisterArg source, opSize }) =
arithOpReg (opc, output, source, opSize=OpSize64)
| cgOp(ArithToGenReg{ opc, output, source=NonAddressConstArg source, opSize }) =
let
(* On the X86/32 we use CMP with literal sources to compare with an
address and the RTS searches for them in the code. Any
non-address constant must be tagged. Most will be but we
might want to use this to compare with the contents of a
LargeWord value. *)
val _ =
if hostIsX64 orelse is8BitL source orelse opc <> CMP orelse IntInf.andb(source, 1) = 1
then ()
else raise InternalError "CMP with constant that looks like an address"
in
immediateOperand(opc, output, source, opSize)
end
| cgOp(ArithToGenReg{ opc, output, source=AddressConstArg _, opSize }) =
(* This is only used for opc=CMP to compare addresses for equality. *)
if hostIsX64
then (* We use this in 32-in-64 as well as native 64-bit. *)
opConstantOperand(
(case opSize of OpSize64 => Arith64 | OpSize32 => Arith32) (opc, 0w3), output)
else
let
val (rc, _) = getReg output
val opb = opCodeBytes(Group1_32_A32 (* group1, 32 bit immediate *), NONE)
val mdrm = modrm(Register, arithOpToWord opc, rc)
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp(ArithToGenReg{ opc, output, source=MemoryArg{offset, base, index}, opSize }) =
opAddress((case opSize of OpSize64 => Arith64 | OpSize32 => Arith32) (opc, 0w3),
LargeInt.fromInt offset, base, index, output)
| cgOp(ArithByteMemConst{ opc, address={offset, base, index}, source }) =
opIndexedPlus2(Group1_8_a (* group1, 8 bit immediate *),
LargeInt.fromInt offset, base, index, arithOpToWord opc) @ [source]
| cgOp(ArithMemConst{ opc, address={offset, base, index}, source, opSize }) =
if is8BitL source
then (* Can use one byte immediate *)
opIndexedPlus2(case opSize of OpSize64 => Group1_8_A64 | OpSize32 => Group1_8_A32 (* group1, 8 bit immediate *),
LargeInt.fromInt offset, base, index, arithOpToWord opc) @ [Word8.fromLargeInt source]
else (* Need 32 bit immediate. *)
opIndexedPlus2(case opSize of OpSize64 => Group1_32_A64 | OpSize32 => Group1_32_A32(* group1, 32 bit immediate *),
LargeInt.fromInt offset, base, index, arithOpToWord opc) @ int32Signed source
| cgOp(ArithMemLongConst{ opc, address={offset, base, index}, ... }) =
(* Currently this is always a comparison. It is only valid in 32-bit mode because
the constant is only 32-bits. *)
if hostIsX64
then raise InternalError "ArithMemLongConst in 64-bit mode"
else
let
val opb = opIndexedPlus2 (Group1_32_A32, LargeInt.fromInt offset, base, index, arithOpToWord opc)
in
opb @ int32Signed(tag 0)
end
| cgOp(ShiftConstant { shiftType, output, shift, opSize }) =
if shift = 0w1
then opRegPlus2(case opSize of OpSize64 => Group2_1_A64 | OpSize32 => Group2_1_A32, output, shiftTypeToWord shiftType)
else opRegPlus2(case opSize of OpSize64 => Group2_8_A64 | OpSize32 => Group2_8_A32, output, shiftTypeToWord shiftType) @ [shift]
| cgOp(ShiftVariable { shiftType, output, opSize }) =
opRegPlus2(case opSize of OpSize64 => Group2_CL_A64 | OpSize32 => Group2_CL_A32, output, shiftTypeToWord shiftType)
| cgOp(TestByteBits{arg=RegisterArg reg, bits}) =
let
(* Test the bottom bit and jump depending on its value. This is used
for tag tests in arbitrary precision operations and also for testing
for short/long values. *)
val (regNum, rx) = getReg reg
in
if reg = eax
then (* Special instruction for testing accumulator. Can use an 8-bit test. *)
opCodeBytes(TEST_ACC8, NONE) @ [bits]
else if hostIsX64
then
let
(* We can use a REX code to force it to always use the low order byte. *)
val opb = opCodeBytes(Group3_a,
if rx orelse regNum >= 0w4 then SOME{w=false, r=false, b=rx, x=false} else NONE)
val mdrm = modrm (Register, 0w0 (* test *), regNum)
in
opb @ [mdrm, bits]
end
else if reg = ebx orelse reg = ecx orelse reg = edx (* can we use an 8-bit test? *)
then (* Yes. The register value refers to low-order byte. *)
let
val opb = opCodeBytes(Group3_a, NONE)
val mdrm = modrm(Register, 0w0 (* test *), regNum)
in
opb @ [mdrm, bits]
end
else
let
val opb = opCodeBytes(Group3_A32, NONE)
val mdrm = modrm (Register, 0w0 (* test *), regNum)
in
opb @ mdrm :: word32Unsigned(Word8.toLarge bits)
end
end
| cgOp(TestByteBits{arg=MemoryArg{base, offset, index}, bits}) =
(* Test the tag bit and set the condition code. *)
opIndexedPlus2(Group3_a, LargeInt.fromInt offset, base, index, 0w0 (* test *)) @ [ bits]
| cgOp(TestByteBits _) = raise InternalError "cgOp: TestByteBits"
| cgOp(ConditionalBranch{ test=opc, ... }) = opCodeBytes(CondJump32 opc, NONE) @ word32Unsigned 0w0
| cgOp(SetCondition{ output, test}) =
let
val (rrC, rx) = getReg output
(* In 64-bit mode we can specify the low-order byte of RSI/RDI but we
must use a REX prefix. This isn't possible in 32-bit mode. *)
in
if hostIsX64 orelse rrC < 0w4
then
let
val opb = opCodeBytes(SetCC test,
if rx orelse rrC >= 0w4 then SOME{w=false, r=false, b=rx, x=false} else NONE)
val mdrm = modrm (Register, 0w0, rrC)
in
opb @ [mdrm]
end
else raise InternalError "High byte register"
end
| cgOp(CallRTS{rtsEntry, saveRegs}) = rtsCall(rtsEntry, saveRegs)
| cgOp(RepeatOperation repOp) =
let
(* We don't explicitly clear the direction flag. Should that be done? *)
val opb = opCodeBytes(REP, NONE)
(* Put in a rex prefix to force 64-bit mode. *)
val optRex =
if case repOp of STOS64 => true | MOVS64 => true | _ => false
then [rex{w=true, r=false, b=false, x=false}]
else []
val repOp = repOpsToWord repOp
in
opb @ optRex @ [repOp]
end
| cgOp(DivideAccR{arg, isSigned, opSize}) =
opRegPlus2(case opSize of OpSize64 => Group3_A64 | OpSize32 => Group3_A32, arg, if isSigned then 0w7 else 0w6)
| cgOp(DivideAccM{base, offset, isSigned, opSize}) =
opPlus2(case opSize of OpSize64 => Group3_A64 | OpSize32 => Group3_A32, LargeInt.fromInt offset, base, if isSigned then 0w7 else 0w6)
| cgOp(AtomicXAdd{address={offset, base, index}, output, opSize}) =
(* Locked exchange-and-add. We need the lock prefix before the REX prefix. *)
opAddress(case opSize of OpSize64 => LOCK_XADD64 | OpSize32 => LOCK_XADD32, LargeInt.fromInt offset, base, index, output)
| cgOp(PushToStack(RegisterArg reg)) =
let
val (rc, rx) = getReg reg
in
(* Always 64-bit but a REX prefix may be needed for the register. *)
opCodeBytes(PUSH_R rc, if rx then SOME{w=false, b = true, x=false, r = false } else NONE)
end
| cgOp(PushToStack(MemoryArg{base, offset, index})) =
opAddressPlus2(Group5, LargeInt.fromInt offset, base, index, 0w6 (* push *))
| cgOp(PushToStack(NonAddressConstArg constnt)) =
if is8BitL constnt
then opCodeBytes(PUSH_8, NONE) @ [Word8.fromLargeInt constnt]
else if is32bit constnt
then opCodeBytes(PUSH_32, NONE) @ int32Signed constnt
else (* It won't fit in the immediate; put it in the non-address area. *)
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w6 (* push *), 0w5 (* PC rel *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp(PushToStack(AddressConstArg _)) =
(
case targetArch of
Native64Bit => (* Put it in the constant area. *)
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w6 (* push *), 0w5 (* PC rel *));
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| Native32Bit => opCodeBytes(PUSH_32, NONE) @ int32Signed(tag 0)
| ObjectId32Bit =>
(* We can't do this. The constant area contains 32-bit quantities
and 32-bit literals are sign-extended rather than zero-extended. *)
raise InternalError "PushToStack:AddressConstArg"
)
| cgOp(PopR reg ) =
let
val (rc, rx) = getReg reg
in
(* Always 64-bit but a REX prefix may be needed for the register.
Because the register is encoded in the instruction the rex bit for
the register is b not r. *)
opCodeBytes(POP_R rc, if rx then SOME{w=false, b = true, x=false, r = false } else NONE)
end
| cgOp(Move{source=RegisterArg toStore, destination=MemoryArg{offset, base, index}, moveSize=Move64}) =
opAddress(MOVL_R_A64, LargeInt.fromInt offset, base, index, toStore)
| cgOp(Move{source=RegisterArg toStore, destination=MemoryArg{offset, base, index}, moveSize=Move32}) =
opAddress(MOVL_R_A32, LargeInt.fromInt offset, base, index, toStore)
| cgOp(Move{source=NonAddressConstArg toStore, destination=MemoryArg{offset, base, index}, moveSize=Move64 }) =
(
(* Short constant. In 32-bit mode this is scanned as a possible address. That means
we can't have an untagged constant in it. That's not a problem in 64-bit mode.
There's a special check for using this to set the length word on newly allocated
memory. *)
targetArch <> Native32Bit orelse toStore = 0 orelse toStore mod 2 = 1 orelse offset = ~ (Word.toInt wordSize)
orelse raise InternalError "cgOp: StoreConstToMemory not tagged";
opAddressPlus2(MOVL_32_A64, LargeInt.fromInt offset, base, index, 0w0) @ int32Signed toStore
)
| cgOp(Move{source=NonAddressConstArg toStore, destination=MemoryArg{offset, base, index}, moveSize=Move32 }) =
(
(* Short constant. In 32-bit mode this is scanned as a possible address. That means
we can't have an untagged constant in it. That's not a problem in 64-bit mode.
There's a special check for using this to set the length word on newly allocated
memory. *)
targetArch <> Native32Bit orelse toStore = 0 orelse toStore mod 2 = 1 orelse offset = ~ (Word.toInt wordSize)
orelse raise InternalError "cgOp: StoreConstToMemory not tagged";
opAddressPlus2(MOVL_32_A32, LargeInt.fromInt offset, base, index, 0w0) @ int32Signed toStore
)
| cgOp(Move{source=AddressConstArg _, destination=MemoryArg{offset, base, index}, moveSize=Move32}) =
(* This is not used for addresses even in 32-in-64. We don't scan for addresses after MOVL_32_A. *)
if targetArch <> Native32Bit
then raise InternalError "StoreLongConstToMemory in 64-bit mode"
else opAddressPlus2(MOVL_32_A32, LargeInt.fromInt offset, base, index, 0w0) @ int32Signed (tag 0)
| cgOp(Move{source=AddressConstArg _, destination=MemoryArg _, ...}) =
raise InternalError "cgOp: Move - AddressConstArg => MemoryArg"
| cgOp(Move{ moveSize = Move8, source=RegisterArg toStore, destination=MemoryArg{offset, base, index} }) =
let
val (rrC, _) = getReg toStore
(* In 64-bit mode we can specify the low-order byte of RSI/RDI but we
must use a REX prefix. This isn't possible in 32-bit mode. *)
val opcode =
if hostIsX64 then MOVB_R_A64{forceRex= rrC >= 0w4}
else if rrC < 0w4 then MOVB_R_A32
else raise InternalError "High byte register"
in
opAddress(opcode, LargeInt.fromInt offset, base, index, toStore)
end
| cgOp(Move{ moveSize = Move16, source=RegisterArg toStore, destination=MemoryArg{offset, base, index}}) =
opAddress(MOVL_R_A16, LargeInt.fromInt offset, base, index, toStore)
| cgOp(Move{ moveSize = Move8, source=NonAddressConstArg toStore, destination=MemoryArg{offset, base, index}}) =
opAddressPlus2(MOVB_8_A, LargeInt.fromInt offset, base, index, 0w0) @
[Word8.fromLargeInt toStore]
| cgOp(Move _) = raise InternalError "Move: Unimplemented arguments"
(* Allocation is dealt with by expanding the code. *)
| cgOp(AllocStore _) = raise InternalError "cgOp: AllocStore"
| cgOp(AllocStoreVariable _) = raise InternalError "cgOp: AllocStoreVariable"
| cgOp StoreInitialised = raise InternalError "cgOp: StoreInitialised"
| cgOp(CallAddress(NonAddressConstArg _)) = (* Call to the start of the code. Offset is patched in later. *)
opCodeBytes (CALL_32, NONE) @ int32Signed 0
| cgOp(CallAddress(AddressConstArg _)) =
if targetArch = Native64Bit
then
let
val opc = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w2 (* call *), 0w5 (* PC rel *))
in
opc @ [mdrm] @ int32Signed(tag 0)
end
(* Because this is a relative branch we need to point this at itself.
Until it is set to the relative offset of the destination it
needs to contain an address within the code and this could
be the last instruction. *)
else opCodeBytes (CALL_32, NONE) @ int32Signed ~5
| cgOp(CallAddress(RegisterArg reg)) = opRegPlus2(Group5, reg, 0w2 (* call *))
| cgOp(CallAddress(MemoryArg{base, offset, index})) =
opAddressPlus2(Group5, LargeInt.fromInt offset, base, index, 0w2 (* call *))
| cgOp(JumpAddress(NonAddressConstArg _)) =
(* Jump to the start of the current function. Offset is patched in later. *)
opCodeBytes (JMP_32, NONE) @ int32Signed 0
| cgOp(JumpAddress (AddressConstArg _)) =
if targetArch = Native64Bit
then
let
val opb = opCodeBytes (Group5, NONE)
val mdrm = modrm(Based0, 0w4 (* jmp *), 0w5 (* PC rel *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
else opCodeBytes (JMP_32, NONE) @ int32Signed ~5 (* As with Call. *)
| cgOp(JumpAddress (RegisterArg reg)) =
(* Used as part of indexed case - not for entering a function. *)
opRegPlus2(Group5, reg, 0w4 (* jmp *))
| cgOp(JumpAddress(MemoryArg{base, offset, index})) =
opAddressPlus2(Group5, LargeInt.fromInt offset, base, index, 0w4 (* jmp *))
| cgOp(ReturnFromFunction args) =
if args = 0
then opCodeBytes(RET, NONE)
else
let
val offset = Word.fromInt args * nativeWordSize
in
opCodeBytes(RET_16, NONE) @ [wordToWord8 offset, wordToWord8(offset >> 0w8)]
end
| cgOp (RaiseException { workReg }) =
opEA(if hostIsX64 then MOVL_A_R64 else MOVL_A_R32, LargeInt.fromInt memRegHandlerRegister, ebp, workReg) @
opAddressPlus2(Group5, 0, workReg, NoIndex, 0w4 (* jmp *))
| cgOp(UncondBranch _) = opToInt JMP_32 :: word32Unsigned 0w0
| cgOp(ResetStack{numWords, preserveCC}) =
let
val bytes = Word.toLargeInt(Word.fromInt numWords * nativeWordSize)
in
(* If we don't need to preserve the CC across the reset we use ADD since
it's shorter. *)
if preserveCC
then opEA(if hostIsX64 then LEAL64 else LEAL32, bytes, esp, esp)
else immediateOperand(ADD, esp, bytes, if hostIsX64 then OpSize64 else OpSize32)
end
| cgOp(JumpLabel _) = [] (* No code. *)
| cgOp(LoadLabelAddress{ output, ... }) =
(* Load the address of a label. Used when setting up an exception handler or
in indexed cases. *)
(* On X86/64 we can use pc-relative addressing to set the start of the handler.
On X86/32 we have to load the address of the start of the code and add an offset. *)
if hostIsX64
then opConstantOperand(LEAL64, output)
else
let
val (rc, _) = getReg output
in
opCodeBytes(MOVL_32_R rc , NONE) @ int32Signed(tag 0) @
opRegPlus2(Group1_32_A32, output, arithOpToWord ADD) @ int32Signed 0
end
| cgOp (FPLoadFromMemory {address={ base, offset, index }, precision}) =
let
val loadInstr =
case precision of
DoublePrecision => FPESC 0w5
| SinglePrecision => FPESC 0w1
in
opAddressPlus2(loadInstr, LargeInt.fromInt offset, base, index, 0wx0)
end
| cgOp (FPLoadFromFPReg{source=FloatingPtReg fp, ...}) =
(* Assume there's nothing currently on the stack. *)
floatingPtOp({escape=0w1, md=0w3, nnn=0w0, rm= fp + 0w0}) (* FLD ST(r1) *)
| cgOp (FPLoadFromConst {precision, ...} ) =
(* The real constant here is actually the address of a memory
object. FLD takes the address as the argument and in 32-bit mode
we use an absolute address. In 64-bit mode we need to put the
constant at the end of the code segment and use PC-relative
addressing which happens to be encoded in the same way.
There are special cases for zero and one but it's probably too
much work to detect them. *)
let
val esc = case precision of SinglePrecision => 0w1 | DoublePrecision => 0w5
val opb = opCodeBytes(FPESC esc, NONE) (* FLD [Constant] *)
val mdrm = modrm (Based0, 0w0, 0w5 (* constant address/PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (FPStoreToFPReg{ output=FloatingPtReg dest, andPop }) =
(* Assume there's one item on the stack. *)
floatingPtOp({escape=0w5, md=0w3, nnn=if andPop then 0wx3 else 0wx2,
rm = dest+0w1(* One item *)}) (* FSTP ST(n+1) *)
| cgOp (FPStoreToMemory{address={ base, offset, index}, precision, andPop }) =
let
val storeInstr =
case precision of
DoublePrecision => FPESC 0w5
| SinglePrecision => FPESC 0w1
val subInstr = if andPop then 0wx3 else 0wx2
in
opAddressPlus2(storeInstr, LargeInt.fromInt offset, base, index, subInstr)
end
| cgOp (FPArithR{ opc, source = FloatingPtReg src}) =
floatingPtOp({escape=0w0, md=0w3, nnn=fpOpToWord opc,
rm=src + 0w1 (* One item already there *)})
| cgOp (FPArithConst{ opc, precision, ... }) =
(* See comment on FPLoadFromConst *)
let
val fpesc = case precision of DoublePrecision => 0w4 | SinglePrecision => 0w0
val opb = opCodeBytes(FPESC fpesc, NONE) (* FADD etc [constnt] *)
val mdrm = modrm (Based0, fpOpToWord opc, 0w5 (* constant address *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (FPArithMemory{ opc, base, offset, precision }) =
let
val fpesc = case precision of DoublePrecision => 0w4 | SinglePrecision => 0w0
in
opPlus2(FPESC fpesc, LargeInt.fromInt offset, base, fpOpToWord opc) (* FADD/FMUL etc [r2] *)
end
| cgOp (FPUnary opc ) =
let
val {rm, nnn} = fpUnaryToWords opc
in
floatingPtOp({escape=0w1, md=0w3, nnn=nnn, rm=rm}) (* FCHS etc *)
end
| cgOp (FPStatusToEAX ) =
opCodeBytes(FPESC 0w7, NONE) @ [0wxe0] (* FNSTSW AX *)
| cgOp (FPFree(FloatingPtReg reg)) =
floatingPtOp({escape=0w5, md=0w3, nnn=0w0, rm=reg}) (* FFREE FP(n) *)
| cgOp (FPLoadInt{base, offset, opSize=OpSize64}) =
(* fildl (esp) in 32-bit mode or fildq (esp) in 64-bit mode. *)
opPlus2(FPESC 0w7, LargeInt.fromInt offset, base, 0w5)
| cgOp (FPLoadInt{base, offset, opSize=OpSize32}) =
(* fildl (esp) in 32-bit mode or fildq (esp) in 64-bit mode. *)
opPlus2(FPESC 0w3, LargeInt.fromInt offset, base, 0w0)
| cgOp (MultiplyR {source=RegisterArg srcReg, output, opSize}) =
(* We use the 0F AF form of IMUL rather than the Group3 MUL or IMUL
because the former allows us to specify the destination register.
The Group3 forms produce double length results in RAX:RDX/EAX:EDX
but we only ever want the low-order half. *)
opReg(case opSize of OpSize64 => IMUL64 | OpSize32 => IMUL32 (* 2 byte opcode *), output, srcReg)
| cgOp (MultiplyR {source=MemoryArg{base, offset, index}, output, opSize}) =
(* This may be used for large-word multiplication. *)
opAddress(case opSize of OpSize64 => IMUL64 | OpSize32 => IMUL32 (* 2 byte opcode *), LargeInt.fromInt offset, base, index, output)
| cgOp(MultiplyR {source=NonAddressConstArg constnt, output, opSize}) =
(* If the constant is an 8-bit or 32-bit value we are actually using a
three-operand instruction where the argument can be a register or memory
and the destination register does not need to be the same as the source. *)
if is8BitL constnt
then opReg(case opSize of OpSize64 => IMUL_C8_64 | OpSize32 => IMUL_C8_32, output, output) @ [Word8.fromLargeInt constnt]
else if is32bit constnt
then opReg(case opSize of OpSize64 => IMUL_C32_64 | OpSize32 => IMUL_C32_32, output, output) @ int32Signed constnt
else opConstantOperand(case opSize of OpSize64 => IMUL64 | OpSize32 => IMUL32, output)
| cgOp(MultiplyR {source=AddressConstArg _, ...}) =
raise InternalError "Multiply - address constant"
| cgOp (XMMArith { opc, source=MemoryArg{base, offset, index}, output }) =
mMXAddress(SSE2Ops opc, LargeInt.fromInt offset, base, index, output)
| cgOp (XMMArith { opc, source=AddressConstArg _, output=SSE2Reg rrC }) =
let
(* The real constant here is actually the address of an 8-byte memory
object. In 32-bit mode we put this address into the code and retain
this memory object. In 64-bit mode we copy the real value out of the
memory object into the non-address constant area and use
PC-relative addressing. These happen to be encoded the same
way. *)
val opb = opCodeBytes(SSE2Ops opc, NONE)
val mdrm = modrm (Based0, rrC, 0w5 (* constant address/PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (XMMArith { opc, source=RegisterArg(SSE2Reg rrS), output=SSE2Reg rrC }) =
let
val oper = SSE2Ops opc
val pref = opcodePrefix oper
val esc = escapePrefix oper
val opc = opToInt oper
val mdrm = modrm(Register, rrC, rrS)
in
pref @ esc @ [opc, mdrm]
end
| cgOp (XMMArith { opc, source=NonAddressConstArg _, output=SSE2Reg rrC }) =
let
val _ = hostIsX64 orelse raise InternalError "XMMArith-NonAddressConstArg in 32-bit mode"
(* This is currently used for 32-bit float arguments but can equally be
used for 64-bit values since the actual argument will always be put
in the 64-bit constant area. *)
val opb = opCodeBytes(SSE2Ops opc, NONE)
val mdrm = modrm (Based0, rrC, 0w5 (* constant address/PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (XMMStoreToMemory { toStore, address={base, offset, index}, precision }) =
let
val oper =
case precision of
DoublePrecision => SSE2StoreDouble
| SinglePrecision => SSE2StoreSingle
in
mMXAddress(oper, LargeInt.fromInt offset, base, index, toStore)
end
| cgOp (XMMConvertFromInt { source, output=SSE2Reg rrC, opSize }) =
let
(* The source is a general register and the output a XMM register. *)
(* TODO: The source can be a memory location. *)
val (rbC, rbX) = getReg source
val oper = case opSize of OpSize64 => CVTSI2SD64 | OpSize32 => CVTSI2SD32
in
(* This is a special case with both an XMM and general register. *)
opcodePrefix oper @ rexByte(oper, false, rbX, false) @
escapePrefix oper @ [opToInt oper, modrm(Register, rrC, rbC)]
end
| cgOp (SignExtendForDivide OpSize64) =
opCodeBytes(CQO_CDQ64, SOME {w=true, r=false, b=false, x=false})
| cgOp (SignExtendForDivide OpSize32) =
opCodeBytes(CQO_CDQ32, NONE)
| cgOp (XChng { reg, arg=RegisterArg regY, opSize }) =
opReg(case opSize of OpSize64 => XCHNG64 | OpSize32 => XCHNG32, reg, regY)
| cgOp (XChng { reg, arg=MemoryArg{offset, base, index}, opSize }) =
opAddress(case opSize of OpSize64 => XCHNG64 | OpSize32 => XCHNG32, LargeInt.fromInt offset, base, index, reg)
| cgOp (XChng _) = raise InternalError "cgOp: XChng"
| cgOp (Negative {output, opSize}) =
opRegPlus2(case opSize of OpSize64 => Group3_A64 | OpSize32 => Group3_A32, output, 0w3 (* neg *))
| cgOp (JumpTable{cases, jumpSize=ref jumpSize}) =
let
val _ = jumpSize = JumpSize8 orelse raise InternalError "cgOp: JumpTable"
(* Make one jump for each case and pad it 8 bytes with Nops. *)
fun makeJump (_, l) = opToInt JMP_32 :: word32Unsigned 0w0 @ [opToInt NOP, opToInt NOP, opToInt NOP] @ l
in
List.foldl makeJump [] cases
end
| cgOp(IndexedJumpCalc{ addrReg, indexReg, jumpSize=ref jumpSize }) =
(
jumpSize = JumpSize8 orelse raise InternalError "cgOp: IndexedJumpCalc";
(* Should currently be JumpSize8 which requires a multiplier of 4 and
4 to be subtracted to remove the shifted tag. *)
opAddress(if hostIsX64 then LEAL64 else LEAL32, ~4, addrReg, Index4 indexReg, addrReg)
)
| cgOp(MoveXMMRegToGenReg { source=SSE2Reg rrC, output }) =
let
(* The source is a XMM register and the output a general register. *)
val (rbC, rbX) = getReg output
val oper = MOVDFromXMM
in
(* This is a special case with both an XMM and general register. *)
opcodePrefix oper @ rexByte(oper, false, rbX, false) @
escapePrefix oper @ [opToInt oper, modrm(Register, rrC, rbC)]
end
| cgOp(MoveGenRegToXMMReg { source, output=SSE2Reg rrC }) =
let
(* The source is a general register and the output a XMM register. *)
val (rbC, rbX) = getReg source
val oper = MOVQToXMM
in
(* This is a special case with both an XMM and general register. *)
(* This needs to move the whole 64-bit value. TODO: This is inconsistent
with MoveXMMRegToGenReg *)
opcodePrefix oper @ rexByte(oper, false, rbX, false) @
escapePrefix oper @ [opToInt oper, modrm(Register, rrC, rbC)]
end
| cgOp(XMMShiftRight { output=SSE2Reg rrC, shift }) =
let
val oper = PSRLDQ
in
opcodePrefix oper @ escapePrefix oper @ [opToInt oper, modrm(Register, 0w3, rrC), shift]
end
| cgOp(FPLoadCtrlWord {base, offset, index}) =
opIndexedPlus2(FPESC 0w1, LargeInt.fromInt offset, base, index, 0w5)
| cgOp(FPStoreCtrlWord {base, offset, index}) =
opIndexedPlus2(FPESC 0w1, LargeInt.fromInt offset, base, index, 0w7)
| cgOp(XMMLoadCSR {base, offset, index}) =
opIndexedPlus2(LDSTMXCSR, LargeInt.fromInt offset, base, index, 0w2)
| cgOp(XMMStoreCSR {base, offset, index}) =
opIndexedPlus2(LDSTMXCSR, LargeInt.fromInt offset, base, index, 0w3)
| cgOp(FPStoreInt {base, offset, index}) =
(* fistp dword ptr [esp] in 32-bit mode or fistp qword ptr [rsp] in 64-bit mode. *)
if hostIsX64
then opIndexedPlus2(FPESC 0w7, LargeInt.fromInt offset, base, index, 0w7)
else opIndexedPlus2(FPESC 0w3, LargeInt.fromInt offset, base, index, 0w3)
| cgOp(XMMStoreInt {source, output, precision, isTruncate}) =
let
(* The destination is a general register. The source is an XMM register or memory. *)
val (rbC, rbX) = getReg output
val oper =
case (hostIsX64, precision, isTruncate) of
(false, DoublePrecision, false) => CVTSD2SI32
| (true, DoublePrecision, false) => CVTSD2SI64
| (false, SinglePrecision, false) => CVTSS2SI32
| (true, SinglePrecision, false) => CVTSS2SI64
| (false, DoublePrecision, true) => CVTTSD2SI32
| (true, DoublePrecision, true) => CVTTSD2SI64
| (false, SinglePrecision, true) => CVTTSS2SI32
| (true, SinglePrecision, true) => CVTTSS2SI64
in
case source of
MemoryArg{base, offset, index} =>
opAddress(oper, LargeInt.fromInt offset, base, index, output)
| RegisterArg(SSE2Reg rrS) =>
opcodePrefix oper @ rexByte(oper, rbX, false, false) @
escapePrefix oper @ [opToInt oper, modrm(Register, rbC, rrS)]
| _ => raise InternalError "XMMStoreInt: Not register or memory"
end
| cgOp(CondMove { test, output, source=RegisterArg source, opSize=OpSize32 }) =
opReg(CMOV32 test, output, source)
| cgOp(CondMove { test, output, source=RegisterArg source, opSize=OpSize64 }) =
opReg(CMOV64 test, output, source)
| cgOp(CondMove { test, output, source=NonAddressConstArg _, opSize }) =
(
(* We currently support only native-64 bit and put the constant in the
non-address constant area. These are 64-bit values both in native
64-bit and in 32-in-64. To support it in 32-bit mode we'd have to
put the constant in a single-word object and put its absolute
address into the code. *)
targetArch <> Native32Bit orelse
raise InternalError "CondMove: constant in 32-bit mode";
opConstantOperand((case opSize of OpSize32 => CMOV32 | OpSize64 => CMOV64) test, output)
)
| cgOp(CondMove { test, output, source=AddressConstArg _, opSize=OpSize64 }) =
(* An address constant. The opSize must match the size of a polyWord since
the value it going into the constant area. *)
(
targetArch = Native64Bit orelse raise InternalError "CondMove: AddressConstArg";
opConstantOperand(CMOV64 test, output)
)
| cgOp(CondMove { test, output, source=AddressConstArg _, opSize=OpSize32 }) =
(
(* We only support address constants in 32-in-64. *)
targetArch = ObjectId32Bit orelse raise InternalError "CondMove: AddressConstArg";
opConstantOperand(CMOV32 test, output)
)
| cgOp(CondMove { test, output, source=MemoryArg{base, offset, index}, opSize=OpSize32 }) =
opAddress(CMOV32 test, LargeInt.fromInt offset, base, index, output)
| cgOp(CondMove { test, output, source=MemoryArg{base, offset, index}, opSize=OpSize64 }) =
opAddress(CMOV64 test, LargeInt.fromInt offset, base, index, output)
in
List.rev(List.foldl (fn (c, list) => Word8Vector.fromList(cgOp c) :: list) [] ops)
end
(* General function to process the code. ic is the byte counter within the original code. *)
fun foldCode foldFn n (ops, byteList) =
let
fun doFold(oper :: operList, bytes :: byteList, ic, acc) =
doFold(operList, byteList, ic + Word.fromInt(Word8Vector.length bytes),
foldFn(oper, bytes, ic, acc))
| doFold(_, _, _, n) = n
in
doFold(ops, byteList, 0w0, n)
end
(* Go through the code and update branch and similar instructions with the destinations
of the branches. Long branches are converted to short where possible and the code
is reprocessed. That might repeat if the effect of shorting one branch allows
another to be shortened. *)
fun fixupLabels(ops, bytesList, labelCount) =
let
(* Label array - initialise to 0wxff... . Every label should be defined
but just in case, this is more likely to be detected in int32Signed. *)
val labelArray = Array.array(labelCount, ~ 0w1)
(* First pass - Set the addresses of labels. *)
fun setLabelAddresses(oper :: operList, bytes :: byteList, ic) =
(
case oper of
JumpLabel(Label{labelNo, ...}) => Array.update(labelArray, labelNo, ic)
| _ => ();
setLabelAddresses(operList, byteList, ic + Word.fromInt(Word8Vector.length bytes))
)
| setLabelAddresses(_, _, ic) = ic (* Return the length of the code. *)
fun fixup32(destination, bytes, ic) =
let
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
Word8VectorSlice.concat[
Word8VectorSlice.slice(bytes, 0, SOME(brLength-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt diff)))
]
end
fun fixupAddress(UncondBranch(Label{labelNo, ...}), bytes, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
if brLength = 2
then (* It's a short branch. Take the original operand and set the relative offset. *)
Word8Vector.fromList [opToInt JMP_8, byteSigned diff] :: list
else if brLength <> 5
then raise InternalError "fixupAddress"
else (* 32-bit offset. If it will fit in a byte we can use a short branch.
If this is a reverse branch we can actually use values up to -131
here because we've calculated using the end of the long branch. *)
if diff <= 127 andalso diff >= ~(128 + 3)
then Word8Vector.fromList [opToInt JMP_8, 0w0 (* Fixed on next pass *)] :: list
else Word8Vector.fromList(opToInt JMP_32 :: int32Signed(LargeInt.fromInt diff)) :: list
end
| fixupAddress(ConditionalBranch{label=Label{labelNo, ...}, test, ...}, bytes, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
if brLength = 2
then (* It's a short branch. Take the original operand and set the relative offset. *)
Word8Vector.fromList [opToInt(CondJump test), byteSigned diff] :: list
else if brLength <> 6
then raise InternalError "fixupAddress"
else if diff <= 127 andalso diff >= ~(128+4)
then Word8Vector.fromList[opToInt(CondJump test), 0w0 (* Fixed on next pass *)] :: list
else Word8Vector.fromList(opCodeBytes(CondJump32 test, NONE) @ int32Signed(LargeInt.fromInt diff)) :: list
end
| fixupAddress(LoadLabelAddress{ label=Label{labelNo, ...}, ... }, brCode, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
in
if hostIsX64
then (* This is a relative offset on the X86/64. *)
fixup32(destination, brCode, ic) :: list
else (* On X86/32 the address is relative to the start of the code so we simply put in
the destination address. *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(Word8Vector.length brCode-4)),
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(Word.toLargeInt destination)))] :: list
end
| fixupAddress(JumpTable{cases, jumpSize as ref JumpSize8}, brCode: Word8Vector.vector, ic, list) =
let
(* Each branch is a 32-bit jump padded up to 8 bytes. *)
fun processCase(Label{labelNo, ...} :: cases, offset, ic) =
fixup32(Array.sub(labelArray, labelNo),
Word8VectorSlice.vector(Word8VectorSlice.slice(brCode, offset, SOME 5)), ic) ::
Word8VectorSlice.vector(Word8VectorSlice.slice(brCode, offset+5, SOME 3)) ::
processCase(cases, offset+8, ic+0w8)
| processCase _ = []
(* Could we use short branches? If all of the branches were short the
table would be smaller so the offsets we use would be less.
Ignore backwards branches - could only occur if we have linked labels
in a loop. *)
val newStartOfCode = ic + Word.fromInt(List.length cases * 6)
fun tryShort(Label{labelNo, ...} :: cases, ic) =
let
val destination = Array.sub(labelArray, labelNo)
in
if destination > ic + 0w2 andalso destination - ic - 0w2 < 0w127
then tryShort(cases, ic+0w2)
else false
end
| tryShort _ = true
val newCases =
if tryShort(cases, newStartOfCode)
then
(
jumpSize := JumpSize2;
(* Generate a short branch table. *)
List.map(fn _ => Word8Vector.fromList [opToInt JMP_8, 0w0 (* Fixed on next pass *)]) cases
)
else processCase(cases, 0, ic)
in
Word8Vector.concat newCases :: list
end
| fixupAddress(JumpTable{cases, jumpSize=ref JumpSize2}, _, ic, list) =
let
(* Each branch is a short jump. *)
fun processCase(Label{labelNo, ...} :: cases, offset, ic) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = 2
val diff = Word.toInt destination - Word.toInt ic - brLength
in
Word8Vector.fromList[opToInt JMP_8, byteSigned diff] :: processCase(cases, offset+2, ic+0w2)
end
| processCase _ = []
in
Word8Vector.concat(processCase(cases, 0, ic)) :: list
end
(* If we've shortened a jump table we have to change the indexing. *)
| fixupAddress(IndexedJumpCalc{ addrReg, indexReg, jumpSize=ref JumpSize2 }, _, _, list) =
(* On x86/32 it might be shorter to use DEC addrReg; ADD addrReg, indexReg. *)
Word8Vector.fromList(opAddress(if hostIsX64 then LEAL64 else LEAL32, ~1, addrReg, Index1 indexReg, addrReg)) :: list
| fixupAddress(CallAddress(NonAddressConstArg _), brCode, ic, list) =
let
val brLen = Word8Vector.length brCode
in
(* Call to the start of the code. Offset is -(bytes to start). *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(brLen-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt(~(Word.toInt ic+brLen)))))
] :: list
end
| fixupAddress(JumpAddress(NonAddressConstArg _), brCode, ic, list) =
let
val brLen = Word8Vector.length brCode
in
(* Call to the start of the code. Offset is -(bytes to start). *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(brLen-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt(~(Word.toInt ic+brLen)))))
] :: list
end
| fixupAddress(_, bytes, _, list) = bytes :: list
fun reprocess(bytesList, lastCodeSize) =
let
val fixedList = List.rev(foldCode fixupAddress [] (ops, bytesList))
val newCodeSize = setLabelAddresses(ops, fixedList, 0w0)
in
if newCodeSize = lastCodeSize
then (fixedList, lastCodeSize)
else if newCodeSize > lastCodeSize
then raise InternalError "reprocess - size increased"
else reprocess(fixedList, newCodeSize)
end
in
reprocess(bytesList, setLabelAddresses(ops, bytesList, 0w0))
end
(* The handling of constants generally differs between 32- and 64-bits. In 32-bits we put all constants
inline and the GC processes the code to find the addresss. For real values the "constant" is actually
the address of the boxed real value.
In 64-bit mode inline constants were used with the MOV instruction but this has now been removed.
All constants are stored in one of two areas at the end of the
code segment. Non-addresses, including the actual values of reals, are stored in the non-address area
and addresses go in the address area. Only the latter is scanned by the GC.
The address area is also used in 32-bit mode but only has the address of the function name and the
address of the profile ref in it. *)
datatype inline32constants =
SelfAddress (* The address of the start of the code - inline absolute address 32-bit only *)
| InlineAbsoluteAddress of machineWord (* An address in the code: 32-bit only *)
| InlineRelativeAddress of machineWord (* A relative address: 32-bit only. *)
local
(* Turn an integer constant into an 8-byte vector. *)
fun intConst ival = LargeWord.fromLargeInt ival
(* Copy a real constant from memory into an 8-byte vector. *)
fun realConst c =
let
val cAsAddr = toAddress c
(* This may be a boxed real or, in 32-in-64 mode, a boxed float. *)
val cLength = length cAsAddr * wordSize
val _ = ((cLength = 0w8 orelse cLength = 0w4) andalso flags cAsAddr = F_bytes) orelse
raise InternalError "realConst: Not a real number"
fun getBytes(i, a) =
if i = 0w0 then a
else getBytes(i-0w1, a*0w256 + Word8.toLargeWord(loadByte(cAsAddr, i-0w1)))
in
getBytes(cLength, 0w0)
end
fun getConstant(Move{ source=NonAddressConstArg source, moveSize=Move32, ...}, bytes, ic, (inl, addr, na)) =
if targetArch <> Native32Bit
then
(
if source >= ~0x80000000 andalso source < 0x100000000
then (* Signed or unsigned 32-bits. *) (inl, addr, na)
else (* Too big for 32-bits. *)
(inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst source) :: na)
)
else (inl, addr, na) (* 32-bit mode. The constant will always be inline even if we've had to use LEA r,c *)
| getConstant(Move{ source=NonAddressConstArg source, moveSize=Move64, ...}, bytes, ic, (inl, addr, na)) =
if targetArch <> Native32Bit
then
(
if source >= ~0x80000000 andalso source < 0x100000000
then (* Signed or unsigned 32-bits. *) (inl, addr, na)
else (* Too big for 32-bits. *)
(inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst source) :: na)
)
else (inl, addr, na) (* 32-bit mode. The constant will always be inline even if we've had to use XOR r,r; ADD r,c *)
| getConstant(Move{ source=AddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if targetArch <> Native32Bit
then (* Address constants go in the constant area. *)
(inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, source) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - wordSize, InlineAbsoluteAddress source) :: inl, addr, na)
| getConstant(ArithToGenReg{ source=NonAddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if is32bit source
then (inl, addr, na)
else (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst source) :: na)
| getConstant(ArithToGenReg{ source=AddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if hostIsX64
then (inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, source) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress source) :: inl, addr, na)
| getConstant(ArithMemLongConst{ source, ... }, bytes, ic, (inl, addr, na)) = (* 32-bit only. *)
((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress source) :: inl, addr, na)
| getConstant(PushToStack(NonAddressConstArg constnt), bytes, ic, (inl, addr, na)) =
if is32bit constnt then (inl, addr, na)
else (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst constnt) :: na)
| getConstant(PushToStack(AddressConstArg constnt), bytes, ic, (inl, addr, na)) =
if targetArch = Native64Bit
then (inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, constnt) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress constnt) :: inl, addr, na)
| getConstant(CallAddress(AddressConstArg w), bytes, ic, (inl, addr, na)) =
if targetArch = Native64Bit
then (inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, w) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineRelativeAddress w) :: inl, addr, na)
| getConstant(JumpAddress(AddressConstArg w), bytes, ic, (inl, addr, na)) =
if targetArch = Native64Bit
then (inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, w) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineRelativeAddress w) :: inl, addr, na)
| getConstant(LoadLabelAddress _, _, ic, (inl, addr, na)) =
(* We need the address of the code itself but it's in the first of a pair of instructions. *)
if hostIsX64 then (inl, addr, na) else ((ic + 0w1, SelfAddress) :: inl, addr, na)
| getConstant(FPLoadFromConst{constant, ...}, bytes, ic, (inl, addr, na)) =
if hostIsX64
then (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, realConst constant) :: na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress constant) :: inl, addr, na)
| getConstant(FPArithConst{ source, ... }, bytes, ic, (inl, addr, na)) =
if hostIsX64
then (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, realConst source) :: na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress source) :: inl, addr, na)
| getConstant(XMMArith { source=AddressConstArg constVal, ... }, bytes, ic, (inl, addr, na)) =
(* Real.real constant or, with 32-bit words, a Real32.real constant. *)
if hostIsX64
then (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, realConst constVal) :: na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress constVal) :: inl, addr, na)
| getConstant(XMMArith { source=NonAddressConstArg constVal, ... }, bytes, ic, (inl, addr, na)) =
(* Real32.real constant in native 64-bit. *)
(inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst constVal) :: na)
| getConstant(MultiplyR{ source=NonAddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if is32bit source
then (inl, addr, na)
else (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst source) :: na)
| getConstant(CondMove{ source=NonAddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if targetArch <> Native32Bit
then (inl, addr, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, intConst source) :: na)
else (inl, addr, na) (* 32-bit mode. The constant will always be inline. *)
| getConstant(CondMove{ source=AddressConstArg source, ... }, bytes, ic, (inl, addr, na)) =
if targetArch <> Native32Bit
then (* Address constants go in the constant area. *)
(inl, (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, source) :: addr, na)
else ((ic + Word.fromInt(Word8Vector.length bytes) - wordSize, InlineAbsoluteAddress source) :: inl, addr, na)
| getConstant(_, _, _, l) = l
in
val getConstants = foldCode getConstant ([], [], [])
end
(* It is convenient to have AllocStore and AllocStoreVariable as primitives at the higher
level but at this point it's better to expand them into their basic instructions. *)
fun expandComplexOperations(instrs, oldLabelCount) =
let
val labelCount = ref oldLabelCount
fun mkLabel() = Label{labelNo= !labelCount} before labelCount := !labelCount + 1
(* On X86/64 the local pointer is in r15. On X86/32 it's in memRegs. *)
val localPointer =
if hostIsX64 then RegisterArg r15 else MemoryArg{base=ebp, offset=memRegLocalMPointer, index=NoIndex}
val nativeWordOpSize = if hostIsX64 then OpSize64 else OpSize32
fun allocStoreCommonCode (resultReg, isVarAlloc, regSaveSet: genReg list) =
let
val compare =
ArithToGenReg{opc=CMP, output=resultReg,
source=MemoryArg{base=ebp, offset=memRegLocalMbottom, index=NoIndex}, opSize=nativeWordOpSize}
(* Normally we won't have run out of store so we want the default
branch prediction to skip the test here. However doing that
involves adding an extra branch which lengthens the code so
it's probably not worth while. *)
(* Just checking against the lower limit can fail
in the situation where the heap pointer is at the low end of
the address range and the store required is so large that the
subtraction results in a negative number. In that case it
will be > (unsigned) lower_limit so in addition we have
to check that the result is < (unsigned) heap_pointer.
This actually happened on Windows with X86-64.
In theory this can happen with fixed-size allocations as
well as variable allocations but in practice fixed-size
allocations are going to be small enough that it's not a
problem. *)
val destLabel = mkLabel()
val branches =
if isVarAlloc
then
let
val extraLabel = mkLabel()
in
[ConditionalBranch{test=JB, label=extraLabel},
ArithToGenReg{opc=CMP, output=resultReg, source=localPointer, opSize=nativeWordOpSize},
ConditionalBranch{test=JB, label=destLabel},
JumpLabel extraLabel]
end
else [ConditionalBranch{test=JNB, label=destLabel}]
val callRts = CallRTS{rtsEntry=HeapOverflowCall, saveRegs=regSaveSet}
val fixup = JumpLabel destLabel
(* Update the heap pointer now we have the store. This is also
used by the RTS in the event of a trap to work out how much
store was being allocated. *)
val update =
if hostIsX64 then Move{source=RegisterArg resultReg, destination=RegisterArg r15, moveSize=Move64}
else Move{source=RegisterArg resultReg,
destination=MemoryArg{base=ebp, offset=memRegLocalMPointer, index=NoIndex}, moveSize=Move32}
in
compare :: branches @ [callRts, fixup, update]
end
fun doExpansion([], code, _) = code
| doExpansion(AllocStore {size, output, saveRegs} :: instrs, code, inAllocation) =
let
val _ = inAllocation andalso raise InternalError "doExpansion: Allocation started but not complete"
val () = if List.exists (fn r => r = output) saveRegs then raise InternalError "AllocStore: in set" else ()
val startCode =
case targetArch of
Native64Bit =>
let
val bytes = (size + 1) * Word.toInt wordSize
in
[LoadAddress{output=output, offset = ~ bytes, base=SOME r15, index=NoIndex, opSize=OpSize64}]
(* TODO: What if it's too big to fit? *)
end
| Native32Bit =>
let
val bytes = (size + 1) * Word.toInt wordSize
in
[Move{source=MemoryArg{base=ebp, offset=memRegLocalMPointer, index=NoIndex},
destination=RegisterArg output, moveSize=Move32},
LoadAddress{output=output, offset = ~ bytes, base=SOME output, index=NoIndex, opSize=OpSize32}]
end
| ObjectId32Bit =>
let
(* We must allocate an even number of words. *)
val heapWords = if Int.rem(size, 2) = 1 then size+1 else size+2
val bytes = heapWords * Word.toInt wordSize
in
[LoadAddress{output=output, offset = ~ bytes, base=SOME r15, index=NoIndex, opSize=OpSize64}]
end
val resultCode = startCode @ allocStoreCommonCode(output, false, saveRegs)
in
doExpansion(instrs, (List.rev resultCode) @ code, true)
end
| doExpansion(AllocStoreVariable {size, output, saveRegs} :: instrs, code, inAllocation) =
let
(* Allocates memory. The "size" register contains the number of words as a tagged int. *)
val _ = inAllocation andalso raise InternalError "doExpansion: Allocation started but not complete"
val () = if List.exists (fn r => r = output) saveRegs then raise InternalError "AllocStore: in set" else ()
(* Negate the length and add it to the current heap pointer. *)
(* Compute the number of bytes into dReg. The length in sReg is the number
of words as a tagged value so we need to multiply it, add wordSize to
include one word for the header then subtract the, multiplied, tag.
We use LEA here but want to avoid having an empty base register. *)
val _ = size = output andalso raise InternalError "AllocStoreVariable : same register for size and output"
val startCode =
if wordSize = 0w8 (* 8-byte words *)
then
[
ArithToGenReg{opc=XOR, output=output, source=RegisterArg output, opSize=OpSize32 (* Rest is zeroed *)},
ArithToGenReg{opc=SUB, output=output, source=RegisterArg size, opSize=OpSize64},
LoadAddress{output=output, base=SOME r15, offset= ~(Word.toInt wordSize-4), index=Index4 output, opSize=OpSize64 }
]
else (* 4 byte words *)
[
LoadAddress{output=output, base=SOME size, offset=Word.toInt wordSize-2,
index=Index1 size, opSize=nativeWordOpSize },
Negative{output=output, opSize=nativeWordOpSize},
ArithToGenReg{opc=ADD, output=output, source=localPointer, opSize=nativeWordOpSize}
]
(* If this is 32-in-64 we need to round down to the next 8-byte boundary. *)
val roundCode =
if targetArch = ObjectId32Bit
then [ArithToGenReg{opc=AND, output=output, source=NonAddressConstArg ~8, opSize=OpSize64 }]
else []
val resultCode = startCode @ roundCode @ allocStoreCommonCode(output, true, saveRegs)
in
doExpansion(instrs, (List.rev resultCode) @ code, true)
end
| doExpansion(StoreInitialised :: instrs, code, _) = doExpansion(instrs, code, false)
| doExpansion(instr :: instrs, code, inAlloc) = doExpansion(instrs, instr::code, inAlloc)
val expanded = List.rev(doExpansion(instrs, [], false))
in
(expanded, !labelCount)
end
fun printCode (Code{procName, printStream, ...}, seg) =
let
val print = printStream
val ptr = ref 0w0;
(* prints a string representation of a number *)
fun printValue v =
if v < 0 then (print "-"; print(LargeInt.toString (~ v))) else print(LargeInt.toString v)
infix 3 +:= ;
fun (x +:= y) = (x := !x + (y:word));
fun get16s (a, seg) : int =
let
val b0 = Word8.toInt (codeVecGet (seg, a));
val b1 = Word8.toInt (codeVecGet (seg, a + 0w1));
val b1' = if b1 >= 0x80 then b1 - 0x100 else b1;
in
(b1' * 0x100) + b0
end
fun get16u(a, seg) : int =
Word8.toInt (codeVecGet (seg, a + 0w1)) * 0x100 + Word8.toInt (codeVecGet (seg, a))
(* Get 1 unsigned byte from the given offset in the segment. *)
fun get8u (a, seg) : Word8.word = codeVecGet (seg, a);
(* Get 1 signed byte from the given offset in the segment. *)
fun get8s (a, seg) : int = Word8.toIntX (codeVecGet (seg, a));
(* Get 1 signed 32 bit word from the given offset in the segment. *)
fun get32s (a, seg) : LargeInt.int =
let
val b0 = Word8.toLargeInt (codeVecGet (seg, a));
val b1 = Word8.toLargeInt (codeVecGet (seg, a + 0w1));
val b2 = Word8.toLargeInt (codeVecGet (seg, a + 0w2));
val b3 = Word8.toLargeInt (codeVecGet (seg, a + 0w3));
val b3' = if b3 >= 0x80 then b3 - 0x100 else b3;
val topHw = (b3' * 0x100) + b2;
val bottomHw = (b1 * 0x100) + b0;
in
(topHw * exp2_16) + bottomHw
end
fun get64s (a, seg) : LargeInt.int =
let
val b0 = Word8.toLargeInt (codeVecGet (seg, a));
val b1 = Word8.toLargeInt (codeVecGet (seg, a + 0w1));
val b2 = Word8.toLargeInt (codeVecGet (seg, a + 0w2));
val b3 = Word8.toLargeInt (codeVecGet (seg, a + 0w3));
val b4 = Word8.toLargeInt (codeVecGet (seg, a + 0w4));
val b5 = Word8.toLargeInt (codeVecGet (seg, a + 0w5));
val b6 = Word8.toLargeInt (codeVecGet (seg, a + 0w6));
val b7 = Word8.toLargeInt (codeVecGet (seg, a + 0w7));
val b7' = if b7 >= 0x80 then b7 - 0x100 else b7;
in
((((((((b7' * 0x100 + b6) * 0x100 + b5) * 0x100 + b4) * 0x100 + b3)
* 0x100 + b2) * 0x100) + b1) * 0x100) + b0
end
fun print32 () = printValue (get32s (!ptr, seg)) before (ptr +:= 0w4)
and print64 () = printValue (get64s (!ptr, seg)) before (ptr +:= 0w8)
and print16 () = printValue (LargeInt.fromInt(get16s (!ptr, seg)) before (ptr +:= 0w2))
and print8 () = printValue (LargeInt.fromInt(get8s (!ptr, seg)) before (ptr +:= 0w1))
fun printJmp () =
let
val valu = get8s (!ptr, seg) before ptr +:= 0w1
in
print (Word.fmt StringCvt.HEX (Word.fromInt valu + !ptr))
end
(* Print an effective address. The register field may designate a general register
or an xmm register depending on the instruction. *)
fun printEAGeneral printRegister (rex, sz) =
let
val modrm = codeVecGet (seg, !ptr)
val () = ptr +:= 0w1
(* Decode the Rex prefix if present. *)
val rexX = (rex andb8 0wx2) <> 0w0
val rexB = (rex andb8 0wx1) <> 0w0
val prefix =
case sz of
SZByte => "byte ptr "
| SZWord => "word ptr "
| SZDWord => "dword ptr "
| SZQWord => "qword ptr "
in
case (modrm >>- 0w6, modrm andb8 0w7, hostIsX64) of
(0w3, rm, _) => printRegister(rm, rexB, sz)
| (md, 0w4, _) =>
let (* s-i-b present. *)
val sib = codeVecGet (seg, !ptr)
val () = ptr +:= 0w1
val ss = sib >>- 0w6
val index = (sib >>- 0w3) andb8 0w7
val base = sib andb8 0w7
in
print prefix;
case (md, base, hostIsX64) of
(0w1, _, _) => print8 ()
| (0w2, _, _) => print32 ()
| (0w0, 0w5, _) => print32 () (* Absolute in 32-bit mode. PC-relative in 64-bit ?? *)
| _ => ();
print "[";
if md <> 0w0 orelse base <> 0w5
then
(
print (genRegRepr (mkReg (base, rexB), sz32_64));
if index = 0w4 then () else print ","
)
else ();
if index = 0w4 andalso not rexX (* No index. *)
then ()
else print (genRegRepr (mkReg(index, rexX), sz32_64) ^
(if ss = 0w0 then "*1"
else if ss = 0w1 then "*2"
else if ss = 0w2 then "*4"
else "*8"));
print "]"
end
| (0w0, 0w5, false) => (* Absolute address.*) (print prefix; print32 ())
| (0w0, 0w5, _) => (* PC-relative in 64-bit *)
(print prefix; print ".+"; print32 ())
| (md, rm, _) => (* register plus offset. *)
(
print prefix;
if md = 0w1 then print8 ()
else if md = 0w2 then print32 ()
else ();
print ("[" ^ genRegRepr (mkReg(rm, rexB), sz32_64) ^ "]")
)
end
(* For most instructions we want to print a general register. *)
val printEA =
printEAGeneral (fn (rm, rexB, sz) => print (genRegRepr (mkReg(rm, rexB), sz)))
and printEAxmm =
printEAGeneral (fn (rm, _, _) => print (xmmRegRepr(SSE2Reg rm)))
fun printArith opc =
print
(case opc of
0 => "add "
| 1 => "or "
| 2 => "adc "
| 3 => "sbb "
| 4 => "and "
| 5 => "sub "
| 6 => "xor "
| _ => "cmp "
)
fun printGvEv (opByte, rex, rexR, sz) =
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
printArith(Word8.toInt((opByte div 0w8) mod 0w8));
print "\t";
print (genRegRepr (mkReg(reg, rexR), sz));
print ",";
printEA(rex, sz)
end
fun printMovCToR (opByte, sz, rexB) =
(
print "mov \t";
print(genRegRepr (mkReg (opByte mod 0w8, rexB), sz));
print ",";
case sz of SZDWord => print32 () | SZQWord => print64 () | _ => print "???"
)
fun printShift (opByte, rex, sz) =
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
4 => "shl "
| 5 => "shr "
| 7 => "sar "
| _ => "???"
);
print "\t";
printEA(rex, sz);
print ",";
if opByte = opToInt Group2_1_A32 then print "1"
else if opByte = opToInt Group2_CL_A32 then print "cl"
else print8 ()
end
fun printFloat (opByte, rex) =
let
(* Opcode is in next byte. *)
val opByte2 = codeVecGet (seg, !ptr)
val nnn = (opByte2 >>- 0w3) andb8 0w7
val escNo = opByte andb8 0wx7
in
if (opByte2 andb8 0wxC0) = 0wxC0
then (* mod = 11 *)
(
case (escNo, nnn, opByte2 andb8 0wx7 (* modrm *)) of
(0w1, 0w4, 0w0) => print "fchs"
| (0w1, 0w4, 0w1) => print "fabs"
| (0w1, 0w5, 0w6) => print "fldz"
| (0w1, 0w5, 0w1) => print "flf1"
| (0w7, 0w4, 0w0) => print "fnstsw\tax"
| (0w1, 0w5, 0w0) => print "fld1"
| (0w1, 0w6, 0w3) => print "fpatan"
| (0w1, 0w7, 0w2) => print "fsqrt"
| (0w1, 0w7, 0w6) => print "fsin"
| (0w1, 0w7, 0w7) => print "fcos"
| (0w1, 0w6, 0w7) => print "fincstp"
| (0w1, 0w6, 0w6) => print "fdecstp"
| (0w3, 0w4, 0w2) => print "fnclex"
| (0w5, 0w2, rno) => print ("fst \tst(" ^ Word8.toString rno ^ ")")
| (0w5, 0w3, rno) => print ("fstp\tst(" ^ Word8.toString rno ^ ")")
| (0w1, 0w0, rno) => print ("fld \tst(" ^ Word8.toString rno ^ ")")
| (0w1, 0w1, rno) => print ("fxch\tst(" ^ Word8.toString rno ^ ")")
| (0w0, 0w3, rno) => print ("fcomp\tst(" ^ Word8.toString rno ^ ")")
| (0w0, 0w0, rno) => print ("fadd\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w1, rno) => print ("fmul\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w4, rno) => print ("fsub\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w5, rno) => print ("fsubr\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w6, rno) => print ("fdiv\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w7, rno) => print ("fdivr\tst,st(" ^ Word8.toString rno ^ ")")
| (0w5, 0w0, rno) => print ("ffree\tst(" ^ Word8.toString rno ^ ")")
| _ => (printValue(Word8.toLargeInt opByte); printValue(Word8.toLargeInt opByte2));
ptr +:= 0w1
)
else (* mod = 00, 01, 10 *)
(
case (escNo, nnn) of
(0w0, 0w0) => (print "fadd\t"; printEA(rex, SZDWord)) (* Single precision. *)
| (0w0, 0w1) => (print "fmul\t"; printEA(rex, SZDWord))
| (0w0, 0w3) => (print "fcomp\t"; printEA(rex, SZDWord))
| (0w0, 0w4) => (print "fsub\t"; printEA(rex, SZDWord))
| (0w0, 0w5) => (print "fsubr\t"; printEA(rex, SZDWord))
| (0w0, 0w6) => (print "fdiv\t"; printEA(rex, SZDWord))
| (0w0, 0w7) => (print "fdivr\t"; printEA(rex, SZDWord))
| (0w1, 0w0) => (print "fld \t"; printEA(rex, SZDWord))
| (0w1, 0w2) => (print "fst\t"; printEA(rex, SZDWord))
| (0w1, 0w3) => (print "fstp\t"; printEA(rex, SZDWord))
| (0w1, 0w5) => (print "fldcw\t"; printEA(rex, SZWord)) (* Control word is 16 bits *)
| (0w1, 0w7) => (print "fstcw\t"; printEA(rex, SZWord)) (* Control word is 16 bits *)
| (0w3, 0w0) => (print "fild\t"; printEA(rex, SZDWord)) (* 32-bit int. *)
| (0w7, 0w5) => (print "fild\t"; printEA(rex, SZQWord)) (* 64-bit int. *)
| (0w3, 0w3) => (print "fistp\t"; printEA(rex, SZDWord)) (* 32-bit int. *)
| (0w7, 0w7) => (print "fistp\t"; printEA(rex, SZQWord)) (* 64-bit int. *)
| (0w4, 0w0) => (print "fadd\t"; printEA(rex, SZQWord)) (* Double precision. *)
| (0w4, 0w1) => (print "fmul\t"; printEA(rex, SZQWord))
| (0w4, 0w3) => (print "fcomp\t"; printEA(rex, SZQWord))
| (0w4, 0w4) => (print "fsub\t"; printEA(rex, SZQWord))
| (0w4, 0w5) => (print "fsubr\t"; printEA(rex, SZQWord))
| (0w4, 0w6) => (print "fdiv\t"; printEA(rex, SZQWord))
| (0w4, 0w7) => (print "fdivr\t"; printEA(rex, SZQWord))
| (0w5, 0w0) => (print "fld \t"; printEA(rex, SZQWord))
| (0w5, 0w2) => (print "fst\t"; printEA(rex, SZQWord))
| (0w5, 0w3) => (print "fstp\t"; printEA(rex, SZQWord))
| _ => (printValue(Word8.toLargeInt opByte); printValue(Word8.toLargeInt opByte2))
)
end
fun printJmp32 oper =
let
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print oper; print "\t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
fun printMask mask =
let
val wordMask = Word.fromInt mask
fun printAReg n =
if n = regs then ()
else
(
if (wordMask andb (0w1 << Word.fromInt n)) <> 0w0
then (print(regRepr(regN n)); print " ")
else ();
printAReg(n+1)
)
in
printAReg 0
end
in
if procName = "" (* No name *) then print "?" else print procName;
print ":\n";
while get8u (!ptr, seg) <> 0wxf4 (* HLT. *) do
let
val () = print (Word.fmt StringCvt.HEX (!ptr)) (* The address in hex. *)
val () = print "\t"
(* See if we have a lock prefix. *)
val () =
if get8u (!ptr, seg) = 0wxF0
then (print "lock "; ptr := !ptr + 0w1)
else ()
val legacyPrefix =
let
val p = get8u (!ptr, seg)
in
if p = 0wxF2 orelse p = 0wxF3 orelse p = 0wx66
then (ptr := !ptr + 0w1; p)
else 0wx0
end
(* See if we have a REX byte. *)
val rex =
let
val b = get8u (!ptr, seg);
in
if b >= 0wx40 andalso b <= 0wx4f
then (ptr := !ptr + 0w1; b)
else 0w0
end
val rexW = (rex andb8 0wx8) <> 0w0
val rexR = (rex andb8 0wx4) <> 0w0
val rexB = (rex andb8 0wx1) <> 0w0
val opByte = get8u (!ptr, seg) before ptr +:= 0w1
val sizeFromRexW = if rexW then SZQWord else SZDWord
in
case opByte of
0wx03 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx0b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx0f => (* ESCAPE *)
let
(* Opcode is in next byte. *)
val opByte2 = codeVecGet (seg, !ptr)
val () = (ptr +:= 0w1)
fun printcmov movop =
let
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print movop;
print "\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, sizeFromRexW)
end
in
case legacyPrefix of
0w0 =>
(
case opByte2 of
0wx2e =>
let (* ucomiss doesn't have a prefix. *)
val nb = codeVecGet (seg, !ptr)
val reg = SSE2Reg((nb >>- 0w3) andb8 0w7)
in
print "ucomiss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord)
end
| 0wx40 => printcmov "cmovo"
| 0wx41 => printcmov "cmovno"
| 0wx42 => printcmov "cmovb"
| 0wx43 => printcmov "cmovnb"
| 0wx44 => printcmov "cmove"
| 0wx45 => printcmov "cmovne"
| 0wx46 => printcmov "cmovna"
| 0wx47 => printcmov "cmova"
| 0wx48 => printcmov "cmovs"
| 0wx49 => printcmov "cmovns"
| 0wx4a => printcmov "cmovp"
| 0wx4b => printcmov "cmovnp"
| 0wx4c => printcmov "cmovl"
| 0wx4d => printcmov "cmovge"
| 0wx4e => printcmov "cmovle"
| 0wx4f => printcmov "cmovg"
| 0wxC1 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
(* The address argument comes first in the assembly code. *)
print "xadd\t";
printEA (rex, sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wxB6 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "movzx\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, SZByte)
end
| 0wxB7 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "movzx\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, SZWord)
end
| 0wxAE =>
let
(* Opcode is determined by the next byte. *)
val opByte2 = codeVecGet (seg, !ptr);
val nnn = (opByte2 >>- 0w3) andb8 0w7
in
case nnn of
0wx2 => (print "ldmxcsr\t"; printEA(rex, SZDWord))
| 0wx3 => (print "stmxcsr\t"; printEA(rex, SZDWord))
| _ => (printValue(Word8.toLargeInt opByte); printValue(Word8.toLargeInt opByte2))
end
| 0wxAF =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, sizeFromRexW)
end
| 0wx80 => printJmp32 "jo "
| 0wx81 => printJmp32 "jno "
| 0wx82 => printJmp32 "jb "
| 0wx83 => printJmp32 "jnb "
| 0wx84 => printJmp32 "je "
| 0wx85 => printJmp32 "jne "
| 0wx86 => printJmp32 "jna "
| 0wx87 => printJmp32 "ja "
| 0wx88 => printJmp32 "js "
| 0wx89 => printJmp32 "jns "
| 0wx8a => printJmp32 "jp "
| 0wx8b => printJmp32 "jnp "
| 0wx8c => printJmp32 "jl "
| 0wx8d => printJmp32 "jge "
| 0wx8e => printJmp32 "jle "
| 0wx8f => printJmp32 "jg "
| 0wx90 => (print "seto\t"; printEA (rex, SZByte))
| 0wx91 => (print "setno\t"; printEA (rex, SZByte))
| 0wx92 => (print "setb\t"; printEA (rex, SZByte))
| 0wx93 => (print "setnb\t"; printEA (rex, SZByte))
| 0wx94 => (print "sete\t"; printEA (rex, SZByte))
| 0wx95 => (print "setne\t"; printEA (rex, SZByte))
| 0wx96 => (print "setna\t"; printEA (rex, SZByte))
| 0wx97 => (print "seta\t"; printEA (rex, SZByte))
| 0wx98 => (print "sets\t"; printEA (rex, SZByte))
| 0wx99 => (print "setns\t"; printEA (rex, SZByte))
| 0wx9a => (print "setp\t"; printEA (rex, SZByte))
| 0wx9b => (print "setnp\t"; printEA (rex, SZByte))
| 0wx9c => (print "setl\t"; printEA (rex, SZByte))
| 0wx9d => (print "setge\t"; printEA (rex, SZByte))
| 0wx9e => (print "setle\t"; printEA (rex, SZByte))
| 0wx9f => (print "setg\t"; printEA (rex, SZByte))
| _ => (print "esc\t"; printValue(Word8.toLargeInt opByte2))
)
| 0wxf2 => (* SSE2 instruction *)
let
val nb = codeVecGet (seg, !ptr)
val rr = (nb >>- 0w3) andb8 0w7
val reg = SSE2Reg rr
in
case opByte2 of
0wx10 => ( print "movsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx11 => ( print "movsd\t"; printEAxmm(rex, SZQWord); print ","; print(xmmRegRepr reg) )
| 0wx2a => ( print "cvtsi2sd\t"; print(xmmRegRepr reg); print ","; printEA(rex, sizeFromRexW) )
| 0wx2c =>
( print "cvttsd2si\t"; print (genRegRepr (mkReg(rr, rexR), sizeFromRexW)); print ","; printEAxmm(rex, sizeFromRexW) )
| 0wx2d =>
( print "cvtsd2si\t"; print (genRegRepr (mkReg(rr, rexR), sizeFromRexW)); print ","; printEAxmm(rex, sizeFromRexW) )
| 0wx58 => ( print "addsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx59 => ( print "mulsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5a => ( print "cvtsd2ss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5c => ( print "subsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5e => ( print "divsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| b => (print "F2\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| 0wxf3 => (* SSE2 instruction. *)
let
val nb = codeVecGet (seg, !ptr)
val rr = (nb >>- 0w3) andb8 0w7
val reg = SSE2Reg rr
in
case opByte2 of
0wx10 => ( print "movss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| 0wx11 => ( print "movss\t"; printEAxmm(rex, SZDWord); print ","; print(xmmRegRepr reg) )
| 0wx2c =>
( print "cvttss2si\t"; print (genRegRepr (mkReg(rr, rexR), sizeFromRexW)); print ","; printEAxmm(rex, sizeFromRexW) )
| 0wx2d =>
( print "cvtss2si\t"; print (genRegRepr (mkReg(rr, rexR), sizeFromRexW)); print ","; printEAxmm(rex, sizeFromRexW) )
| 0wx5a => ( print "cvtss2sd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| 0wx58 => ( print "addss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| 0wx59 => ( print "mulss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| 0wx5c => ( print "subss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| 0wx5e => ( print "divss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZDWord) )
| b => (print "F3\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| 0wx66 => (* SSE2 instruction *)
let
val nb = codeVecGet (seg, !ptr)
val reg = SSE2Reg((nb >>- 0w3) andb8 0w7)
in
case opByte2 of
0wx2e => ( print "ucomisd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx54 => ( print "andpd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx57 => ( print "xorpd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx6e => ( print (if rexW then "movq\t" else "movd\t"); print(xmmRegRepr reg); print ","; printEA(rex, sizeFromRexW) )
| 0wx7e => ( print (if rexW then "movq\t" else "movd\t"); printEA(rex, sizeFromRexW); print ","; print(xmmRegRepr reg) )
| 0wx73 => ( print "psrldq\t"; printEAxmm(rex, SZQWord); print ","; print8 ())
| b => (print "66\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| _ => (print "esc\t"; printValue(Word8.toLargeInt opByte2))
end (* ESCAPE *)
| 0wx13 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx1b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx23 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx2b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx33 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx3b => printGvEv (opByte, rex, rexR, sizeFromRexW)
(* Push and Pop. These are 64-bit on X86/64 whether there is REX prefix or not. *)
| 0wx50 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx51 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx52 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx53 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx54 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx55 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx56 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx57 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx58 => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx59 => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5a => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5b => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5c => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5d => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5e => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5f => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx63 => (* MOVSXD. This is ARPL in 32-bit mode but that's never used here. *)
let
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "movsxd\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, SZDWord)
end
| 0wx68 => (print "push\t"; print32 ())
| 0wx69 =>
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t"; print(genRegRepr (mkReg(reg, rexR), sizeFromRexW)); print ",";
printEA(rex, sizeFromRexW); print ","; print32 ()
end
| 0wx6a => (print "push\t"; print8 ())
| 0wx6b =>
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t"; print(genRegRepr (mkReg(reg, rexR), sizeFromRexW)); print ",";
printEA(rex, sizeFromRexW); print ","; print8 ()
end
| 0wx70 => (print "jo \t"; printJmp())
| 0wx71 => (print "jno \t"; printJmp())
| 0wx72 => (print "jb \t"; printJmp())
| 0wx73 => (print "jnb \t"; printJmp())
| 0wx74 => (print "je \t"; printJmp())
| 0wx75 => (print "jne \t"; printJmp())
| 0wx76 => (print "jna \t"; printJmp())
| 0wx77 => (print "ja \t"; printJmp())
| 0wx78 => (print "js \t"; printJmp())
| 0wx79 => (print "jns \t"; printJmp())
| 0wx7a => (print "jp \t"; printJmp())
| 0wx7b => (print "jnp \t"; printJmp())
| 0wx7c => (print "jl \t"; printJmp())
| 0wx7d => (print "jge \t"; printJmp())
| 0wx7e => (print "jle \t"; printJmp())
| 0wx7f => (print "jg \t"; printJmp())
| 0wx80 => (* Group1_8_a *)
let (* Memory, byte constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, SZByte);
print ",";
print8 ()
end
| 0wx81 =>
let (* Memory, 32-bit constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, sizeFromRexW);
print ",";
print32 ()
end
| 0wx83 =>
let (* Word memory, 8-bit constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, sizeFromRexW);
print ",";
print8 ()
end
| 0wx87 =>
let (* xchng *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "xchng \t";
printEA(rex, sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wx88 =>
let (* mov eb,gb i.e a store *)
(* Register is in next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr));
val reg = (nb div 8) mod 8;
in
print "mov \t";
printEA(rex, SZByte);
print ",";
if rexR
then print ("r" ^ Int.toString(reg+8) ^ "B")
else case reg of
0 => print "al"
| 1 => print "cl"
| 2 => print "dl"
| 3 => print "bl"
(* If there is a REX byte these select the low byte of the registers. *)
| 4 => print (if rex = 0w0 then "ah" else "sil")
| 5 => print (if rex = 0w0 then "ch" else "dil")
| 6 => print (if rex = 0w0 then "dh" else "bpl")
| 7 => print (if rex = 0w0 then "bh" else "spl")
| _ => print ("r" ^ Int.toString reg)
end
| 0wx89 =>
let (* mov ev,gv i.e. a store *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "mov \t";
(* This may have an opcode prefix. *)
printEA(rex, if legacyPrefix = 0wx66 then SZWord else sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wx8b =>
let (* mov gv,ev i.e. a load *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "mov \t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, sizeFromRexW)
end
| 0wx8d =>
let (* lea gv.M *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "lea \t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, sizeFromRexW)
end
| 0wx8f => (print "pop \t"; printEA(rex, sz32_64))
| 0wx90 => print "nop"
| 0wx99 => if rexW then print "cqo" else print "cdq"
| 0wx9e => print "sahf\n"
| 0wxa4 => (if legacyPrefix = 0wxf3 then print "rep " else (); print "movsb")
| 0wxa5 => (if legacyPrefix = 0wxf3 then print "rep " else (); print "movsl")
| 0wxa6 => (if legacyPrefix = 0wxf3 then print "repe " else (); print "cmpsb")
| 0wxa8 => (print "test\tal,"; print8 ())
| 0wxaa => (if legacyPrefix = 0wxf3 then print "rep " else (); print "stosb")
| 0wxab =>
(
if legacyPrefix = 0wxf3 then print "rep " else ();
if rexW then print "stosq" else print "stosl"
)
| 0wxb8 => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxb9 => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxba => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbb => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbc => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbd => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbe => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbf => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxc1 => (* Group2_8_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxc2 => (print "ret \t"; print16 ())
| 0wxc3 => print "ret"
| 0wxc6 => (* move 8-bit constant to memory *)
(
print "mov \t";
printEA(rex, SZByte);
print ",";
print8 ()
)
| 0wxc7 => (* move 32/64-bit constant to memory *)
(
print "mov \t";
printEA(rex, sizeFromRexW);
print ",";
print32 ()
)
| 0wxca => (* Register mask *)
let
val mask = get16u (!ptr, seg) before (ptr +:= 0w2)
in
print "SAVE\t";
printMask mask
end
| 0wxcd => (* Register mask *)
let
val mask = get8u (!ptr, seg) before (ptr +:= 0w1)
in
print "SAVE\t";
printMask(Word8.toInt mask)
end
| 0wxd1 => (* Group2_1_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxd3 => (* Group2_CL_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxd8 => printFloat (opByte, rex) (* Floating point escapes *)
| 0wxd9 => printFloat (opByte, rex)
| 0wxda => printFloat (opByte, rex)
| 0wxdb => printFloat (opByte, rex)
| 0wxdc => printFloat (opByte, rex)
| 0wxdd => printFloat (opByte, rex)
| 0wxde => printFloat (opByte, rex)
| 0wxdf => printFloat (opByte, rex)
| 0wxe8 =>
let (* 32-bit relative call. *)
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print "call\t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
| 0wxe9 =>
let (* 32-bit relative jump. *)
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print "jmp \t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
| 0wxeb => (print "jmp \t"; printJmp())
| 0wxf4 => print "hlt" (* Marker to indicate end-of-code. *)
| 0wxf6 => (* Group3_a *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
0 => "test"
| 3 => "neg"
| _ => "???"
);
print "\t";
printEA(rex, SZByte);
if opc = 0 then (print ","; print8 ()) else ()
end
| 0wxf7 => (* Group3_A *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
0 => "test"
| 3 => "neg "
| 4 => "mul "
| 5 => "imul"
| 6 => "div "
| 7 => "idiv"
| _ => "???"
);
print "\t";
printEA(rex, sizeFromRexW);
(* Test has an immediate operand. It's 32-bits even in 64-bit mode. *)
if opc = 0 then (print ","; print32 ()) else ()
end
| 0wxff => (* Group5 *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
2 => "call"
| 4 => "jmp "
| 6 => "push"
| _ => "???"
);
print "\t";
printEA(rex, sz32_64) (* None of the cases we use need a prefix. *)
end
| _ => print(Word8.fmt StringCvt.HEX opByte);
print "\n"
end; (* end of while loop *)
print "\n"
end (* printCode *);
(* Although this is used locally it must be defined at the top level
otherwise a new RTS function will be compiler every time the
containing function is called *)
val sortFunction: (machineWord * word) array -> bool =
RunCall.rtsCallFast1 "PolySortArrayOfAddresses"
(* This actually does the final code-generation. *)
fun generateCode
{ops=operations,
code=cvec as Code{procName, printAssemblyCode, printStream, profileObject, ...},
labelCount, resultClosure} : unit =
let
val (expanded, newLabelCount) = expandComplexOperations (operations, labelCount)
val () = printLowLevelCode(expanded, cvec)
local
val initialBytesList = codeGenerate expanded
in
(* Fixup labels and shrink long branches to short. *)
val (bytesList, codeSize) = fixupLabels(expanded, initialBytesList, newLabelCount)
end
local
(* Extract the constants and the location of the references from the code. *)
val (inlineConstants, addressConstants, nonAddressConstants) = getConstants(expanded, bytesList)
(* Sort the non-address constants to remove duplicates. There don't seem to be
many in practice.
Since we're not actually interested in the order but only
sorting to remove duplicates we can use a stripped-down Quicksort. *)
fun sort([], out) = out
| sort((addr, median) :: tl, out) = partition(median, tl, [addr], [], [], out)
and partition(median, [], addrs, less, greater, out) =
sort(less, sort(greater, (addrs, median) :: out))
| partition(median, (entry as (addr, value)) :: tl, addrs, less, greater, out) =
if value = median
then partition(median, tl, addr::addrs, less, greater, out)
else if value < median
then partition(median, tl, addrs, entry :: less, greater, out)
else partition(median, tl, addrs, less, entry :: greater, out)
(* Non-address constants. We can't use any ordering on them because a GC could
change the values half way through the sort. Instead we use a simple search
for a small number of constants and use an RTS call for larger numbers. We
want to avoid quadratic cost when there are large numbers. *)
val sortedConstants =
if List.length addressConstants < 10
then
let
fun findDups([], out) = out
| findDups((addr, value) :: tl, out) =
let
fun partition(e as (a, v), (eq, neq)) =
if PolyML.pointerEq(value, v)
then (a :: eq, neq)
else (eq, e :: neq)
val (eqAddr, neq) = List.foldl partition ([addr], []) tl
in
findDups(neq, (eqAddr, value) :: out)
end
in
findDups(addressConstants, [])
end
else
let
fun swap (a, b) = (b, a)
val arrayToSort: (machineWord * word) array =
Array.fromList (List.map swap addressConstants)
val _ = sortFunction arrayToSort
fun makeList((v, a), []) = [([a], v)]
| makeList((v, a), l as (aa, vv) :: tl) =
if PolyML.pointerEq(v, vv)
then (a :: aa, vv) :: tl
else ([a], v) :: l
in
Array.foldl makeList [] arrayToSort
end
in
val inlineConstants = inlineConstants
and addressConstants = sortedConstants
and nonAddressConstants = sort(nonAddressConstants, [])
end
(* Get the number of constants that need to be added to the address area. *)
val constsInConstArea = List.length addressConstants
local
(* Add one byte for the HLT and round up to a number of words. *)
val endOfCode = (codeSize+nativeWordSize) div nativeWordSize * (nativeWordSize div wordSize)
val numOfNonAddrWords = Word.fromInt(List.length nonAddressConstants)
(* Each entry in the non-address constant area is 8 bytes. *)
val intSize = 0w8 div wordSize
in
val endOfByteArea = endOfCode + numOfNonAddrWords * intSize
(* +4 for function name, register mask (no longer used), profile object and count of constants. *)
val segSize = endOfByteArea + Word.fromInt constsInConstArea + 0w4
end
(* Create a byte vector and copy the data in. This is a byte area and not scanned
by the GC so cannot contain any addresses. *)
val byteVec = byteVecMake segSize
val ic = ref 0w0
local
fun genByte (ival: Word8.word) = set8u (ival, !ic, byteVec) before ic := !ic + 0w1
in
fun genBytes l = Word8Vector.app (fn i => genByte i) l
val () = List.app (fn b => genBytes b) bytesList
val () = genBytes(Word8Vector.fromList(opCodeBytes(HLT, NONE))) (* Marker - this is used by ScanConstants in the RTS. *)
end
(* Align ic onto a fullword boundary. *)
val () = ic := ((!ic + nativeWordSize - 0w1) andb ~nativeWordSize)
(* Copy the non-address constants. These are only used in 64-bit mode and are
either real constants or integers that are too large to fit in a 32-bit
inline constants. We don't use this for real constants in 32-bit mode because
we don't have relative addressing. Instead a real constant is the inline
address of a boxed real number. *)
local
fun putNonAddrConst(addrs, constant) =
let
val addrOfConst = ! ic
val () = genBytes(Word8Vector.fromList(largeWordToBytes(constant, 8)))
fun setAddr addr = set32s(Word.toLargeInt(addrOfConst - addr - 0w4), addr, byteVec)
in
List.app setAddr addrs
end
in
val () = List.app putNonAddrConst nonAddressConstants
end
val _ = bytesToWords(! ic) = endOfByteArea orelse raise InternalError "mismatch"
(* Put in the number of constants. This must go in before we actually put
in any constants. In 32-bit mode there are only three constants: the
function name and the register mask, now unused and the profile object.
All other constants are in the code. *)
local
val addr = wordsToBytes(endOfByteArea + 0w3 + Word.fromInt constsInConstArea)
fun setBytes(_, _, 0) = ()
| setBytes(ival, offset, count) =
(
byteVecSet(byteVec, offset, Word8.fromLargeInt(ival mod 256));
setBytes(ival div 256, offset+0w1, count-1)
)
in
val () = setBytes(LargeInt.fromInt(3 + constsInConstArea), addr, Word.toInt wordSize)
end;
(* We've put in all the byte data so it is safe to convert this to a mutable code
cell that can contain addresses and will be scanned by the GC. *)
val codeSeg = byteVecToCodeVec(byteVec, resultClosure)
(* Various RTS functions assume that the first constant is the function name.
The profiler assumes that the third word is the address of the mutable that
contains the profile count. The second word used to be used for the register
mask but is no longer used. *)
val () = codeVecPutWord (codeSeg, endOfByteArea, toMachineWord procName)
val () = codeVecPutWord (codeSeg, endOfByteArea + 0w1, toMachineWord 1 (* No longer used. *))
(* Next the profile object. *)
val () = codeVecPutWord (codeSeg, endOfByteArea + 0w2, profileObject)
in
let
fun setBytes(_, _, 0w0) = ()
| setBytes(b, addr, count) =
(
codeVecSet (codeSeg, addr, wordToWord8 b);
setBytes(b >> 0w8, addr+0w1, count-0w1)
)
(* Inline constants - native 32-bit only, *)
fun putInlConst (addrs, SelfAddress) =
(* Self address goes inline. *)
codeVecPutConstant (codeSeg, addrs, toMachineWord(codeVecAddr codeSeg), ConstAbsolute)
| putInlConst (addrs, InlineAbsoluteAddress m) =
codeVecPutConstant (codeSeg, addrs, m, ConstAbsolute)
| putInlConst (addrs, InlineRelativeAddress m) =
codeVecPutConstant (codeSeg, addrs, m, ConstX86Relative)
val _ = List.app putInlConst inlineConstants
(* Address constants - native 64-bit and 32-in-64. *)
fun putAddrConst ((addrs, m), constAddr) =
(* Put the constant in the constant area and set the original address
to be the relative offset to the constant itself. *)
(
codeVecPutWord (codeSeg, constAddr, m);
(* Put in the 32-bit offset - always unsigned since the destination
is after the reference. *)
List.app(fn addr => setBytes(constAddr * wordSize - addr - 0w4, addr, 0w4)) addrs;
constAddr+0w1
)
(* Put the constants. Any values in the constant area start at +3 i.e. after the profile. *)
val _ = List.foldl putAddrConst (endOfByteArea+0w3) addressConstants
val () =
if printAssemblyCode
then (* print out the code *)
(
printCode(cvec, codeSeg);
printStream "\n\n"
)
else ()
in
(* Finally lock the code. *)
codeVecLock(codeSeg, resultClosure)
end (* the result *)
end (* generateCode *)
structure Sharing =
struct
type code = code
and reg = reg
and genReg = genReg
and fpReg = fpReg
and addrs = addrs
and operation = operation
and regSet = RegSet.regSet
and label = label
and branchOps = branchOps
and arithOp = arithOp
and shiftType = shiftType
and repOps = repOps
and fpOps = fpOps
and fpUnaryOps = fpUnaryOps
and sse2Operations = sse2Operations
and opSize = opSize
and closureRef = closureRef
end
end (* struct *) (* CODECONS *);
|