File: README

package info (click to toggle)
portabase 2.0%2Bgit20110117-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 6,692 kB
  • sloc: cpp: 32,047; sh: 2,675; ansic: 2,320; makefile: 343; xml: 20; python: 16; asm: 10
file content (198 lines) | stat: -rw-r--r-- 6,694 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# RANDOMKIT, Version 1.6
# Copyright J.S. Roy (js@jeannot.org), 2003-2005
# See the LICENSE file for copyright information.
# @(#) $Jeannot: README,v 1.18 2006/02/19 14:40:26 js Exp $

ABOUT
=====
Randomkit is a set of C functions to generate random numbers, using the
Mersenne Twister pseudo-RNG, Sobol's low discrepancy RNG and ISAAC cryptographic
RNG.

The last version (and other software) is available at the URL:
http://www.jeannot.org/~js/code/index.en.html

ACKNOWLEDGEMENTS
================
Original design and code for the Mersenne Twister RNG:
A C-program for MT19937, with initialization improved 2002/1/26.
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
The reference implementation and high performance implementations are
available at the following URL: http://www.math.keio.ac.jp/~matumoto/emt.html
Original algorithm for the implementation of rk_interval function from
Richard J. Wagner's implementation of the Mersenne Twister RNG, optimised by
Magnus Jonsson.
Constants used in the rk_double implementation by Isaku Wada.
Methodology for primitive polynomial generation inspired by scott duplichan's
ppsearch code.
Original sobol algorithm from Numerical Recipes, 2nd edition, by Press et al.
The inverse normal cdf formulas are from Peter J. Acklam.
The initialization directions were found in Ferdinando Ametrano's
implementation of Sobol QRNG in QuantLib.
ISAAC RNG by By Bob Jenkins. Based on Bob Jenkins public domain code.

More over, two additionnal files getopt.c and getopt.h from the Apache project
are included to enable building the list_primitive executable on Windows. These
files have their own license (at the begining of their source).

BUILDING
========
On Unix, if you have a random number generator device not located at
/dev/urandom, you should define the RK_DEV_URANDOM macro accordingy. I.e.:
CFLAGS += -DRK_DEV_URANDOM="/dev/myrandomdevice"
The same applies to RK_DEV_RANDOM which defaults to /dev/random.

On Windows, if you do not have access to the Windows crypto API, you should
define the RK_NO_WINCRYPT macro.

A Makefile is provided to test the correctness of the RNG. The 'test' target
should execute, check if the random device is found (or not) and return "Test
successful." on each tests if the RNG unit tests passed.

Note: The code assume that long integers are either 32 or 64 bits.

USE
===

PSEUDO RANDOM NUMBER GENERATION
-------------------------------

Recommended as an all purpose RNG.
See randomkit_example.c for an example.

Typical use:

{
  rk_state state;
  unsigned long seed = 1, random_value;
  
  rk_seed(seed, &state); /* Initialize the RNG */
  ...
  random_value = rk_random(&state); /* a random value in [0..RK_MAX] */
}

Instead of rk_seed, you can use rk_randomseed which will get a random seed
from /dev/urandom (or the WinCrypt API on Windows), or the clock/pid/ticks,
if /dev/urandom (resp. WinCrypt) is unavailable:

{
  rk_state state;
  unsigned long random_value;
  
  rk_randomseed(&state); /* Initialize the RNG with a random seed */
  ...
  random_value = rk_random(&state); /* a random value in [0..RK_MAX] */
}

Additionnaly, the following functions are provided:

rk_long: returns a random long between 0 and LONG_MAX inclusive.
rk_ulong: returns a random unsigned long between 0 and ULONG_MAX, inclusive.
rk_interval: returns a random unsigned long between 0 and a user supplied
maximum integer, inclusive.
rk_double: returns a random double between 0.0 and 1.0, 1.0 excluded.
rk_copy: copy a random generator and its state.
rk_fill: fill a buffer with random bytes.
rk_devfill: fill a buffer using random bytes from the random device.
rk_altfill: fill a buffer using rk_devfill if possible or rk_fill if it is not.
rk_gauss: return a gaussian deviate (zero mean, variance unity).

See rk_mt.h for the precise interface.

QUASI RANDOM NUMBER GENERATION
------------------------------

See sobol_example.c for an example.

Typical use:

int dimension = 2;
rk_sobol_state s;
rk_sobol_error rc;
double x[dimension], y[dimension];

/* Init */
if (rc = rk_sobol_init(dimension, &s, NULL, NULL, NULL))
{
  fprintf(stderr, "%s\n", rk_sobol_strerror[rc]);
  abort();
}
  
/* Draw uniform quasirandom doubles */
if (rc = rk_sobol_double(&s, x))
{
  fprintf(stderr, "%s\n", rk_sobol_strerror[rc]);
  abort();
}
  
/* Draw gaussian quasirandom doubles */
if (rc = rk_sobol_gauss(&s, y))
{
  fprintf(stderr, "%s\n", rk_sobol_strerror[rc]);
  abort();
}

/* Free allocated memory */
rk_sobol_free(&s);

Additionnaly, the following functions are provided:
rk_sobol_reinit: quickly reinitialize a sobol generator.
rk_sobol_setcount: change the starting point in the sequence.
rk_sobol_randomshift: XOR the sequence randomly for Randomized Quasi-MC.
rk_sobol_copy: copy a sobol generator and its state.

See rk_sobol.h for the precise interface.

BINARY PRIMITIVE POLYNOMIALS GENERATION
---------------------------------------

See list_primitive.c for an example and See rk_primitive.h for the precise
interface.

The isprimitive function test the primitivity of a binary polynomial of degree
lower or equal to the size of an unsigned long integer (usually 32 or 64 bits).

CRYPTOGRAPHIC PSEUDO RANDOM NUMBER GENERATION
---------------------------------------------

Recommended when inability to derive the seed from the RNG output is required.
See isaac_example.c for an example.

Typical use:

{
  rk_isaac_state state;
  unsigned long seed = 1, random_value;
  
  rk_isaac_seed(seed, &state); /* Initialize the RNG */
  ...
  random_value = rk_isaac_random(&state); /* a random value in [0..RK_MAX] */
}

Instead of rk_isaac_seed, you can use rk_isaac_randomseed which will get a
random seed from /dev/random (or the WinCrypt API on Windows), or the
clock/pid/ticks, if /dev/random (resp. WinCrypt) is unavailable:

{
  rk_isaac_state state;
  unsigned long random_value;
  
  rk_isaac_randomseed(&state); /* Initialize the RNG with a random seed */
  ...
  random_value = rk_isaac_random(&state); /* a random value in [0..RK_MAX] */
}

Additionnaly, the following functions are provided:

rk_isaac_long: returns a random long between 0 and LONG_MAX inclusive.
rk_isaac_ulong: returns a random unsigned long between 0 and ULONG_MAX,
inclusive.
rk_isaac_interval: returns a random unsigned long between 0 and a user supplied
maximum integer, inclusive.
rk_isaac_double: returns a random double between 0.0 and 1.0, 1.0 excluded.
rk_isaac_copy: copy a random generator and its state.
rk_isaac_fill: fill a buffer with random bytes.
rk_isaac_gauss: return a gaussian deviate (zero mean, variance unity).
rk_seed_isaac: seed a MT RNG using an ISAAC RNG.

See rk_isaac.h for the precise interface.