1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
|
/* -*- mode: C++; tab-width: 4 -*- */
/* ================================================================================== */
/* Copyright (c) 1998-1999 3Com Corporation or its subsidiaries. All rights reserved. */
/* ================================================================================== */
#include "EmulatorCommon.h"
#include "Profiling.h"
#include "CPU_REG.h" // IsSystemTrap
#include "Miscellaneous.h" // StMemory, FindFunctionName, GetTrapName
#include "Platform.h" // Platform::Debugger
#include "Strings.r.h" // kStr_ values
/*
P.S. Here are some notes on interpreting the output
Times are all theoretically in milliseconds. Internally, POSEr is faking
a clock by counting reads, writes, wait states, and extra cycles for many
68K instructions. I'd estimate this count is correct to within a few percent,
and I have a list of known incorrect instructions I'm working on getting more
accurate. (Notable issues: JSR, RTS, RTE fall one read short each, for 6 or 8
cycles each depending on ROM or RAM, ANDSR, ORSR, and other "SR" instructions
are 2 reads short, for 12 or 16 cycles.)
Anyway, the cycle counts are stored as 64-bit integers in the profiler output,
and a multiplier is applied to scale the result to milliseconds based on a
58.xxx MHz clock. So a number like 5661.518 is a bit over 5 1/2 seconds, and
1.255 is a bit over 1 1/4 milliseconds. (In theory at least, I'm still
validating the data, if you see anything that strikes you as inaccurate, please
tell me about it!)
The function names mostly come from the ROM.Map file, but there are a few
special cases:
"functions" is a top-level cover that includes all regular function calls
"interrupts" is a top-level node that includes all interrupts (except the ones
POSEr has patched out)
"partial" means profiling was started in the middle of the function, so we
don't have the address of the fn and consequently don't have a name.
"overflow" is a lump of all functions called when we're out of space to track
more unique calls, where unique means called from the same path to
the "root" of the call tree.
"unknown" is a function for which no name could be found. Many functions in
.prc files show up as unknown.
The rest of the names all take the form "Name $address.x" where:
Name- is the name of the function or trap.
address-For regular functions, the 4 byte address.
-For traps, the 2 byte trap number.
-For interrupts, the 1 byte interrupt number.
x- debugging info, where the name comes from.
't' = trap names table built in POSEr,
'm'= the ROM.Map file
'd'=the symbol built into the ROM by the compiler
'i'=invalid address flag (usually due to POSERs implementation internals)
The other columns are defined as follows. Note MINIMUM and STACK SPACE are
NOT what you expect:
count - the number of times the functions was called.
only - time spent in the function, not counting child fns or interrupts.
% (by only) - percentage of total profiling time spent in this fn/call.
+Children - time spent in the function including child fns, but not
including interrupts
% (by +Children) - percentage of total profiling time spent in the fn and its kids
Average - "Only" divided by "count"
Maximum - the maximum time (in msec) spent in any 1 call to the fn.
Minimum - NOT WHAT YOU EXPECT. This is actually the time spent handling
interrupts for calls to that particlular instance of that fn.
Due to the way the "Summary" is calculated, this number won't
be correct in summary views.
Stack space - NOT WHAT YOU EXPECT. More of a trap/interrupt counter plus
some debug info. The number in that field for a particular
fn entry is incremented by 1 every time the fn is interrupted,
by 10000 if the fn call is made by a faked up RTS instead of
a JSR, and 1000 if the function was executing when an RTS
occurred that didn't return to it's called but instead returned
to some fn farther up the call chain. Again, this will only
be useful in the detail view, since the summary does some
computation on it.
Please respond to palm-dev-forum@ls.palm.com
To: palm-dev-forum@ls.palm.com
Subject: Re: RE: Emulator profiling...
At 7:14 PM -0700 10/6/98, Kenichi Okuyama wrote:
>I'll be pleased if you can give us any good information source
>beside source code itself, about POSE's profiler. Like, byte
>alignment size( is it 4? or 8 on Mac... I don't know about Mac
>really ), etc. Those informations, we can't get them from source
>code itself, and since I don't have Mac, I can't get them from
>project file for Mac, you see.
I don't think alignment matters much at all for virtually all of the structs.
The only ones where alignment will be important are the ones written to be
compatible with the MW profiler. These are ProfFileHeader and FnCallRecord
in Profiling.cpp. All the elements of those structs are either 4 or 8
bytes wide.
The MW profiler file consists of 3 sections. The first section is a
header, incompletely described by ProfFileHeader in Profiling.cpp.
The second section is a big tree of function call blocks. Each block is
described by the FnCallRecord struct. The tree is maintained via two
pointers in each record, called 'kid' and 'sib', which contain array
indexes. kid points to the first child of a given node, sib points to a
given node's next sibling. So to enumerate all the kids for a given node
you go to that node's kid, then follow the sib links from kid to kid until
you get a sib value of -1, which is the end of the sibling list. The other
fields in the function call record are pretty much self explanitory. (Note
however that the POSER profiler uses cyclesMax and stackUsed for other
things! They track trap dispatcher overhead right now.)
The 3rd section contains the names of all the functions, stored in a string
table. The string table is just a concatenation of all the name strings,
seperated only by the terminating nulls, with each unique name appearing
only once. The FnCallRecord's address field stores the offset of the start
of that function's name into the string table. (It's sort of a normalized
char *) That structure is a byte stream, there is no other alignment. The
function FindOrAddString is used to build the string table when dumping a
profiler file.
>Also, if possible, what kind of information is kept in that profile
>file, like function name, call count, running time, etc.
FnCallRecord should pretty much explain that. The only other interesting
thing to note is that the data isn't stored on a function by function basis.
Rather, it's stored by unique occurrences of a function. That is, say
function A calls function C, and function B also calls function C. There
will be two nodes in the function tree (two records) for function C, one
storing information from calls from function A, and a second storing
information from calls from function B. Recursive functions will create a
whole bunch of nodes, one for each level of recursion. ..but that's
necessary to properly create the call tree that the MW profiler displays.
...the MW profiler's "summary" mode does a lot of work! It has to go
through the whole tree and collect the data for each node that represents a
given function call and summarize it. That was one of the reasons I chose
to try to output MW profiler files!
I think if I had to make a windows profiler, I'd start with the ProfileDump
function in Profiling.cpp. You could change that routine to take the data
collected and output whatever you wanted.
You might look at ProfilePrint, which does a text dump of the gathered
profile data. RecursivePrintBlock will give you a good start on something
that translates the MW function records into some other data format.
--Bob
Please respond to palm-dev-forum@3com.com
To: palm-dev-forum@ls.3com.com
Subject: POSER Profiling under Windows
The #1 item on my to-do list post-Palm Computing Platform Developer
Conference was to update the Windows emulator to enable profiling. I'm
happy to say this is done (more or less), and a build is now available.
It's 2.1d23, and you can download it at
http://palm.3com.com/devzone/pose/seed.html
There still is no nice viewer for Windows. Instead, the emulator now
outputs both the MW Profiler format file and a tab delimited text file
containing the same information. Until a nice viewer exists for Windows,
you can open the text file in a text editor or spreadsheet app and get at
the profiling info.
For convenience, the text file output is pre-sorted by the "time in
function and all it's children" category.
For inconvenience, all levels of function calls (down into the kernel and
beyond) are displayed. Typically this is WAY too much information. The
only advice I can offer is a strategy for getting rid of it:
The first column contains the nesting level of the function -- it defines
the "tree". So if there's too much detail inside a particular function
call, you can note the number in the fist column, then search downward for
an equal number. The intervening lines (often very many) are sub-calls
from that first call, and you might want to simply delete them to make the
output more readable.
That is, say you get something like this:
1 foo ...
2 bar ...
3 baz ...
4 cj_fdkjqwfd ...
5 kp_sdlsvbnf ...
4 cj_aslkqwsd ...
5 lkaflds ...
6 cj_sdldsfdl ...
7 tm_eouas ...
6 cj_werofs ...
3 qux ...
If you're only interested in where function foo is spending it's time, you
can note that baz and qux are both sub-calls, and everything in-between
them are sub-sub-calls that baz made. Anyway, just deleting the lines with
nesting level 4 and above will considerably clean up the output and make it
easier to read.
--Bob
*/
// sizes of buffers to use
#define AVGNAMELENGTH 64
#define MAXROMFNS 3000
#define MAXNESTEDINTERRUPTS 8
// shared values exported via Profiling.h
SInt64 gClockCycles;
SInt64 gReadCycles;
SInt64 gWriteCycles;
long gReadMismatch; // debug
long gWriteMismatch; // debug
int gProfilingEnabled;
int gProfilingOn;
int gProfilingCounted;
int gProfilingDetailed;
uaecptr gProfilingEnterAddress;
uaecptr gProfilingReturnAddress;
uaecptr gProfilingExitAddress;
// Internal stuff
SInt64 gCyclesCounted; // cycles actually counted against functions
static int gMaxCalls;
static int gMaxDepth;
#define PROFILE_ONE_FN 0 // set to 1 to profile on a particular fn enter/exit
#define FNTOPROFILE sysTrapDmGetNextDatabaseByTypeCreator
#define NOADDRESS 0x00000000
#define ROOTADDRESS 0xFFFFFFFF
#define INTERRUPTADDRESS 0xFFFFFFFE
#define OVERFLOWADDRESS 0xFFFFFFFD
#define NORECORD -1
struct ProfFileHeader {
SInt32 proF; // 'proF'
SInt32 version; // 0x00040002
SInt32 fnCount; // number of unique fns (records) in log
SInt32 four; // 0x00000004
SInt32 zeros1; // 0x00000000
SInt32 zeros2; // 0x00000000
SInt32 unknown; // 0xB141A3A9 - maybe timebase data
SInt32 recordsSize; // size of header plus size of data (or offset to string table)
SInt32 stringTableSize;// size of string table in bytes
SInt64 overhead; // count for overhead
SInt32 rootRec; // record number of root of tree
SInt32 sixtyfour1; // 0x00000064
SInt32 sixtyfour2; // 0x00000064
SInt32 countsPerTime; // translation between counts at nodes and integers in column
// 0x00FD0000 = 16.580608 MHz with display in seconds
// 0x000040C4 = 16.580608 MHz with display in milliseconds
SInt32 oddstuff0; // seems like it can be 0, set by profiler tool itself
SInt32 oddstuff1; // seems like it can be 0, set by profiler tool itself
SInt32 oddstuff2; // seems like it can be 0, set by profiler tool itself
SInt32 oddstuff3; // seems like it can be 0, set by profiler tool itself
SInt32 oddstuff4; // seems like it can be 0, set by profiler tool itself
Byte unused[0x200 - 0x50]; // for 0x200 bytes
};
struct FnCallRecord {
SInt32 address; // address of fn, also offset from start of name table to this fn's name
SInt32 entries; // times function was called
SInt64 cyclesSelf; // profiling data for this fn alone
SInt64 cyclesPlusKids; // profiling data for this fn with kids
SInt64 cyclesMin; // profiling data for this fn alone, min
SInt64 cyclesMax; // profiling data for this fn alone, max
SInt32 sib; // record number of sib, -1 for no sibs
SInt32 kid; // record number of kid, -1 for no kids
SInt32 stackUsed; // bytes of stack used by fn, we use it to count unmatched returns
};
struct FnStackRecord {
int call; // fn data block for fn being called
uaecptr returnAddress; // return address aka (SP) to calling fn
SInt64 cyclesAtEntry; // cycle count when fn was called
SInt64 cyclesAtInterrupt; // cycle count when fn was interrupted
SInt64 cyclesInKids; // number of cycles spent in subroutines and interrupts
SInt64 cyclesInInterrupts; // number of cycles spent in interrupts for this fn alone
SInt64 cyclesInInterruptsInKids; // how much of cyclesInKids is interrupts
uae_s16 opcode; // cached opcode for instruction profiling
};
// call tree
static FnCallRecord* calls = NULL;
static int firstFreeCallRec;
static int rootRecord;
static int exceptionRecord;
static int overflowRecord;
// call stack (interrupts and calls in interrupts on same stack)
static FnStackRecord* callStack = NULL;
static int callSP;
// interrupt tracking, interrupt stack is callSP when interrupt happened
static int interruptDepth;
static int interruptStack[MAXNESTEDINTERRUPTS];
static SInt64 interruptCount;
static SInt64 interruptCycles;
static unsigned long missedCount; // debug
static unsigned long extraPopCount; // debug
static int interruptMismatch; // debug
// for detailed (instruction level) profiling
static int inInstruction;
static FILE *profilingDetailLog;
static SInt64 clockCyclesLast;
static SInt64 clockCyclesSaved;
static SInt64 readCyclesSaved;
static SInt64 writeCyclesSaved;
uaecptr detailStartAddr;
uaecptr detailStopAddr;
//---------------------------------------------------------------------
// Get function name out of debug symbols compiler produces
//---------------------------------------------------------------------
struct ROMMapRecord {
uaecptr address;
char * name;
};
ROMMapRecord *ROMMap = NULL;
int ROMMapEnd = 0;
// DOLATER
// We need to handle shared library routines, which are called by
// trap dispatcher. They start at 0x0000A800
#define kOpcode_ADD 0x0697 // ADD.L X, (A7)
#define kOpcode_LINK 0x4E50
#define kOpcode_RTE 0x4E73
#define kOpcode_RTD 0x4E74
#define kOpcode_RTS 0x4E75
#define kOpcode_JMP 0x4ED0
#define FIRSTTRAP 0x0000A000UL
#define LASTTRAP (FIRSTTRAP + 0x0001000)
#define LAST_EXCEPTION 0x100
#define IS_TRAP_16(addr) (((addr) >= FIRSTTRAP) && ((addr) < LASTTRAP))
#define IS_TRAP_32(addr) IS_TRAP_16((addr) >> 16)
#define PACK_TRAP_INFO(trap, extra) ((((uae_u32) (trap)) << 16) | ((uae_u16) (extra)))
#define TRAP_NUM(field) (((field) >> 16) & 0x0FFFF)
#define TRAP_EXTRA(field) ((field) & 0x0FFFF)
// Llamagraphics, Inc: Rather than passing in a buffer of unknown length,
// GetRoutineName now returns a statically allocated string that's good
// until the next time GetRoutineName is called. This eliminates the need
// for dynamically allocating space in the heap for this string, and makes
// it easier to ensure that the buffer isn't overrun.
static char * GetRoutineName (uaecptr addr)
{
static char buffer[256];
uaecptr startAddr;
// if it's a dummy function header, say so
if (addr == NOADDRESS)
{
strcpy(buffer, Platform::GetString (kStr_ProfPartial).c_str ());
return buffer;
}
if (addr == ROOTADDRESS)
{
strcpy(buffer, Platform::GetString (kStr_ProfFunctions).c_str ());
return buffer;
}
if (addr == INTERRUPTADDRESS)
{
strcpy(buffer, Platform::GetString (kStr_ProfInterrupts).c_str ());
return buffer;
}
if (addr == OVERFLOWADDRESS)
{
strcpy(buffer, Platform::GetString (kStr_ProfOverflow).c_str ());
return buffer;
}
if (addr < LAST_EXCEPTION)
{
sprintf(buffer, Platform::GetString (kStr_ProfInterruptX).c_str (), addr);
return buffer;
}
// check for traps
if (IS_TRAP_32(addr))
{
sprintf(buffer, Platform::GetString (kStr_ProfTrapNameAddress).c_str (),
::GetTrapName (TRAP_NUM(addr), TRAP_EXTRA(addr), true), TRAP_NUM(addr));
return buffer;
}
// look up address in the ROM map
if (ROMMap != NULL)
{
int i = 0;
// DOLATER use binary search, since ROMMap is sorted by address
while (i < ROMMapEnd && addr > ROMMap[i].address)
i++;
if (i < ROMMapEnd && addr == ROMMap[i].address)
{
sprintf(buffer, Platform::GetString (kStr_ProfROMNameAddress).c_str (), ROMMap[i].name, addr);
return buffer;
}
}
// if not in the map, try to get the symbol out of the ROM itself
// Llamagraphics, Inc: Pass in the size of the buffer to FindFunctionName,
// which prevents it from truncating the name at 31 characters.
::FindFunctionName (addr, buffer, &startAddr, NULL, sizeof(buffer));
if (strlen (buffer) == 0)
{
// no symbol in ROM or invalid address, just output address
sprintf (buffer, Platform::GetString (kStr_ProfUnknownName).c_str (), addr);
}
else
{
if (startAddr != addr)
sprintf(&buffer[strlen(buffer)], "+$%04lX", addr-startAddr);
// hack the address onto the end
sprintf(&buffer[strlen(buffer)], " [$%08lX]", addr);
}
return buffer;
}
//---------------------------------------------------------------------
// Converting addresses to human readable names
//---------------------------------------------------------------------
char *stringTable = NULL;
int stringTableEnd;
int stringTableCapacity;
static void InitStringTable()
{
// allocate the string table
// Llamagraphics, Inc: Since the stringTable can now grow dynamically,
// the initial value for stringTableCapacity isn't so crucial as it once
// was. AVGNAMELENGTH * MAXUNIQUEFNS may be overkill.
stringTableCapacity = AVGNAMELENGTH * MAXUNIQUEFNS;
stringTable = (char*) Platform::AllocateMemory (stringTableCapacity);
stringTableEnd = 0;
}
static void CleanupStringTable()
{
Platform::DisposeMemory (stringTable);
}
static int FindOrAddString(char *newS)
{
int offset = 0;
while (offset < stringTableEnd)
if (strcmp(&stringTable[offset], newS) == 0)
return offset;
else
offset += strlen(&stringTable[offset])+1;
// Llamagraphics, Inc: Added code to automatically increase the size of
// the stringTable as needed. This is part of the solution for handling
// long mangled C++ function names.
stringTableEnd = offset + strlen(newS) + 1;
if (stringTableEnd > stringTableCapacity) {
// We need to increase the capacity of the stringTable. Note that
// even though we've modified stringTableEnd, offset contains the
// previous value of stringTableEnd.
stringTableCapacity = (stringTableEnd * 8) / 5; // a moderately bigger number
char * newTable = (char*) Platform::AllocateMemory(stringTableCapacity);
memcpy(newTable, stringTable, offset);
Platform::DisposeMemory(stringTable);
stringTable = newTable;
}
strcpy(&stringTable[offset], newS);
return (offset);
}
// Llamagraphics, Inc: This routine used to be recursive, but we rewrote
// it to be linear because the recursive version was blowing the stack
// on the Macintosh.
static void LinearAddressToStrings()
{
for (int i = 0; i < firstFreeCallRec; ++i) {
// Not all addresses are valid. For instance, I've seen the value
// 0x011dec94 in calls[x].address, which is either the address of the
// TRAP $C instruction used to regain control in ATrap::DoCall, or
// December 11, 1994.
// ...but that's OK, GetRoutineName handles that (calls valid_address)
calls[i].address = FindOrAddString(GetRoutineName(calls[i].address));
}
}
#if 0
// Llamagraphics, Inc: We wrote this routine to sanity check the calls
// tree and make sure that the kid and sib links were consistant. It
// didn't turn up any problems, but might come in handy in the future.
// It did help us understand that recursing on siblings is a bad idea...
static void CheckTree()
{
assert(firstFreeCallRec <= gMaxCalls);
bool * isUsed = new bool[gMaxCalls];
int * pending = new int[gMaxDepth];
assert(isUsed != 0);
assert(pending != 0);
for (int i = 0; i < gMaxCalls; ++i) isUsed[i] = false;
for (int i = 0; i < gMaxDepth; ++i) pending[i] = NORECORD;
int depth = 0;
int maxDepth = 0;
int recordsProcessed = 0;
// To start with, just the root node is pending
pending[depth++] = rootRecord;
while (depth > 0) {
// Pop off the current record
int current = pending[--depth];
// If the current record is NORECORD, then we're done
// at this level and can continue popping to the next level.
if (current == NORECORD) continue;
assert((current >= 0) && (current < firstFreeCallRec));
++recordsProcessed;
// Make sure that this is the first time that we've processed
// this record.
assert(! isUsed[current]);
isUsed[current] = true;
// If we have a sibling, push it on the stack.
if (calls[current].sib != NORECORD) {
assert(depth < gMaxDepth);
pending[depth++] = calls[current].sib;
if (depth > maxDepth) maxDepth = depth;
}
// If we have a kid, push it on the stack.
if (calls[current].kid != NORECORD) {
assert(depth < gMaxDepth);
pending[depth++] = calls[current].kid;
if (depth > maxDepth) maxDepth = depth;
}
}
// Make sure that all of the records were used.
for (int i = 0; i < firstFreeCallRec; ++i) {
assert(isUsed[i]);
}
assert(recordsProcessed == firstFreeCallRec);
delete [] isUsed;
delete [] pending;
}
#endif
//---------------------------------------------------------------------
// debugging routine to print profiling stuff to a log file
//---------------------------------------------------------------------
#if defined (_WINDOWS)
#define LINE_FORMAT_SPEC "%d\t%d\t%d\t%s\t%ld\t%I64d\t%.3f\t%.1f\t%I64d\t%.3f\t%.1f\t%.3f\t%.3f\t%.3f\t%ld\n"
#else // MAC
#define LINE_FORMAT_SPEC "%d\t%d\t%d\t%s\t%ld\t%lld\t%.3f\t%.1f\t%lld\t%.3f\t%.1f\t%.3f\t%.3f\t%.3f\t%ld\n"
#endif
#define MAXNESTING 80
static void RecursivePrintBlock(FILE *resultsLog, int i, int depth, int parent)
{
while (i != NORECORD)
{
// Use statics in this function to reduce stack frame size
// from 272 bytes to 160 bytes. Printing each number by itself
// instead of with one long formatting string further reduces
// the stack frame size to 96 bytes.
//
// And, yes, these efforts are important. We were easly using
// 190K of stack space, blowing the space allocated on the Mac.
static double cyclesSelfms;
static double cyclesSelfpct;
static double cyclesKidsms;
static double cyclesKidspct;
cyclesSelfms = calls[i].cyclesSelf / kCyclesPerMilliSecond;
cyclesSelfpct = calls[i].cyclesSelf / gCyclesCounted * 100;
cyclesKidsms = calls[i].cyclesPlusKids / kCyclesPerMilliSecond;
cyclesKidspct = calls[i].cyclesPlusKids / gCyclesCounted * 100;
static double temp1;
static double temp2;
static double temp3;
temp1 = (double)calls[i].cyclesSelf / (double)calls[i].entries / (double)kCyclesPerMilliSecond;
temp2 = (double)calls[i].cyclesMax / (double)kCyclesPerMilliSecond;
temp3 = (double)calls[i].cyclesMin / (double)kCyclesPerMilliSecond;
fprintf(resultsLog, "%d", i);
fprintf(resultsLog, "\t%d", parent);
fprintf(resultsLog, "\t%d", depth);
fprintf(resultsLog, "\t%s", GetRoutineName (calls[i].address));
fprintf(resultsLog, "\t%ld", calls[i].entries);
fprintf(resultsLog, "\t%lld", calls[i].cyclesSelf);
fprintf(resultsLog, "\t%.3f", cyclesSelfms);
fprintf(resultsLog, "\t%.1f", cyclesSelfpct);
fprintf(resultsLog, "\t%lld", calls[i].cyclesPlusKids);
fprintf(resultsLog, "\t%.3f", cyclesKidsms);
fprintf(resultsLog, "\t%.1f", cyclesKidspct);
fprintf(resultsLog, "\t%.3f", temp1);
fprintf(resultsLog, "\t%.3f", temp2);
fprintf(resultsLog, "\t%.3f", temp3);
fprintf(resultsLog, "\t%ld\n", calls[i].stackUsed);
RecursivePrintBlock(resultsLog, calls[i].kid, depth+1, i);
// Was:
//
// RecursivePrintBlock(resultsLog, calls[i].sib, depth, parent);
//
// Recoded to manually force tail-recursion. Doing this bumped
// the stack frame size back up to 112 bytes, but hopefully this is
// greatly offset by not recursing as much.
i = calls[i].sib;
}
}
static void PrintBlock(FILE *resultsLog, int i)
{
RecursivePrintBlock(resultsLog, i, 0, NORECORD);
}
static void RecursiveSortKids(int parent)
{
if (parent != NORECORD)
{
int i = calls[parent].kid;
int iprev = NORECORD;
while (i != NORECORD)
{
// sort the kids of each node
RecursiveSortKids(i);
// start at root, examine each node until insertion point is found
int j = calls[parent].kid;
int jprev = NORECORD;
while (j != NORECORD && j != i
&& calls[i].cyclesPlusKids < calls[j].cyclesPlusKids)
{
jprev = j;
j = calls[j].sib;
}
// assuming inserting eariler in list, update pointers.
if (j != NORECORD)
if (j == i)
// no need to insert, since it's in the right place, so just go on
iprev = i;
else
{
// moving i, so first remove i from list
if (iprev == NORECORD) Platform::Debugger(); // should never happen, i replacing itself!
calls[iprev].sib = calls[i].sib;
// insert i before j
if (jprev == NORECORD)
{
calls[i].sib = calls[parent].kid;
calls[parent].kid = i;
}
else
{
calls[i].sib = calls[jprev].sib;
calls[jprev].sib = i;
}
}
// go on to next node
i = calls[iprev].sib;
}
}
}
//---------------------------------------------------------------------
// Call stack and call record management routines
//---------------------------------------------------------------------
static SInt64 PopCallStackFn(Boolean normalReturn)
{
assert (callSP >= 0);
// cyclesThisCall includes all interrupts and kids
SInt64 cyclesThisCall = S64Subtract(gClockCycles, callStack[callSP].cyclesAtEntry);
// cyclesInMe does not include interrupts or kids
SInt64 cyclesInMe = S64Subtract(cyclesThisCall, callStack[callSP].cyclesInKids);
SInt64 totalCyclesInInterrupts = S64Add(callStack[callSP].cyclesInInterrupts,
callStack[callSP].cyclesInInterruptsInKids);
int exiter = callStack[callSP].call;
calls[exiter].entries++;
calls[exiter].cyclesPlusKids = S64Add(calls[exiter].cyclesPlusKids, cyclesThisCall);
calls[exiter].cyclesPlusKids = S64Subtract(calls[exiter].cyclesPlusKids,
totalCyclesInInterrupts);
calls[exiter].cyclesSelf = S64Add(calls[exiter].cyclesSelf, cyclesInMe);
// using cyclesMin to count time in interrupt handlers
calls[exiter].cyclesMin = S64Add(calls[exiter].cyclesMin,
callStack[callSP].cyclesInInterrupts);
if (S64Compare(cyclesInMe, calls[exiter].cyclesMax) > 0)
calls[exiter].cyclesMax = cyclesInMe;
if (!normalReturn)
calls[exiter].stackUsed += 10000;
--callSP;
if (callSP >= 0) {
callStack[callSP].cyclesInKids = S64Add(callStack[callSP].cyclesInKids,
cyclesThisCall);
callStack[callSP].cyclesInInterruptsInKids =
S64Add(callStack[callSP].cyclesInInterruptsInKids,
totalCyclesInInterrupts);
}
return cyclesThisCall;
}
static int FindOrAddCall(int head, uaecptr address)
{
int newR;
int current;
int prev;
if (head == overflowRecord)
return overflowRecord;
if (head == NORECORD)
newR = firstFreeCallRec++; // head is empty, just create record
else
{
// look for existing
current = head;
while (current != NORECORD && calls[current].address != address)
{
// Because of the "head == NORECORD" test above, we are guaranteed
// to enter the loop body at least once, thus initializing "prev".
// This is important, because we use "prev" later.
prev = current;
current = calls[current].sib;
}
if (current != NORECORD) // also returns if current == overflowRecord, good!
return current;
newR = firstFreeCallRec++;
if (newR >= gMaxCalls)
return overflowRecord;
calls[prev].sib = newR;
}
if (newR >= gMaxCalls)
return overflowRecord;
assert (address == ROOTADDRESS ||
address == INTERRUPTADDRESS ||
address == OVERFLOWADDRESS ||
IS_TRAP_32(address) ||
valid_address (address, 2));
// fill record
calls[newR].sib = NORECORD;
calls[newR].kid = NORECORD;
calls[newR].address = address;
calls[newR].entries = 0;
calls[newR].cyclesSelf = S64Set(0);
calls[newR].cyclesPlusKids = S64Set(0);
calls[newR].cyclesMin = S64Set(0); // 0xFFFFFFFFFFFFFFFF;
calls[newR].cyclesMax = S64Set(0);
calls[newR].stackUsed = 0;
return newR;
}
//---------------------------------------------------------------------
// Main entry points, exported via Profiling.h
//---------------------------------------------------------------------
void ProfileInit(int maxCalls, int maxDepth)
{
// initialize globals
gClockCycles = S64Set(0);
gReadCycles = S64Set(0);
gWriteCycles = S64Set(0);
gReadMismatch = 0; // debug
gWriteMismatch = 0; // debug
gProfilingEnabled = true;
gProfilingOn = false;
gProfilingCounted = false;
gProfilingDetailed = false;
interruptCycles = S64Set(0);
interruptCount = 0;
gMaxCalls = maxCalls;
gMaxDepth = maxDepth;
missedCount = 0; // debug
extraPopCount = 0; // debug
interruptMismatch = 0; // debug
// initialize call tree
// Llamagraphics, Inc: Dispose of old calls rather than calling Debugger()
Platform::DisposeMemory (calls);
calls = (FnCallRecord*) Platform::AllocateMemory (sizeof (FnCallRecord) * gMaxCalls);
firstFreeCallRec = 0;
exceptionRecord = FindOrAddCall(NORECORD, INTERRUPTADDRESS);
overflowRecord = FindOrAddCall(NORECORD, OVERFLOWADDRESS);
// initialize call stack
// Llamagraphics, Inc: Dispose of old callStack rather than calling Debugger()
Platform::DisposeMemory (callStack);
callStack = (FnStackRecord*) Platform::AllocateMemory (sizeof (FnStackRecord) * gMaxDepth);
callSP = 0;
callStack[callSP].call = rootRecord = FindOrAddCall(NORECORD, NOADDRESS);
callStack[callSP].returnAddress = NOADDRESS;
callStack[callSP].cyclesAtEntry = gClockCycles;
callStack[callSP].cyclesInKids = S64Set(0);
callStack[callSP].cyclesInInterrupts = S64Set(0);
callStack[callSP].cyclesInInterruptsInKids = S64Set(0);
profilingDetailLog = NULL;
// for testing
// ProfileDetailFn(0x10CA68A0, true);
}
void ProfileCleanup()
{
if (gProfilingOn)
return; // DOLATER throw some error
gProfilingEnabled = false;
Platform::DisposeMemory (calls);
Platform::DisposeMemory (callStack);
if (profilingDetailLog != NULL)
fclose(profilingDetailLog);
}
void ProfileStart()
{
if (!gProfilingEnabled)
Platform::Debugger(); // should be an exception
if (gProfilingOn)
return;
if (callSP != 0) // debug check
Platform::Debugger();
gProfilingOn = true;
interruptDepth = -1;
inInstruction = false;
}
void ProfileStop()
{
if (!gProfilingEnabled)
Platform::Debugger();
if (!gProfilingOn)
return;
// pop any functions on stack, updating cycles on the way up
// stop when callSP == 0, which matches fake "root" fn
while (interruptDepth >= 0) // means we stopped profiling in an interrupt...
ProfileInterruptExit(NOADDRESS);
while (callSP > 0)
PopCallStackFn(false); // doesn't gather stats on the way out
gProfilingOn = false;
}
void ProfilePrint(const char* fileName)
{
if (!gProfilingEnabled)
Platform::Debugger();
if (gProfilingOn)
return;
gCyclesCounted = S64Add(
S64Add(calls[rootRecord].cyclesPlusKids,
calls[exceptionRecord].cyclesPlusKids),
calls[overflowRecord].cyclesPlusKids);
if (fileName == NULL)
fileName = DEFAULT_RESULTS_TEXT_FILENAME;
FILE *resultsLog = fopen(fileName, "w");
fputs("index\tparent\tdepth\tfunction name\tcount\tonly cycles\tonly msec\tonly %\tplus kids cycles\tplus kids msec\tplus kids %\taverage msec\tmax msec\tinterrupt msec\tinterrupt count/debug\n", resultsLog);
RecursiveSortKids(rootRecord);
RecursiveSortKids(exceptionRecord);
PrintBlock(resultsLog, rootRecord);
// in case ProfilePrint was called on its own, dump out exception and overflow nodes
// (these will be sibs of rootRecord if called from ProfileDump)
if (calls[rootRecord].sib == NORECORD)
PrintBlock(resultsLog, exceptionRecord);
if (calls[exceptionRecord].sib == NORECORD)
PrintBlock(resultsLog, overflowRecord);
#if defined (_WINDOWS)
fprintf(resultsLog, "\tcycles counted:\t\t%I64d\n", gCyclesCounted);
fprintf(resultsLog, "\ttotal clocks:\t\t%I64d\n", gClockCycles);
fprintf(resultsLog, "\ttotal reads:\t\t%I64d\n", gReadCycles);
fprintf(resultsLog, "\ttotal writes:\t\t%I64d\n", gWriteCycles);
#else // MAC
fprintf(resultsLog, "\tcycles counted:\t\t%lld\n", gCyclesCounted);
fprintf(resultsLog, "\ttotal clocks:\t\t%lld\n", gClockCycles);
fprintf(resultsLog, "\ttotal reads:\t\t%lld\n", gReadCycles);
fprintf(resultsLog, "\ttotal writes:\t\t%lld\n", gWriteCycles);
#endif
fprintf(resultsLog, "\treturn level mis-matches:\t\t%ld\n", extraPopCount);
fprintf(resultsLog, "\tnon-matching returns:\t\t%ld\n", missedCount);
fclose(resultsLog);
}
void ProfileDump(const char* fileName)
{
if (!gProfilingEnabled)
Platform::Debugger();
if (gProfilingOn)
return;
if (fileName == NULL)
fileName = DEFAULT_RESULTS_FILENAME;
// read in the ROM.map file
if (ROMMap != NULL)
Platform::Debugger();
ROMMap = (ROMMapRecord*) Platform::AllocateMemory (sizeof (ROMMapRecord) * MAXROMFNS);
ROMMapEnd = 0;
StMemory names (36 * MAXROMFNS);
char *namesEnd = names.Get();
char name[36];
uaecptr addr;
FILE *ROMMapFile = fopen("ROM.map", "r");
if (ROMMapFile)
{
while (!feof(ROMMapFile) && (ROMMapEnd < MAXROMFNS))
{
if (fscanf(ROMMapFile, " %35s $%lx \n", name, &addr) != 2)
Platform::Debugger();
ROMMap[ROMMapEnd].address = addr;
ROMMap[ROMMapEnd++].name = namesEnd;
strcpy(namesEnd, name);
namesEnd += strlen(name) + 1;
}
fclose(ROMMapFile);
}
// fix up trees a bit (sum cycle counts for root nodes)
calls[rootRecord].address = ROOTADDRESS;
int current = calls[rootRecord].kid;
while (current != NORECORD)
{
calls[rootRecord].cyclesPlusKids =
S64Add(calls[rootRecord].cyclesPlusKids, calls[current].cyclesPlusKids);
current = calls[current].sib;
}
current = calls[exceptionRecord].kid;
while (current != NORECORD)
{
calls[exceptionRecord].cyclesPlusKids =
S64Add(calls[exceptionRecord].cyclesPlusKids, calls[current].cyclesPlusKids);
current = calls[current].sib;
}
// compute total cycles counted
gCyclesCounted = S64Add(
S64Add(calls[rootRecord].cyclesPlusKids,
calls[exceptionRecord].cyclesPlusKids),
calls[overflowRecord].cyclesPlusKids);
// debugging
if (calls[rootRecord].sib != NORECORD
|| calls[exceptionRecord].sib != NORECORD
|| calls[overflowRecord].sib != NORECORD
|| calls[overflowRecord].kid != NORECORD)
Platform::Debugger();
// fix up top-level records
calls[rootRecord].sib = exceptionRecord;
calls[exceptionRecord].sib = overflowRecord;
// free pointer could be really large...
if (firstFreeCallRec > gMaxCalls)
firstFreeCallRec = gMaxCalls;
// dump out a plain text file too
char textName[256];
strcpy (textName, fileName);
if (::EndsWith (textName, ".mwp"))
textName[strlen (textName) - 4] = 0;
strcat (textName, ".txt");
ProfilePrint(textName);
// munge all the addresses to produce the string table
InitStringTable();
// Llamagraphics, Inc: Replaced RecursiveAddressToString() with
// LinearAddressToString(), since the recursive version was blowing
// the stack on the Macintosh.
LinearAddressToStrings();
// do a little cleanup now
Platform::DisposeMemory (ROMMap);
// create the header blocks
ProfFileHeader header;
header.proF = 'proF';
header.version = 0x00040002;
header.fnCount = firstFreeCallRec;
header.four = 0x00000004;
header.zeros1 = 0x00000000;
header.zeros2 = 0x00000000;
header.unknown = 0x00000000;
header.recordsSize = sizeof(ProfFileHeader) + firstFreeCallRec * sizeof(FnCallRecord);
header.stringTableSize = stringTableEnd;
header.overhead = S64Subtract(gClockCycles, gCyclesCounted);
header.rootRec = rootRecord;
header.sixtyfour1 = 0x00000064;
header.sixtyfour2 = 0x00000064;
header.countsPerTime = kCyclesPerSecond/100; // times will be shown in milliseconds
header.oddstuff0 = 0x00000000;
header.oddstuff1 = 0x00000000;
header.oddstuff2 = 0x00000000;
header.oddstuff3 = 0x00000000;
header.oddstuff4 = 0x00000000;
for (int i=0; i < sizeof(header.unused); i++)
header.unused[i] = 0x00;
FileReference fr(fileName);
FileHandle outputFile (fr,
kCreateAlways | kOpenReadWrite,
'proF', 'proF');
outputFile.Write (sizeof(ProfFileHeader), &header);
outputFile.Write (sizeof(FnCallRecord) * firstFreeCallRec, calls);
outputFile.Write (stringTableEnd, stringTable);
// cleanup
CleanupStringTable();
// Llamagraphics, Inc: After dumping, the calls[i].address slots are
// offsets into the string table rather than machine addresses. This
// means that the profiling information can't continue to be used, so
// let's dispose of it now and remove the danger of it being misinterpreted.
ProfileCleanup();
}
void ProfileFnEnter(uaecptr destAddress, uaecptr returnAddress)
{
if (!gProfilingOn)
#if PROFILE_ONE_FN
if (address == FNTOPROFILE)
ProfileStart();
else
return;
#else
return;
#endif
if (inInstruction)
ProfileInstructionExit(NOADDRESS);
// If destAddress contains a trapword, save the trapword along
// with some other information that might be useful (like the
// library reference number if we're calling a library function).
if (IS_TRAP_16(destAddress))
{
if (IsSystemTrap (destAddress))
{
uae_u16 trapWord = 0xA000 | SysTrapIndex (destAddress);
if (trapWord == sysTrapIntlDispatch ||
trapWord == sysTrapOmDispatch ||
trapWord == sysTrapTsmDispatch ||
trapWord == sysTrapFlpDispatch ||
trapWord == sysTrapFlpEmDispatch ||
trapWord == sysTrapSerialDispatch)
{
destAddress = PACK_TRAP_INFO(destAddress, m68k_dreg (regs, 2));
}
else
{
destAddress = PACK_TRAP_INFO(destAddress, 0);
}
}
else
{
destAddress = PACK_TRAP_INFO(destAddress, get_word (m68k_areg (regs, 7)));
}
}
// get the caller fn
int caller = callStack[callSP].call;
// debug check, watch for overflow
if (callSP >= gMaxDepth-1)
Platform::Debugger();
// push record for callee
callStack[++callSP].returnAddress = returnAddress;
callStack[callSP].cyclesAtEntry = gClockCycles;
callStack[callSP].cyclesInKids = S64Set(0);
callStack[callSP].cyclesInInterrupts = S64Set(0);
callStack[callSP].cyclesInInterruptsInKids = S64Set(0);
callStack[callSP].call = FindOrAddCall(calls[caller].kid, destAddress);
// check if this was first kid and update parent
if (calls[caller].kid == NORECORD && callStack[callSP].call != overflowRecord)
calls[caller].kid = callStack[callSP].call;
}
void ProfileFnExit(uaecptr returnAddress, uaecptr oldAddress)
{
if (!gProfilingOn)
return;
if (inInstruction)
ProfileInstructionExit(NOADDRESS);
// sanity check, try to make sure the returns match the calls we think they do
if (callStack[callSP].returnAddress != NOADDRESS
&& callStack[callSP].returnAddress != returnAddress)
{
int trySP = callSP;
while (--trySP >= 0)
if (returnAddress == callStack[trySP].returnAddress)
break;
if (trySP >= 0)
// found a match on stack, so pop up to it
while (callSP > trySP)
{
extraPopCount++; // debug, count extra pops
PopCallStackFn(false);
}
else if (callSP != 0)
// could be a longjump disguised as an RTS, so push instead
{
ProfileFnEnter(returnAddress, oldAddress);
calls[callStack[callSP].call].stackUsed += 100000; // mark it as wierdly called
missedCount++; // debug, count unmatched returns
return;
}
}
PopCallStackFn(true);
#if PROFILE_ONE_FN
// if we started on entering a function, stop when it exits
if (callSP == 0)
ProfileStop();
#else
// or an alternate thing to do if we pop too far, re-root and continue
if (callSP < 0)
{
// uh oh, we must have exited the fn we started profiling in!
// make a new root to handle the new enclosing function
rootRecord = FindOrAddCall(NORECORD, NOADDRESS);
if (rootRecord == overflowRecord)
Platform::Debugger();
calls[rootRecord].kid = callStack[0].call; // old root
callStack[0].returnAddress = NOADDRESS;
callStack[0].call = rootRecord;
// callStack[0].cyclesAtEntry = ... don't change, it's the time profiling was started
callStack[0].cyclesInKids = S64Subtract(gClockCycles, callStack[0].cyclesAtEntry);
callStack[0].cyclesInInterrupts = S64Set(0);
callStack[0].cyclesInInterruptsInKids = S64Set(0);
callSP = 0;
}
#endif
}
void ProfileInterruptEnter(uae_s32 iException, uaecptr returnAddress)
{
if (!gProfilingOn)
return;
if (inInstruction)
ProfileInstructionExit(NOADDRESS);
// get the caller fn
callStack[callSP].cyclesAtInterrupt = gClockCycles;
interruptCount++;
interruptStack[++interruptDepth] = callSP; // mark the fn that was interrupted
// debug check, watch for overflow
if (callSP >= gMaxDepth-1)
Platform::Debugger();
// push record for callee
callStack[++callSP].returnAddress = returnAddress;
callStack[callSP].cyclesAtEntry = gClockCycles;
callStack[callSP].cyclesInKids = S64Set(0);
callStack[callSP].cyclesInInterrupts = S64Set(0);
callStack[callSP].cyclesInInterruptsInKids = S64Set(0);
callStack[callSP].call = FindOrAddCall(calls[exceptionRecord].kid, iException);
// check if this was first exception and update exceptionRecord
if (calls[exceptionRecord].kid == NORECORD && callStack[callSP].call != overflowRecord)
calls[exceptionRecord].kid = callStack[callSP].call;
}
void ProfileInterruptExit(uaecptr returnAddress)
{
uae_s32 needsFakeCall = NOADDRESS;
if (!gProfilingOn)
return;
if (inInstruction)
ProfileInstructionExit(NOADDRESS);
if (interruptDepth < 0) // means we started profiling in an interrupt... oh well
return;
if (callSP <= interruptStack[interruptDepth])
Platform::Debugger();
while (callSP > interruptStack[interruptDepth]+1)
{
// mismatched jsr/rts set inside interrupt handler, deal with it
extraPopCount++; // debug, count extra pops
PopCallStackFn(false);
}
// sanity check, try to make sure the returns match the calls we think they do
if (callStack[callSP].returnAddress != returnAddress)
// trap handler is sneaky, and pushes stuff on the stack so that the RTE jumps
// to the implementation of the trap. Detect this by noticing the RTE address didn't
// match and generating a fake function call.
if (calls[callStack[callSP].call].address == 0x2F)
needsFakeCall = callStack[callSP].returnAddress + 2; // +2 to skip trap word
else
interruptMismatch++;
// pop the interrupt block
SInt64 cyclesThisCall = PopCallStackFn(true);
assert(callSP >= 0);
interruptDepth--;
interruptCycles = S64Add(interruptCycles, cyclesThisCall);
// store interrupt time so we can subtract it later from the cycles for the function itself
callStack[callSP].cyclesInInterrupts = S64Add(callStack[callSP].cyclesInInterrupts,
cyclesThisCall);
calls[callStack[callSP].call].stackUsed += 1; // count other interrupts this way
// trap interrupt
if (needsFakeCall != NOADDRESS)
ProfileFnEnter(returnAddress, needsFakeCall);
}
void ProfileDetailFn(uaecptr addr, int logInstructions)
{
::FindFunctionName(addr, NULL, &detailStartAddr, &detailStopAddr, 0);
gProfilingDetailed = true;
if (logInstructions && profilingDetailLog == NULL)
{
profilingDetailLog = fopen("ProfilingDetail.txt", "w");
fputs("PC\topcode\tinstruction:\tclocks\treads\twrites\ttotal:\tclocks\treads\twrites\t", profilingDetailLog);
}
}
void ProfileInstructionEnter(uaecptr instructionAddress)
{
if (!gProfilingOn)
return;
if (instructionAddress < detailStartAddr ||
instructionAddress > detailStopAddr)
return;
// get the caller fn
int caller = callStack[callSP].call;
// debug check, watch for overflow
if (callSP >= gMaxDepth-1)
Platform::Debugger();
// push record for instruction
callStack[++callSP].returnAddress = instructionAddress;
callStack[callSP].cyclesAtEntry = gClockCycles;
callStack[callSP].cyclesInKids = S64Set(0);
callStack[callSP].cyclesInInterrupts = S64Set(0);
callStack[callSP].cyclesInInterruptsInKids = S64Set(0);
callStack[callSP].call = FindOrAddCall(calls[caller].kid, instructionAddress);
callStack[callSP].opcode = get_iword(0);
// check if this was first kid and update parent
if (calls[caller].kid == NORECORD && callStack[callSP].call != overflowRecord)
calls[caller].kid = callStack[callSP].call;
clockCyclesSaved = gClockCycles;
readCyclesSaved = gReadCycles;
writeCyclesSaved = gWriteCycles;
inInstruction = true;
}
void ProfileInstructionExit(uaecptr instructionAddress)
{
if (!gProfilingOn)
return;
if (!inInstruction)
return;
if (instructionAddress == NOADDRESS)
instructionAddress = callStack[callSP].returnAddress;
// sanity check, try to make sure the returns match the calls we think they do
if (callStack[callSP].returnAddress != instructionAddress)
Platform::Debugger();
if (profilingDetailLog != NULL)
{
char hackBuffer[512];
sprintf(hackBuffer,
"$%08lX\t$%04lX\t \t%lld\t%lld\t%lld\t \t%lld\t%lld\t%lld\n",
instructionAddress,
callStack[callSP].opcode,
S64Subtract(gClockCycles, clockCyclesSaved),
S64Subtract(gReadCycles, readCyclesSaved),
S64Subtract(gWriteCycles, writeCyclesSaved),
gClockCycles,
gReadCycles,
gWriteCycles);
if (S64Compare(clockCyclesLast, clockCyclesSaved) != 0)
fputs("\n", profilingDetailLog);
if (instructionAddress == detailStartAddr)
fputs("\t-->\tJSR\n", profilingDetailLog);
fputs(hackBuffer, profilingDetailLog);
if (callStack[callSP].opcode == kOpcode_RTS) // RTS
fputs("\t<--\tRTS\n", profilingDetailLog);
clockCyclesLast = gClockCycles;
}
PopCallStackFn(true);
inInstruction = false;
}
void ProfileTest()
{
ProfileInit(15,5);
ProfileStart();
ProfileIncrementClock(110 * kCyclesPerSecond);
ProfileInterruptExit(0x55555555);
ProfileIncrementClock(110 * kCyclesPerSecond);
ProfileFnEnter(0xAAAAAAAA, 0); // new
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnEnter(0xBBBBBBBB, 0); // new kid
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0xCCCCCCCC, 0); // new kid
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0xDDDDDDDD, 0); // new sib at end
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0xCCCCCCCC, 0); // same kid
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnEnter(0xBBBBBBBB, 0); // same kid
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0xCCCCCCCC, 0); // new kid
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnEnter(0xDDDDDDDD, 0); // new sib at end
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0xCCCCCCCC, 0); // new kid
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(120 * kCyclesPerSecond);
ProfileInterruptEnter(0x11111111, 0); // interrupt
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnEnter(0x22222222, 0); // new kid
ProfileIncrementClock(1 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileInterruptExit(0);
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnEnter(0xCCCCCCCC, 0); // new kid in middle
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnEnter(0xAAAAAAAA, 0); // new kid at beginning
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
ProfileFnExit(0, 0);
ProfileIncrementClock(100 * kCyclesPerSecond);
// ProfileFnExit(0);
// ProfileIncrementClock(100 * kCyclesPerSecond);
// ProfileFnExit(0);
ProfileInterruptEnter(0x99999999, 0); // interrupt
ProfileIncrementClock(10 * kCyclesPerSecond);
ProfileStop();
ProfileDump(NULL);
ProfileCleanup();
}
|