1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
#define _XOPEN_SOURCE 500
#define _POSIX_C_SOURCE 200809L
#define _DARWIN_C_SOURCE 200809L
#include "stats.h"
#include "locks.h"
#include "hash.h"
#include "client_data.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
void finish_lock(struct locks* l) {
if (l->state != LS_UNLOCKED) {
if (l->state != LS_PROCESSING) {
decr_stats( waiting_workers );
}
remove_client_lock(l, 0);
}
}
static struct hashtable* primary_hashtable;
/* These defines are the same in memcached */
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define DOUBLE_LLIST_INIT(this) do { (this).prev = (this).next = &(this); } while (0)
#define DOUBLE_LLIST_DEL(this) do { (this)->prev->next = (this)->next; (this)->next->prev = (this)->prev; } while (0)
#define DOUBLE_LLIST_ADD(parent,child) do { (child)->prev = (parent)->prev; (child)->next = (child)->prev->next /* parent */; (parent)->prev->next = (child); (parent)->prev = (child); } while(0);
/* Converts a numeric text into an unsigned integer.
* Returns 0 if it's a NULL pointer or not a natural.
*/
unsigned atou(char const* astext) {
int num = 0;
if (!astext) return 0;
while ( *astext ) {
if ( *astext < '0' ) return 0;
if ( *astext > '9' ) return 0;
num = num * 10 + *astext - '0';
astext++;
}
return num;
}
const char* process_line(struct client_data* cli_data, char* line, int line_len) {
if (line_len > 0 && line[line_len-1] == '\r') {
line_len--;
line[line_len] = '\0';
}
if ( !strncmp( line, "ACQ4ME ", 7 ) || !strncmp( line, "ACQ4ANY ", 8 ) ) {
if ( cli_data->next_lock >= MAX_LOCKS_PER_CLIENT ) {
incr_stats( lock_mismatch );
return "LOCK_HELD\n";
}
if ( cli_data->next_lock > 0 ) {
struct locks* last_lock = cli_data->client_locks + cli_data->next_lock - 1;
if ( last_lock->state != LS_PROCESSING ) {
/*
* Handling multiple timeouts would require some extensive
* rejiggering and we don't expect users to try anyway. So we
* don't let them. Also, it'd be a bit crazy to actually get
* a lock while waiting on another - it'd lead to unpredictable
* locking order which is the first step in deadlocking.
*/
incr_stats( lock_while_waiting );
return "ERROR WAIT_FOR_RESPONSE\n";
}
}
int for_anyone = line[6] != ' ';
char* key = strtok( line + 7 + for_anyone, " " );
unsigned workers = atou( strtok(NULL, " ") );
unsigned maxqueue = atou( strtok(NULL, " ") );
unsigned timeout = atou( strtok(NULL, " ") );
if ( !key || !workers || !maxqueue ) {
return "ERROR BAD_SYNTAX\n";
}
uint32_t hash_value = hash( key, strlen( key ), 0 );
struct PoolCounter* pCounter;
pCounter = hashtable_find( primary_hashtable, hash_value, key );
if ( !pCounter ) {
pCounter = malloc( sizeof( *pCounter ) );
if ( !pCounter ) {
fprintf( stderr, "Out of memory\n" );
return "ERROR OUT_OF_MEMORY\n";
}
pCounter->htentry.key = strdup( key );
pCounter->htentry.key_hash = hash_value;
pCounter->count = 0;
pCounter->processing = 0;
DOUBLE_LLIST_INIT( pCounter->working );
DOUBLE_LLIST_INIT( pCounter->for_them );
DOUBLE_LLIST_INIT( pCounter->for_anyone );
hashtable_insert( primary_hashtable, (struct hashtable_entry *) pCounter );
incr_stats( hashtable_entries );
}
if ( pCounter->count >= maxqueue ) {
incr_stats( full_queues );
return "QUEUE_FULL\n";
}
if ( pCounter->processing < workers ) {
struct locks* l = init_next_lock( cli_data, pCounter, LS_PROCESSING );
if ( !l ) {
/*
* We check for this condition way way up above so we should
* never see this.
*/
fprintf( stderr, "Out of locks\n" );
exit( EXIT_FAILURE );
}
gettimeofday( &l->timeval, NULL );
pCounter->count++;
pCounter->processing++;
incr_stats( processing_workers );
DOUBLE_LLIST_ADD( &pCounter->working, &l->siblings );
incr_stats( total_acquired );
return "LOCKED\n";
}
if ( !timeout ) {
return "TIMEOUT\n";
}
struct locks* l = init_next_lock( cli_data, pCounter, for_anyone ? LS_WAIT_ANY : LS_WAITING );
pCounter->count++;
struct timeval wait_time;
if ( for_anyone ) {
DOUBLE_LLIST_ADD( &pCounter->for_anyone, &l->siblings );
} else {
DOUBLE_LLIST_ADD( &pCounter->for_them, &l->siblings );
}
incr_stats( waiting_workers );
gettimeofday( &l->timeval, NULL );
wait_time.tv_sec = timeout;
wait_time.tv_usec = 0;
/*
* Note that this timeout will override any previously set timeouts.
* You _can't_ clear the a timeout so we have to handle that too but
* at least we don't have to handle timeouts too early.
*/
event_add( &cli_data->ev, &wait_time );
return NULL;
} else if ( !strncmp(line, "RELEASE", 7) ) {
if ( cli_data->next_lock <= 0 ) {
incr_stats( release_mismatch );
return "NOT_LOCKED\n";
}
cli_data->next_lock--;
struct locks* l = cli_data->client_locks + cli_data->next_lock;
if ( l->state == LS_UNLOCKED ) {
incr_stats( release_mismatch );
return "NOT_LOCKED\n";
}
remove_client_lock( l, 1 );
incr_stats( total_releases );
return "RELEASED\n";
} else if ( !strncmp( line, "STATS ", 6 ) ) {
return provide_stats( line + 6 );
} else {
return "ERROR BAD_COMMAND\n";
}
}
void remove_client_lock(struct locks* l, int wakeup_anyones) {
struct timeval now = { 0 };
DOUBLE_LLIST_DEL(&l->siblings);
if ( wakeup_anyones ) {
while ( l->parent->for_anyone.next != &l->parent->for_anyone ) {
struct locks* to_notify = (struct locks*)l->parent->for_anyone.next;
struct client_data* cli_data = to_notify->client_data;
time_stats( to_notify, waiting_time_for_good );
send_client( cli_data, "DONE\n" );
cli_data->next_lock--;
assert( cli_data->next_lock + cli_data->client_locks == to_notify );
remove_client_lock( to_notify, 0 );
decr_stats( waiting_workers );
time_stats( l, gained_time );
}
}
if ( l->state == LS_PROCESSING ) {
/* One slot freed, wake up another worker */
time_stats( l, processing_time );
incr_stats( processed_count );
/* Give priority to those which need to do it themselves, since
* the anyones will benefit from it, too.
* TODO: Prefer the first anyone if it's much older.
*/
struct locks* new_owner = NULL;
if ( l->parent->for_them.next != &l->parent->for_them ) {
/* The oldest waiting worker will be on next */
new_owner = (struct locks*) l->parent->for_them.next;
time_stats( new_owner, waiting_time_for_me );
} else if ( l->parent->for_anyone.next != &l->parent->for_anyone ) {
new_owner = (struct locks*) l->parent->for_anyone.next;
time_stats( new_owner, waiting_time_for_anyone );
}
if ( new_owner ) {
struct client_data* cli_data = new_owner->client_data;
assert( cli_data->next_lock - 1 + cli_data->client_locks == new_owner );
time_stats( new_owner, waiting_time );
DOUBLE_LLIST_DEL( &new_owner->siblings );
DOUBLE_LLIST_ADD( &l->parent->working, &new_owner->siblings );
send_client( cli_data, "LOCKED\n" );
new_owner->state = LS_PROCESSING;
incr_stats( total_acquired );
decr_stats( waiting_workers );
gettimeofday( &l->timeval, NULL );
} else {
l->parent->processing--;
decr_stats( processing_workers );
}
}
l->state = LS_UNLOCKED;
l->parent->count--;
if ( !l->parent->count ) {
decr_stats( hashtable_entries );
hashtable_remove( l->parent->htentry.parent_hashtable, &l->parent->htentry );
free( l->parent->htentry.key );
free( l->parent );
}
}
/* The code below is loosely based in those of memcached assoc.c */
struct hashtable {
unsigned int hashpower;
uint32_t items;
struct hashtable* old_hashtable;
struct double_linked_list hashentries[1];
};
void hashtable_init() {
primary_hashtable = hashtable_create(16);
if (! primary_hashtable) {
fprintf( stderr, "Failed to init hashtable.\n" );
exit( EXIT_FAILURE );
}
}
struct hashtable* hashtable_create(int hashpower) {
struct hashtable* new_hashtable;
new_hashtable = calloc( hashsize( hashpower ) + ( sizeof( struct hashtable ) - 1 ) /
sizeof( new_hashtable->hashentries[0] ), sizeof( new_hashtable->hashentries[0] ) );
if ( !new_hashtable )
return NULL;
new_hashtable->hashpower = hashpower;
if ( new_hashtable->old_hashtable != NULL ) {
int i; /* Zeroes are not NULL here... */
new_hashtable->old_hashtable = NULL;
for ( i=0; i < hashsize( hashpower ); i++ ) {
new_hashtable->hashentries[i].prev = new_hashtable->hashentries[i].next = NULL;
}
}
return new_hashtable;
}
/**
* Find an entry with the given key in the hash table.
* NULL if not found.
*/
void* hashtable_find(struct hashtable* ht, uint32_t hash_value, const char* key) {
struct hashtable_entry *begin, *cur;
begin = (struct hashtable_entry*) &ht->hashentries[hash_value & hashmask(ht->hashpower)];
if (!begin->hashtable_siblings.next) return NULL; /* Empty bucket */
for (cur = (struct hashtable_entry*) begin->hashtable_siblings.next; cur != begin;
cur = (struct hashtable_entry*)cur->hashtable_siblings.next) {
if ( ( cur->key_hash == hash_value ) && ( !strcmp( key, cur->key ) ) ) {
return cur;
}
}
if ( ht->old_hashtable ) {
if ( !ht->old_hashtable->items ) {
/* Empty hash table */
free(ht->old_hashtable);
ht->old_hashtable = NULL;
return NULL;
}
return hashtable_find( ht->old_hashtable, hash_value, key );
}
return NULL;
}
/**
* Insert into the hash table an item known not to exist there.
*/
void hashtable_insert(struct hashtable* ht, struct hashtable_entry* htentry) {
struct double_linked_list* begin;
if (! ht->old_hashtable && ht->items >= (hashsize( ht->hashpower ) * 3) / 2) {
/* Same growing condition as in memcached */
struct hashtable* new_ht;
new_ht = hashtable_create( ht->hashpower + 1 );
if ( new_ht ) {
new_ht->old_hashtable = ht;
primary_hashtable = new_ht;
ht = new_ht;
}
}
begin = &ht->hashentries[ htentry->key_hash & hashmask( ht->hashpower ) ];
if ( !begin->next ) { DOUBLE_LLIST_INIT( *begin ); }
DOUBLE_LLIST_ADD( begin, &htentry->hashtable_siblings );
htentry->parent_hashtable = ht;
ht->items++;
}
/**
* Remove this entry from this hash table.
* Freeing the entry is the caller's responsability.
*/
void hashtable_remove(struct hashtable* ht, struct hashtable_entry* htentry) {
DOUBLE_LLIST_DEL( &htentry->hashtable_siblings );
ht->items--;
}
|