File: paex_ocean_shore.c

package info (click to toggle)
portaudio19 19.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 7,980 kB
  • ctags: 13,089
  • sloc: ansic: 56,444; sh: 13,640; cpp: 10,851; java: 677; makefile: 339; python: 143
file content (533 lines) | stat: -rw-r--r-- 18,481 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/** @file paex_ocean_shore.c 
	@ingroup examples_src
	@brief Generate Pink Noise using Gardner method, and make "waves". Provides an example of how to
           post stuff to/from the audio callback using lock-free FIFOs implemented by the PA ringbuffer.

	Optimization suggested by James McCartney uses a tree
	to select which random value to replace.
<pre>
	x x x x x x x x x x x x x x x x 
	x   x   x   x   x   x   x   x   
	x       x       x       x       
	 x               x               
	   x   
</pre>                            
	Tree is generated by counting trailing zeros in an increasing index.
	When the index is zero, no random number is selected.

	@author Phil Burk  http://www.softsynth.com
            Robert Bielik
*/
/*
 * $Id$
 *
 * This program uses the PortAudio Portable Audio Library.
 * For more information see: http://www.portaudio.com
 * Copyright (c) 1999-2000 Ross Bencina and Phil Burk
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files
 * (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * The text above constitutes the entire PortAudio license; however, 
 * the PortAudio community also makes the following non-binding requests:
 *
 * Any person wishing to distribute modifications to the Software is
 * requested to send the modifications to the original developer so that
 * they can be incorporated into the canonical version. It is also 
 * requested that these non-binding requests be included along with the 
 * license above.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

#include "portaudio.h"
#include "pa_ringbuffer.h"
#include "pa_util.h"

#define PINK_MAX_RANDOM_ROWS   (30)
#define PINK_RANDOM_BITS       (24)
#define PINK_RANDOM_SHIFT      ((sizeof(long)*8)-PINK_RANDOM_BITS)

typedef struct
{
    long      pink_Rows[PINK_MAX_RANDOM_ROWS];
    long      pink_RunningSum;   /* Used to optimize summing of generators. */
    int       pink_Index;        /* Incremented each sample. */
    int       pink_IndexMask;    /* Index wrapped by ANDing with this mask. */
    float     pink_Scalar;       /* Used to scale within range of -1.0 to +1.0 */
}
PinkNoise;

typedef struct 
{
    float       bq_b0;
    float       bq_b1;
    float       bq_b2;
    float       bq_a1;
    float       bq_a2;
} BiQuad;

typedef enum
{
    State_kAttack,
    State_kPreDecay,
    State_kDecay,
    State_kCnt,
} EnvState;

typedef struct
{
    PinkNoise   wave_left;
    PinkNoise   wave_right;

    BiQuad      wave_bq_coeffs;
    float       wave_bq_left[2];
    float       wave_bq_right[2];

    EnvState    wave_envelope_state;
    float       wave_envelope_level;
    float       wave_envelope_max_level;
    float       wave_pan_left;
    float       wave_pan_right;
    float       wave_attack_incr;
    float       wave_decay_incr;

} OceanWave;

/* Prototypes */
static unsigned long GenerateRandomNumber( void );
void InitializePinkNoise( PinkNoise *pink, int numRows );
float GeneratePinkNoise( PinkNoise *pink );
unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames);

/************************************************************/
/* Calculate pseudo-random 32 bit number based on linear congruential method. */
static unsigned long GenerateRandomNumber( void )
{
    /* Change this seed for different random sequences. */
    static unsigned long randSeed = 22222;
    randSeed = (randSeed * 196314165) + 907633515;
    return randSeed;
}

/************************************************************/
/* Setup PinkNoise structure for N rows of generators. */
void InitializePinkNoise( PinkNoise *pink, int numRows )
{
    int i;
    long pmax;
    pink->pink_Index = 0;
    pink->pink_IndexMask = (1<<numRows) - 1;
    /* Calculate maximum possible signed random value. Extra 1 for white noise always added. */
    pmax = (numRows + 1) * (1<<(PINK_RANDOM_BITS-1));
    pink->pink_Scalar = 1.0f / pmax;
    /* Initialize rows. */
    for( i=0; i<numRows; i++ ) pink->pink_Rows[i] = 0;
    pink->pink_RunningSum = 0;
}

/* Generate Pink noise values between -1.0 and +1.0 */
float GeneratePinkNoise( PinkNoise *pink )
{
    long newRandom;
    long sum;
    float output;
    /* Increment and mask index. */
    pink->pink_Index = (pink->pink_Index + 1) & pink->pink_IndexMask;
    /* If index is zero, don't update any random values. */
    if( pink->pink_Index != 0 )
    {
        /* Determine how many trailing zeros in PinkIndex. */
        /* This algorithm will hang if n==0 so test first. */
        int numZeros = 0;
        int n = pink->pink_Index;
        while( (n & 1) == 0 )
        {
            n = n >> 1;
            numZeros++;
        }
        /* Replace the indexed ROWS random value.
         * Subtract and add back to RunningSum instead of adding all the random
         * values together. Only one changes each time.
         */
        pink->pink_RunningSum -= pink->pink_Rows[numZeros];
        newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
        pink->pink_RunningSum += newRandom;
        pink->pink_Rows[numZeros] = newRandom;
    }

    /* Add extra white noise value. */
    newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT;
    sum = pink->pink_RunningSum + newRandom;
    /* Scale to range of -1.0 to 0.9999. */
    output = pink->pink_Scalar * sum;
    return output;
}

float ProcessBiquad(const BiQuad* coeffs, float* memory, float input)
{
    float w = input - coeffs->bq_a1 * memory[0] - coeffs->bq_a2 * memory[1];
    float out = coeffs->bq_b1 * memory[0] + coeffs->bq_b2 * memory[1] + coeffs->bq_b0 * w;
    memory[1] = memory[0];
    memory[0] = w;
    return out;
}

static const float one_over_2Q_LP = 0.3f;
static const float one_over_2Q_HP = 1.0f;

unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames )
{
    unsigned retval=0,i;
    float targetLevel, levelIncr, currentLevel;
    switch (wave->wave_envelope_state)
    {
    case State_kAttack:
        targetLevel = noOfFrames * wave->wave_attack_incr + wave->wave_envelope_level;
        if (targetLevel >= wave->wave_envelope_max_level)
        {
            /* Go to decay state */
            wave->wave_envelope_state = State_kPreDecay;
            targetLevel = wave->wave_envelope_max_level;
        }
        /* Calculate lowpass biquad coeffs
        
            alpha = sin(w0)/(2*Q)

                b0 =  (1 - cos(w0))/2
                b1 =   1 - cos(w0)
                b2 =  (1 - cos(w0))/2
                a0 =   1 + alpha
                a1 =  -2*cos(w0)
                a2 =   1 - alpha

            w0 = [0 - pi[
        */
        {
            const float w0 = 3.141592654f * targetLevel / wave->wave_envelope_max_level;
            const float alpha = sinf(w0) * one_over_2Q_LP;
            const float cosw0 = cosf(w0);
            const float a0_fact = 1.0f / (1.0f + alpha);
            wave->wave_bq_coeffs.bq_b1 = (1.0f - cosw0) * a0_fact;
            wave->wave_bq_coeffs.bq_b0 = wave->wave_bq_coeffs.bq_b1 * 0.5f;
            wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
            wave->wave_bq_coeffs.bq_a2 = (1.0f - alpha) * a0_fact;
            wave->wave_bq_coeffs.bq_a1 = -2.0f * cosw0 * a0_fact;
        }
        break;

    case State_kPreDecay:
        /* Reset biquad state */
        memset(wave->wave_bq_left, 0, 2 * sizeof(float));
        memset(wave->wave_bq_right, 0, 2 * sizeof(float));
        wave->wave_envelope_state = State_kDecay;

        /* Deliberate fall-through */

    case State_kDecay:
        targetLevel = noOfFrames * wave->wave_decay_incr + wave->wave_envelope_level;
        if (targetLevel < 0.001f)
        {
            /* < -60 dB, we're done */
            wave->wave_envelope_state = 3;
            retval = 1;
        }
        /* Calculate highpass biquad coeffs

            alpha = sin(w0)/(2*Q)

            b0 =  (1 + cos(w0))/2
            b1 = -(1 + cos(w0))
            b2 =  (1 + cos(w0))/2
            a0 =   1 + alpha
            a1 =  -2*cos(w0)
            a2 =   1 - alpha

            w0 = [0 - pi/2[
        */
        {
            const float v = targetLevel / wave->wave_envelope_max_level;
            const float w0 = 1.5707963f * (1.0f - (v*v));
            const float alpha = sinf(w0) * one_over_2Q_HP;
            const float cosw0 = cosf(w0);
            const float a0_fact = 1.0f / (1.0f + alpha);
            wave->wave_bq_coeffs.bq_b1 = (float)(- (1 + cosw0) * a0_fact);
            wave->wave_bq_coeffs.bq_b0 = -wave->wave_bq_coeffs.bq_b1 * 0.5f;
            wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0;
            wave->wave_bq_coeffs.bq_a2 = (float)((1.0 - alpha) * a0_fact);
            wave->wave_bq_coeffs.bq_a1 = (float)(-2.0 * cosw0 * a0_fact);
        }
        break;

    default:
        break;
    }

    currentLevel = wave->wave_envelope_level;
    wave->wave_envelope_level = targetLevel;
    levelIncr = (targetLevel - currentLevel) / noOfFrames;

    for (i = 0; i < noOfFrames; ++i, currentLevel += levelIncr)
    {
        (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_left, (GeneratePinkNoise(&wave->wave_left))) * currentLevel * wave->wave_pan_left;
        (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_right, (GeneratePinkNoise(&wave->wave_right))) * currentLevel * wave->wave_pan_right;
    }

    return retval;
}


/*******************************************************************/

/* Context for callback routine. */
typedef struct
{
    OceanWave*          waves[16];      /* Maximum 16 waves */
    unsigned            noOfActiveWaves;

    /* Ring buffer (FIFO) for "communicating" towards audio callback */
    PaUtilRingBuffer    rBufToRT;
    void*               rBufToRTData;

    /* Ring buffer (FIFO) for "communicating" from audio callback */
    PaUtilRingBuffer    rBufFromRT;
    void*               rBufFromRTData;
}
paTestData;

/* This routine will be called by the PortAudio engine when audio is needed.
** It may called at interrupt level on some machines so don't do anything
** that could mess up the system like calling malloc() or free().
*/
static int patestCallback(const void*                     inputBuffer,
                          void*                           outputBuffer,
                          unsigned long                   framesPerBuffer,
			              const PaStreamCallbackTimeInfo* timeInfo,
			              PaStreamCallbackFlags           statusFlags,
                          void*                           userData)
{
    int i;
    paTestData *data = (paTestData*)userData;
    float *out = (float*)outputBuffer;
    (void) inputBuffer; /* Prevent "unused variable" warnings. */

    /* Reset output data first */
    memset(out, 0, framesPerBuffer * 2 * sizeof(float));

    for (i = 0; i < 16; ++i)
    {
        /* Consume the input queue */
        if (data->waves[i] == 0 && PaUtil_GetRingBufferReadAvailable(&data->rBufToRT))
        {
            OceanWave* ptr = 0;
            PaUtil_ReadRingBuffer(&data->rBufToRT, &ptr, 1);
            data->waves[i] = ptr;
        }

        if (data->waves[i] != 0)
        {
            if (GenerateWave(data->waves[i], out, framesPerBuffer))
            {
                /* If wave is "done", post it back to the main thread for deletion */
                PaUtil_WriteRingBuffer(&data->rBufFromRT, &data->waves[i], 1);
                data->waves[i] = 0;
            }
        }
    }
    return paContinue;
}

#define NEW_ROW_SIZE (12 + (8*rand())/RAND_MAX)

OceanWave* InitializeWave(double SR, float attackInSeconds, float maxLevel, float positionLeftRight)
{
    OceanWave* wave = NULL;
    static unsigned lastNoOfRows = 12;
    unsigned newNoOfRows;

    wave = (OceanWave*)PaUtil_AllocateMemory(sizeof(OceanWave));
    if (wave != NULL)
    {
        InitializePinkNoise(&wave->wave_left, lastNoOfRows);
        while ((newNoOfRows = NEW_ROW_SIZE) == lastNoOfRows);
        InitializePinkNoise(&wave->wave_right, newNoOfRows);
        lastNoOfRows = newNoOfRows;

        wave->wave_envelope_state = State_kAttack;
        wave->wave_envelope_level = 0.f;
        wave->wave_envelope_max_level = maxLevel;
        wave->wave_attack_incr = wave->wave_envelope_max_level / (attackInSeconds * (float)SR);
        wave->wave_decay_incr = - wave->wave_envelope_max_level / (attackInSeconds * 4 * (float)SR);

        wave->wave_pan_left = sqrtf(1.0f - positionLeftRight);
        wave->wave_pan_right = sqrtf(positionLeftRight);
    }
    return wave;
}

static float GenerateFloatRandom(float minValue, float maxValue)
{
    return minValue + ((maxValue - minValue) * rand()) / RAND_MAX;
}

/*******************************************************************/
int main(void);
int main(void)
{
    PaStream*           stream;
    PaError             err;
    paTestData          data = {0};
    PaStreamParameters  outputParameters;
    double              tstamp;
    double              tstart;
    double              tdelta = 0;
    static const double SR  = 44100.0;
    static const int    FPB = 128; /* Frames per buffer: 2.9 ms buffers. */

    /* Initialize communication buffers (queues) */
    data.rBufToRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
    if (data.rBufToRTData == NULL)
    {
        return 1;
    }
    PaUtil_InitializeRingBuffer(&data.rBufToRT, sizeof(OceanWave*), 256, data.rBufToRTData);

    data.rBufFromRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256);
    if (data.rBufFromRTData == NULL)
    {
        return 1;
    }
    PaUtil_InitializeRingBuffer(&data.rBufFromRT, sizeof(OceanWave*), 256, data.rBufFromRTData);

    err = Pa_Initialize();
    if( err != paNoError ) goto error;

    /* Open a stereo PortAudio stream so we can hear the result. */
    outputParameters.device = Pa_GetDefaultOutputDevice(); /* Take the default output device. */
    if (outputParameters.device == paNoDevice) {
      fprintf(stderr,"Error: No default output device.\n");
      goto error;
    }
    outputParameters.channelCount = 2;                     /* Stereo output, most likely supported. */
    outputParameters.hostApiSpecificStreamInfo = NULL;
    outputParameters.sampleFormat = paFloat32;             /* 32 bit floating point output. */
    outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency;
    err = Pa_OpenStream(&stream,
                        NULL,                              /* No input. */
                        &outputParameters,
                        SR,                                /* Sample rate. */
                        FPB,                               /* Frames per buffer. */
                        paDitherOff,                       /* Clip but don't dither */
                        patestCallback,
                        &data);
    if( err != paNoError ) goto error;

    err = Pa_StartStream( stream );
    if( err != paNoError ) goto error;

    printf("Stereo \"ocean waves\" for one minute...\n");

    tstart = PaUtil_GetTime();
    tstamp = tstart;
    srand( (unsigned)time(NULL) );

    while( ( err = Pa_IsStreamActive( stream ) ) == 1 )
    {
        const double tcurrent = PaUtil_GetTime();

        /* Delete "waves" that the callback is finished with */
        while (PaUtil_GetRingBufferReadAvailable(&data.rBufFromRT) > 0)
        {
            OceanWave* ptr = 0;
            PaUtil_ReadRingBuffer(&data.rBufFromRT, &ptr, 1);
            if (ptr != 0)
            {
                printf("Wave is deleted...\n");
                PaUtil_FreeMemory(ptr);
                --data.noOfActiveWaves;
            }
        }

        if (tcurrent - tstart < 60.0) /* Only start new "waves" during one minute */
        {
            if (tcurrent >= tstamp)
            {
                double tdelta = GenerateFloatRandom(1.0f, 4.0f);
                tstamp += tdelta;

                if (data.noOfActiveWaves<16)
                {
                    const float attackTime = GenerateFloatRandom(2.0f, 6.0f);
                    const float level = GenerateFloatRandom(0.1f, 1.0f);
                    const float pos = GenerateFloatRandom(0.0f, 1.0f);
                    OceanWave* p = InitializeWave(SR, attackTime, level, pos);
                    if (p != NULL)
                    {
                        /* Post wave to audio callback */
                        PaUtil_WriteRingBuffer(&data.rBufToRT, &p, 1);
                        ++data.noOfActiveWaves;

                        printf("Starting wave at level = %.2f, attack = %.2lf, pos = %.2lf\n", level, attackTime, pos);
                    }
                }
            }
        }
        else
        {
            if (data.noOfActiveWaves == 0)
            {
                printf("All waves finished!\n");
                break;
            }
        }

        Pa_Sleep(100);
    }
    if( err < 0 ) goto error;

    err = Pa_CloseStream( stream );
    if( err != paNoError ) goto error;

    if (data.rBufToRTData)
    {
        PaUtil_FreeMemory(data.rBufToRTData);
    }
    if (data.rBufFromRTData)
    {
        PaUtil_FreeMemory(data.rBufFromRTData);
    }
    
    Pa_Sleep(1000);

    Pa_Terminate();
    return 0;

error:
    Pa_Terminate();
    fprintf( stderr, "An error occured while using the portaudio stream\n" );
    fprintf( stderr, "Error number: %d\n", err );
    fprintf( stderr, "Error message: %s\n", Pa_GetErrorText( err ) );
    return 0;
}