1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
|
/* -*- mode: C++; tab-width: 4 -*- */
/* ===================================================================== *\
Copyright (c) 2000-2001 Palm, Inc. or its subsidiaries.
All rights reserved.
This file is part of the Palm OS Emulator.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
\* ===================================================================== */
#include "EmCommon.h"
#include "EmRegs328.h"
#include "EmRegs328Prv.h"
#include "Byteswapping.h" // Canonical
#include "EmHAL.h" // EmHAL
#include "EmMemory.h" // gMemAccessFlags, EmMem_memcpy
#include "EmPixMap.h" // SetSize, SetRowBytes, etc.
#include "EmScreen.h" // EmScreenUpdateInfo
#include "EmSession.h" // GetDevice
#include "Hordes.h" // Hordes::IsOn
#include "Logging.h" // LogAppendMsg
#include "Miscellaneous.h" // GetHostTime
#include "PreferenceMgr.h" // Preference
#include "SessionFile.h" // WriteHwrDBallType, etc.
#include "UAE.h" // regs, SPCFLAG_INT
#include "PalmPack.h"
#define NON_PORTABLE
#include "HwrMiscFlags.h" // hwrMiscFlagID1
// Some platform-specific -- yet fairly portable -- defines.
#define hwrTD1PortENoBacklight 0x80 // (H) high if no backlight present
#undef NON_PORTABLE
#include "PalmPackPop.h"
/*
This file controls the emulation of the Dragonball registers.
As a subclass of EmRegs, EmRegs328 registers with EmBankRegs
for control of the memory range 0xFFFFF000 to 0xFFFFFB14. If
an application accesses a memory location in that range,
EmBankRegs calls on of the Set/GetLong/Word/Byte methods of
this class.
EmRegs328 provides handlers when particular memory addresses
are accessed. For instance, if the UART TX register is written
to, EmRegs328 will arrange for any data byte to be sent out
the host computer's serial port. If the UART RX register is
read, EmRegs328 will respond with any byte in the buffer that
contains data received from the host computer's serial port.
Not all Dragonball registers are emulated the same way as on
an actual device. Some registers control hardware that exists
on the device only, there being no analog on the host computer.
For those registers, simple handlers are installed that write
the specified value to the register and return that value later
when the register is read.
Other registers require extensive support. The UART registers
are examples of that, as the above text indicates.
In the Palm OS source code, the Dragonball registers are
represented by th HwrM68328Type data type. We use this same type
in Poser to provide the "backing memory" for the registers. That
is, if some emulated code writes to a Dragonball register, we
store that value in a variable of type HwrM68328Type.
(Note that there's really no guarantee that the compiler used to
build Poser will lay out the fields of HwrM68328Type in the same
way expected by the Palm OS. Poser has a mechanism for creating
buffers with fields that have the same layout as Palm OS-defined
structs (see EmPalmStructs.h). However, using that mechanism in
this module is deadly to performance. In particular, the Cycle
method is called after every opcode is executed, and making that
method go through the indirection and byteswapping required by
the EmPalmStructs facilities totally kills performance. In one
test, a Gremlins run increased from 1m 24s to 1m 56s, or by about
30%. With targetted caching of the fields used in Cycle, we can
regain most of that performance. However, not all the performance
is regained, and the resulting code is not very maintainable.)
*/
#define hwr328chipID328 0x33
#define hwr328maskID1H58B 0x30
static const uint32 ADDRESS_MASK = 0x0000FFF0;
#define PRINTF if (1) ; else LogAppendMsg
// Values used to initialize the DragonBall registers.
const HwrM68328Type kInitial68328RegisterValues =
{
0x0C, // Byte scr; // $000: System Control Register
{ 0 }, // Byte ___filler0[0x004-0x001];
// The following ID stuff is not present on earlier chips (before ??)
hwr328chipID328, // Byte chipID; // $004: Chip ID Register
hwr328maskID1H58B, // Byte maskID; // $005: Mask ID Register
0x00, // Word swID; // $006: Software ID Register
{ 0 }, // Byte ___filler1[0x100-0x008];
0x0000, // Word csAGroupBase; // $100: Chip Select Group A Base Register
0x0000, // Word csBGroupBase; // $102: Chip Select Group B Base Register
0x0000, // Word csCGroupBase; // $104: Chip Select Group C Base Register
0x0000, // Word csDGroupBase; // $106: Chip Select Group D Base Register
0x0000, // Word csAGroupMask; // $108: Chip Select Group A Mask Register
0x0000, // Word csBGroupMask; // $10A: Chip Select Group B Mask Register
0x0000, // Word csCGroupMask; // $10C: Chip Select Group C Mask Register
0x0000, // Word csDGroupMask; // $10E: Chip Select Group D Mask Register
0x00010006, // DWord csASelect0; // $110: Group A Chip Select 0 Register
0x00010006, // DWord csASelect1; // $114: Group A Chip Select 1 Register
0x00010006, // DWord csASelect2; // $118: Group A Chip Select 2 Register
0x00010006, // DWord csASelect3; // $11C: Group A Chip Select 3 Register
0x00000000, // DWord csBSelect0; // $120: Group B Chip Select 0 Register
0x00000000, // DWord csBSelect1; // $124: Group B Chip Select 1 Register
0x00000000, // DWord csBSelect2; // $128: Group B Chip Select 2 Register
0x00000000, // DWord csBSelect3; // $12C: Group B Chip Select 3 Register
0x00010006, // DWord csCSelect0; // $130: Group C Chip Select 0 Register
0x00010006, // DWord csCSelect1; // $134: Group C Chip Select 1 Register
0x00010006, // DWord csCSelect2; // $138: Group C Chip Select 2 Register
0x00010006, // DWord csCSelect3; // $13C: Group C Chip Select 3 Register
0x00000000, // DWord csDSelect0; // $140: Group D Chip Select 0 Register
0x00000000, // DWord csDSelect1; // $144: Group D Chip Select 1 Register
0x00000000, // DWord csDSelect2; // $148: Group D Chip Select 2 Register
0x00000000, // DWord csDSelect3; // $14C: Group D Chip Select 3 Register
0x0000, // Word csDebug; // $150: Chip Select debug register
{ 0 }, // Byte ___filler2[0x200-0x152];
0x2400, // Word pllControl; // $200: PLL Control Register
0x0123, // Word pllFreqSel; // $202: PLL Frequency Select Register
0x0000, // Word pllTest; // $204: PLL Test Register
{ 0 }, // Byte __filler44;
0x1F, // Byte pwrControl; // $207: Power Control Register
{ 0 }, // Byte ___filler3[0x300-0x208];
0x00, // Byte intVector; // $300: Interrupt Vector Register
{ 0 }, // Byte ___filler4;
0x0000, // Word intControl; // $302: Interrupt Control Register
0x00FF, // Word intMaskHi; // $304: Interrupt Mask Register/HIGH word
0xFFFF, // Word intMaskLo; // $306: Interrupt Mask Register/LOW word
0x00FF, // Word intWakeupEnHi; // $308: Interrupt Wakeup Enable Register
0xFFFF, // Word intWakeupEnLo; // $30A: Interrupt Wakeup Enable Register
0x0000, // Word intStatusHi; // $30C: Interrupt Status Register/HIGH word
0x0000, // Word intStatusLo; // $30E: Interrupt Status Register/LOW word
0x0000, // Word intPendingHi; // $310: Interrupt Pending Register
0x0000, // Word intPendingLo; // $312: Interrupt Pending Register
{ 0 }, // Byte ___filler4a[0x400-0x314];
0x00, // Byte portADir; // $400: Port A Direction Register
0x00, // Byte portAData; // $401: Port A Data Register
{ 0 }, // Byte ___filler5;
0x00, // Byte portASelect; // $403: Port A Select Register
{ 0 }, // Byte ___filler6[4];
0x00, // Byte portBDir; // $408: Port B Direction Register
0x00, // Byte portBData; // $409: Port B Data Register
{ 0 }, // Byte ___filler7;
0x00, // Byte portBSelect; // $40B: Port B Select Register
{ 0 }, // Byte ___filler8[4];
0x00, // Byte portCDir; // $410: Port C Direction Register
0x00, // Byte portCData; // $411: Port C Data Register
{ 0 }, // Byte ___filler9;
0x00, // Byte portCSelect; // $413: Port C Select Register
{ 0 }, // Byte ___filler10[4];
0x00, // Byte portDDir; // $418: Port D Direction Register
0x00, // Byte portDData; // $419: Port D Data Register
0xFF, // Byte portDPullupEn; // $41A: Port D Pull-up Enable
{ 0 }, // Byte ___filler11;
0x00, // Byte portDPolarity; // $41C: Port D Polarity Register
0x00, // Byte portDIntReqEn; // $41D: Port D Interrupt Request Enable
{ 0 }, // Byte ___filler12;
0x00, // Byte portDIntEdge; // $41F: Port D IRQ Edge Register
0x00, // Byte portEDir; // $420: Port E Direction Register
0x00, // Byte portEData; // $421: Port E Data Register
0x80, // Byte portEPullupEn; // $422: Port E Pull-up Enable
0x80, // Byte portESelect; // $423: Port E Select Register
{ 0 }, // Byte ___filler14[4];
0x00, // Byte portFDir; // $428: Port F Direction Register
0x00, // Byte portFData; // $429: Port F Data Register
0xFF, // Byte portFPullupEn; // $42A: Port F Pull-up Enable
0xFF, // Byte portFSelect; // $42B: Port F Select Register
{ 0 }, // Byte ___filler16[4];
0x00, // Byte portGDir; // $430: Port G Direction Register
0x00, // Byte portGData; // $431: Port G Data Register
0xFF, // Byte portGPullupEn; // $432: Port G Pull-up Enable
0xFF, // Byte portGSelect; // $433: Port G Select Register
{ 0 }, // Byte ___filler18[4];
0x00, // Byte portJDir; // $438: Port J Direction Register
0x00, // Byte portJData; // $439: Port J Data Register
{ 0 }, // Byte ___filler19;
0x00, // Byte portJSelect; // $43B: Port J Select Register
{ 0 }, // Byte ___filler19a[4];
0x00, // Byte portKDir; // $440: Port K Direction Register
0x00, // Byte portKData; // $441: Port K Data Register
0x3F, // Byte portKPullupEn; // $442: Port K Pull-up Enable
0x3F, // Byte portKSelect; // $443: Port K Select Register
{ 0 }, // Byte ___filler21[4];
0x00, // Byte portMDir; // $448: Port M Direction Register
0x00, // Byte portMData; // $449: Port M Data Register
0xFF, // Byte portMPullupEn; // $44A: Port M Pull-up Enable Register
0x02, // Byte portMSelect; // $44B: Port M Select Register
{ 0 }, // Byte ___filler22[4];
{ 0 }, // Byte ___filler23[0x500-0x450];
0x0000, // Word pwmControl; // $500: PWM Control Register
0x0000, // Word pwmPeriod; // $502: PWM Period Register
0x0000, // Word pwmWidth; // $504: PWM Width Register
0x0000, // Word pwmCounter; // $506: PWM Counter
{ 0 }, // Byte ___filler24[0x600-0x508];
0x0000, // Word tmr1Control; // $600: Timer 1 Control Register
0x0000, // Word tmr1Prescaler; // $602: Timer 1 Prescaler Register
0xFFFF, // Word tmr1Compare; // $604: Timer 1 Compare Register
0x0000, // Word tmr1Capture; // $606: Timer 1 Capture Register
0x0000, // Word tmr1Counter; // $608: Timer 1 Counter Register
0x0000, // Word tmr1Status; // $60A: Timer 1 Status Register
0x0000, // Word tmr2Control; // $60C: Timer 2 Control Register
0x0000, // Word tmr2Prescaler; // $60E: Timer 2 Prescaler Register
0xFFFF, // Word tmr2Compare; // $610: Timer 2 Compare Register
0x0000, // Word tmr2Capture; // $612: Timer 2 Capture Register
0x0000, // Word tmr2Counter; // $614: Timer 2 Counter Register
0x0000, // Word tmr2Status; // $616: Timer 2 Status Register
0x0000, // Word wdControl; // $618: Watchdog Control Register
0x0000, // Word wdReference; // $61A: Watchdog Reference Register
0x0000, // Word wdCounter; // $61C: Watchdog Counter
{ 0 }, // Byte ___filler25[0x700-0x61E];
0x0000, // Word spiSlave; // $700: SPI Slave Register
{ 0 }, // Byte ___filler26[0x800-0x702];
0x0000, // Word spiMasterData; // $800: SPI Master Data Register
0x0000, // Word spiMasterControl; // $802: SPI Master Control Register
{ 0 }, // Byte ___filler27[0x900-0x804];
0x0000, // Word uControl; // $900: Uart Control Register
0x003F, // Word uBaud; // $902: Uart Baud Control Register
0x0000, // Word uReceive; // $904: Uart Receive Register
0x0000, // Word uTransmit; // $906: Uart Transmit Register
0x0000, // Word uMisc; // $908: Uart Miscellaneous Register
{ 0 }, // Byte ___filler28[0xA00-0x90A];
0x00000000, // DWord lcdStartAddr; // $A00: Screen Starting Address Register
{ 0 }, // Byte ___filler29;
0xFF, // Byte lcdPageWidth; // $A05: Virtual Page Width Register
{ 0 }, // Byte ___filler30[2];
0x03FF, // Word lcdScreenWidth; // $A08: Screen Width Register
0x01FF, // Word lcdScreenHeight; // $A0A: Screen Height Register
{ 0 }, // Byte ___filler31[0xA18-0xA0C];
0x0000, // Word lcdCursorXPos; // $A18: Cursor X Position
0x0000, // Word lcdCursorYPos; // $A1A: Cursor Y Position
0x0101, // Word lcdCursorWidthHeight; // $A1C: Cursor Width and Height
{ 0 }, // Byte ___filler32;
0x7F, // Byte lcdBlinkControl; // $A1F: Blink Control Register
0x00, // Byte lcdPanelControl; // $A20: Panel Interface Control Register
0x00, // Byte lcdPolarity; // $A21: Polarity Config Register
0x00, // Byte ___filler33;
0x00, // Byte lcdACDRate; // $A23: ACD (M) Rate Control Register
0x00, // Byte ___filler34;
0x00, // Byte lcdPixelClock; // $A25: Pixel Clock Divider Register
0x00, // Byte ___filler35;
0x40, // Byte lcdClockControl; // $A27: Clocking Control Register
0x00, // Byte ___filler36;
0x3E, // Byte lcdLastBufferAddr; // $A29: Last Buffer Address Register
0x00, // Byte ___filler37;
0x3F, // Byte lcdOctetTermCount; // $A2B: Octet Terminal Count Register
0x00, // Byte ___filler38;
0x00, // Byte lcdPanningOffset; // $A2D: Panning Offset Register
{ 0 }, // Byte ___filler39[3];
0xB9, // Byte lcdFrameRate; // $A31: Frame Rate Control Modulation Register
0x1073, // Word lcdGrayPalette; // $A32: Gray Palette Mapping Register
0x00, // Byte lcdReserved; // $A34: Reserved
{ 0 }, // Byte ___filler40[0xB00-0xA35];
0x00000000, // DWord rtcHourMinSec; // $B00: RTC Hours, Minutes, Seconds Register
0x00000000, // DWord rtcAlarm; // $B04: RTC Alarm Register
0x00000000, // DWord rtcReserved; // $B08: RTC Reserved
0x0000, // Word rtcControl; // $B0C: RTC Control Register
0x0000, // Word rtcIntStatus; // $B0E: RTC Interrupt Status Register
0x0000, // Word rtcIntEnable; // $B10: RTC Interrupt Enable Register
0x0000 // Word stopWatch; // $B12: Stopwatch Minutes
};
// ---------------------------------------------------------------------------
// EmRegs328::EmRegs328
// ---------------------------------------------------------------------------
EmRegs328::EmRegs328 (void) :
EmRegs (),
f68328Regs (),
fHotSyncButtonDown (0),
fTmr2CurrentMilliseconds (0),
fTmr2StartMilliseconds (0),
fKeyBits (0),
fLastTmr1Status (0),
fLastTmr2Status (0),
fPortDEdge (0),
fPortDDataCount (0),
fHour (0),
fMin (0),
fSec (0),
fTick (0),
fCycle (0),
fUART (NULL)
{
}
// ---------------------------------------------------------------------------
// EmRegs328::~EmRegs328
// ---------------------------------------------------------------------------
EmRegs328::~EmRegs328 (void)
{
}
// ---------------------------------------------------------------------------
// EmRegs328::Initialize
// ---------------------------------------------------------------------------
void EmRegs328::Initialize (void)
{
EmRegs::Initialize ();
fUART = new EmUARTDragonball (EmUARTDragonball::kUART_Dragonball, 0);
}
// ---------------------------------------------------------------------------
// EmRegs328::Reset
// ---------------------------------------------------------------------------
void EmRegs328::Reset (Bool hardwareReset)
{
EmRegs::Reset (hardwareReset);
if (hardwareReset)
{
f68328Regs = kInitial68328RegisterValues;
// Byteswap all the words in the Dragonball registers (if necessary).
Canonical (f68328Regs);
ByteswapWords (&f68328Regs, sizeof(f68328Regs));
fKeyBits = 0;
fLastTmr1Status = 0;
fLastTmr2Status = 0;
fPortDEdge = 0;
fPortDDataCount = 0;
// React to the new data in the UART registers.
Bool sendTxData = false;
EmRegs328::UARTStateChanged (sendTxData);
}
}
// ---------------------------------------------------------------------------
// EmRegs328::Save
// ---------------------------------------------------------------------------
void EmRegs328::Save (SessionFile& f)
{
EmRegs::Save (f);
StWordSwapper swapper1 (&f68328Regs, sizeof(f68328Regs));
f.WriteHwrDBallType (f68328Regs);
f.FixBug (SessionFile::kBugByteswappedStructs);
const long kCurrentVersion = 4;
Chunk chunk;
EmStreamChunk s (chunk);
s << kCurrentVersion;
s << fHotSyncButtonDown;
s << fLastTmr1Status;
s << fLastTmr2Status;
s << fPortDEdge;
// Added in version 2.
s << fKeyBits;
// Added in version 3.
s << fHour;
s << fMin;
s << fSec;
s << fTick;
s << fCycle;
// Added in version 4.
s << fPortDDataCount;
f.WriteDBallState (chunk);
}
// ---------------------------------------------------------------------------
// EmRegs328::Load
// ---------------------------------------------------------------------------
void EmRegs328::Load (SessionFile& f)
{
EmRegs::Load (f);
if (f.ReadHwrDBallType (f68328Regs))
{
// The Windows version of Poser 2.1d29 and earlier did not write
// out structs in the correct format. The fields of the struct
// were written out in Little-Endian format, not Big-Endian. To
// address this problem, the bug has been fixed, and a new field
// is added to the file format indicating that the bug has been
// fixed. With the new field (the "bug bit"), Poser can identify
// old files from new files and read them in accordingly.
//
// With the bug fixed, the .psf files should now be interchangeable
// across platforms (modulo other bugs...).
if (!f.IncludesBugFix (SessionFile::kBugByteswappedStructs))
{
Canonical (f68328Regs);
}
ByteswapWords (&f68328Regs, sizeof(f68328Regs));
// React to the new data in the UART registers.
Bool sendTxData = false;
EmRegs328::UARTStateChanged (sendTxData);
// Reset gMemAccessFlags.fProtect_SRAMSet
gMemAccessFlags.fProtect_SRAMSet = (READ_REGISTER (csASelect1) & 0x0008) != 0;
}
else
{
f.SetCanReload (false);
}
Chunk chunk;
if (f.ReadDBallState (chunk))
{
long version;
EmStreamChunk s (chunk);
s >> version;
if (version >= 1)
{
s >> fHotSyncButtonDown;
s >> fTmr2CurrentMilliseconds;
s >> fTmr2StartMilliseconds;
s >> fLastTmr1Status;
s >> fLastTmr2Status;
s >> fPortDEdge;
}
if (version >= 2)
{
s >> fKeyBits;
}
if (version >= 3)
{
s >> fHour;
s >> fMin;
s >> fSec;
s >> fTick;
s >> fCycle;
}
if (version >= 4)
{
s >> fPortDDataCount;
}
}
else
{
f.SetCanReload (false);
}
}
// ---------------------------------------------------------------------------
// EmRegs328::Dispose
// ---------------------------------------------------------------------------
void EmRegs328::Dispose (void)
{
delete fUART;
fUART = NULL;
EmRegs::Dispose ();
}
// ---------------------------------------------------------------------------
// EmRegs328::SetSubBankHandlers
// ---------------------------------------------------------------------------
void EmRegs328::SetSubBankHandlers (void)
{
// Install base handlers.
EmRegs::SetSubBankHandlers ();
// Now add standard/specialized handers for the defined registers.
INSTALL_HANDLER (StdRead, StdWrite, scr);
INSTALL_HANDLER (StdRead, NullWrite, chipID);
INSTALL_HANDLER (StdRead, NullWrite, maskID);
INSTALL_HANDLER (StdRead, NullWrite, swID);
INSTALL_HANDLER (StdRead, StdWrite, csAGroupBase);
INSTALL_HANDLER (StdRead, StdWrite, csBGroupBase);
INSTALL_HANDLER (StdRead, StdWrite, csCGroupBase);
INSTALL_HANDLER (StdRead, StdWrite, csDGroupBase);
INSTALL_HANDLER (StdRead, StdWrite, csAGroupMask);
INSTALL_HANDLER (StdRead, StdWrite, csBGroupMask);
INSTALL_HANDLER (StdRead, StdWrite, csCGroupMask);
INSTALL_HANDLER (StdRead, StdWrite, csDGroupMask);
INSTALL_HANDLER (StdRead, StdWrite, csASelect0);
INSTALL_HANDLER (StdRead, csASelect1Write, csASelect1);
INSTALL_HANDLER (StdRead, StdWrite, csASelect2);
INSTALL_HANDLER (StdRead, StdWrite, csASelect3);
INSTALL_HANDLER (StdRead, StdWrite, csBSelect0);
INSTALL_HANDLER (StdRead, StdWrite, csBSelect1);
INSTALL_HANDLER (StdRead, StdWrite, csBSelect2);
INSTALL_HANDLER (StdRead, StdWrite, csBSelect3);
INSTALL_HANDLER (StdRead, csCSelect0Write, csCSelect0);
INSTALL_HANDLER (StdRead, csCSelect1Write, csCSelect1);
INSTALL_HANDLER (StdRead, StdWrite, csCSelect2);
INSTALL_HANDLER (StdRead, StdWrite, csCSelect3);
INSTALL_HANDLER (StdRead, StdWrite, csDSelect0);
INSTALL_HANDLER (StdRead, StdWrite, csDSelect1);
INSTALL_HANDLER (StdRead, StdWrite, csDSelect2);
INSTALL_HANDLER (StdRead, StdWrite, csDSelect3);
INSTALL_HANDLER (StdRead, StdWrite, csDebug);
INSTALL_HANDLER (StdRead, StdWrite, pllControl);
INSTALL_HANDLER (pllFreqSelRead, StdWrite, pllFreqSel);
INSTALL_HANDLER (StdRead, StdWrite, pllTest);
INSTALL_HANDLER (StdRead, StdWrite, pwrControl);
INSTALL_HANDLER (StdRead, StdWrite, intVector);
INSTALL_HANDLER (StdRead, StdWrite, intControl);
INSTALL_HANDLER (StdRead, intMaskHiWrite, intMaskHi);
INSTALL_HANDLER (StdRead, intMaskLoWrite, intMaskLo);
INSTALL_HANDLER (StdRead, StdWrite, intWakeupEnHi);
INSTALL_HANDLER (StdRead, StdWrite, intWakeupEnLo);
INSTALL_HANDLER (StdRead, intStatusHiWrite, intStatusHi);
INSTALL_HANDLER (StdRead, NullWrite, intStatusLo);
INSTALL_HANDLER (StdRead, NullWrite, intPendingHi);
INSTALL_HANDLER (StdRead, NullWrite, intPendingLo);
INSTALL_HANDLER (StdRead, StdWrite, portADir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portAData);
INSTALL_HANDLER (StdRead, StdWrite, portASelect);
INSTALL_HANDLER (StdRead, StdWrite, portBDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portBData);
INSTALL_HANDLER (StdRead, StdWrite, portBSelect);
INSTALL_HANDLER (StdRead, StdWrite, portCDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portCData);
INSTALL_HANDLER (StdRead, StdWrite, portCSelect);
INSTALL_HANDLER (StdRead, StdWrite, portDDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portDData);
INSTALL_HANDLER (StdRead, StdWrite, portDPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portDPolarity);
INSTALL_HANDLER (StdRead, portDIntReqEnWrite, portDIntReqEn);
INSTALL_HANDLER (StdRead, StdWrite, portDIntEdge);
INSTALL_HANDLER (StdRead, StdWrite, portEDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portEData);
INSTALL_HANDLER (StdRead, StdWrite, portEPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portESelect);
INSTALL_HANDLER (StdRead, StdWrite, portFDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portFData);
INSTALL_HANDLER (StdRead, StdWrite, portFPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portFSelect);
INSTALL_HANDLER (StdRead, StdWrite, portGDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portGData);
INSTALL_HANDLER (StdRead, StdWrite, portGPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portGSelect);
INSTALL_HANDLER (StdRead, StdWrite, portJDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portJData);
INSTALL_HANDLER (StdRead, StdWrite, portJSelect);
INSTALL_HANDLER (StdRead, StdWrite, portKDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portKData);
INSTALL_HANDLER (StdRead, StdWrite, portKPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portKSelect);
INSTALL_HANDLER (StdRead, StdWrite, portMDir);
INSTALL_HANDLER (portXDataRead, portXDataWrite, portMData);
INSTALL_HANDLER (StdRead, StdWrite, portMPullupEn);
INSTALL_HANDLER (StdRead, StdWrite, portMSelect);
INSTALL_HANDLER (StdRead, StdWrite, pwmControl);
INSTALL_HANDLER (StdRead, StdWrite, pwmPeriod);
INSTALL_HANDLER (StdRead, StdWrite, pwmWidth);
INSTALL_HANDLER (StdRead, NullWrite, pwmCounter);
INSTALL_HANDLER (StdRead, StdWrite, tmr1Control);
INSTALL_HANDLER (StdRead, StdWrite, tmr1Prescaler);
INSTALL_HANDLER (StdRead, StdWrite, tmr1Compare);
INSTALL_HANDLER (StdRead, StdWrite, tmr1Capture);
INSTALL_HANDLER (StdRead, NullWrite, tmr1Counter);
INSTALL_HANDLER (tmr1StatusRead, tmr1StatusWrite, tmr1Status);
INSTALL_HANDLER (StdRead, StdWrite, tmr2Control);
INSTALL_HANDLER (StdRead, StdWrite, tmr2Prescaler);
INSTALL_HANDLER (StdRead, StdWrite, tmr2Compare);
INSTALL_HANDLER (StdRead, StdWrite, tmr2Capture);
INSTALL_HANDLER (StdRead, NullWrite, tmr2Counter);
INSTALL_HANDLER (tmr2StatusRead, tmr2StatusWrite, tmr2Status);
INSTALL_HANDLER (StdRead, StdWrite, wdControl);
INSTALL_HANDLER (StdRead, StdWrite, wdReference);
INSTALL_HANDLER (StdRead, wdCounterWrite, wdCounter);
INSTALL_HANDLER (StdRead, StdWrite, spiSlave);
INSTALL_HANDLER (StdRead, StdWrite, spiMasterData);
INSTALL_HANDLER (StdRead, spiMasterControlWrite, spiMasterControl);
INSTALL_HANDLER (uartRead, uartWrite, uControl);
INSTALL_HANDLER (uartRead, uartWrite, uBaud);
INSTALL_HANDLER (uartRead, uartWrite, uReceive);
INSTALL_HANDLER (uartRead, uartWrite, uTransmit);
INSTALL_HANDLER (uartRead, uartWrite, uMisc);
INSTALL_HANDLER (StdRead, lcdRegisterWrite, lcdStartAddr);
INSTALL_HANDLER (StdRead, lcdRegisterWrite, lcdPageWidth);
INSTALL_HANDLER (StdRead, lcdRegisterWrite, lcdScreenWidth);
INSTALL_HANDLER (StdRead, lcdRegisterWrite, lcdScreenHeight);
INSTALL_HANDLER (StdRead, StdWrite, lcdCursorXPos);
INSTALL_HANDLER (StdRead, StdWrite, lcdCursorYPos);
INSTALL_HANDLER (StdRead, StdWrite, lcdCursorWidthHeight);
INSTALL_HANDLER (StdRead, StdWrite, lcdBlinkControl);
INSTALL_HANDLER (StdRead, lcdRegisterWrite, lcdPanelControl);
INSTALL_HANDLER (StdRead, StdWrite, lcdPolarity);
INSTALL_HANDLER (StdRead, StdWrite, lcdACDRate);
INSTALL_HANDLER (StdRead, StdWrite, lcdPixelClock);
INSTALL_HANDLER (StdRead, StdWrite, lcdClockControl);
INSTALL_HANDLER (StdRead, StdWrite, lcdLastBufferAddr);
INSTALL_HANDLER (StdRead, StdWrite, lcdOctetTermCount);
INSTALL_HANDLER (StdRead, StdWrite, lcdPanningOffset);
INSTALL_HANDLER (StdRead, StdWrite, lcdFrameRate);
INSTALL_HANDLER (StdRead, StdWrite, lcdGrayPalette);
INSTALL_HANDLER (StdRead, StdWrite, lcdReserved);
INSTALL_HANDLER (rtcHourMinSecRead, StdWrite, rtcHourMinSec);
INSTALL_HANDLER (StdRead, StdWrite, rtcAlarm);
INSTALL_HANDLER (StdRead, StdWrite, rtcReserved);
INSTALL_HANDLER (StdRead, rtcControlWrite, rtcControl);
INSTALL_HANDLER (StdRead, rtcIntStatusWrite, rtcIntStatus);
INSTALL_HANDLER (StdRead, rtcIntEnableWrite, rtcIntEnable);
INSTALL_HANDLER (StdRead, StdWrite, stopWatch);
}
// ---------------------------------------------------------------------------
// EmRegs328::GetRealAddress
// ---------------------------------------------------------------------------
uint8* EmRegs328::GetRealAddress (emuptr address)
{
uint8* loc = ((uint8*) &f68328Regs) + (address - kMemoryStart);
return loc;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetAddressStart
// ---------------------------------------------------------------------------
emuptr EmRegs328::GetAddressStart (void)
{
return kMemoryStart;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetAddressRange
// ---------------------------------------------------------------------------
uint32 EmRegs328::GetAddressRange (void)
{
COMPILE_TIME_ASSERT (kMemorySize == 0x0B14);
return kMemorySize;
}
// ---------------------------------------------------------------------------
// EmRegs328::Cycle
// ---------------------------------------------------------------------------
// Handles periodic events that need to occur when the processor cycles (like
// updating timer registers). This function is called in two places from
// Emulator::Execute. Interestingly, the loop runs 3% FASTER if this function
// is in its own separate function instead of being inline.
#if 0
static int calibrated;
static int increment;
static int timesCalled;
static uint32 startingTime;
static void PrvCalibrate (uint16 tmrCompare)
{
// Calibrate the the value by which we increment the counter.
// The counter is set up so that it times out after 10 milliseconds
// so that it can increment the Palm OS's tick counter 100 times
// a second. We would like tmrCounter to surpass tmrCompare
// after 10 milliseconds. So figure out by how much we need to
// increment it in order for that to happen.
// If timer is disabled; reset calibration.
if (tmrCompare == 0xFFFF)
{
startingTime = 0;
}
// If timer is enabled, restart calibration.
else if (startingTime == 0)
{
startingTime = Platform::GetMilliseconds();
timesCalled = 0;
increment = 1;
}
// If calibration is started, continue it.
else
{
timesCalled++;
uint32 now = Platform::GetMilliseconds();
if (now - startingTime > 100)
{
calibrated = true;
increment = tmrCompare / (timesCalled / 10);
}
}
}
#endif
void EmRegs328::Cycle (Bool sleeping)
{
#if 0
// Cycle is *very* sensitive to timing issue. With this section
// of code, a Gremlins run can slow down by 5%.
if (!calibrated)
{
::PrvCalibrate (READ_REGISTER (tmr2Compare));
}
#else
#if _DEBUG
#define increment 20
#else
#define increment 4
#endif
#endif
// Determine whether timer 2 is enabled.
if ((READ_REGISTER (tmr2Control) & hwr328TmrControlEnable) != 0)
{
// If so, increment the timer.
WRITE_REGISTER (tmr2Counter, READ_REGISTER (tmr2Counter) + (sleeping ? 1 : increment));
// Determine whether the timer has reached the specified count.
if (sleeping || READ_REGISTER (tmr2Counter) > READ_REGISTER (tmr2Compare))
{
// Flag the occurrence of the successful comparison.
WRITE_REGISTER (tmr2Status, READ_REGISTER (tmr2Status) | hwr328TmrStatusCompare);
// If the Free Run/Restart flag is not set, clear the counter.
if ((READ_REGISTER (tmr2Control) & hwr328TmrControlFreeRun) == 0)
{
WRITE_REGISTER (tmr2Counter, 0);
}
// If the timer interrupt is enabled, post an interrupt.
if ((READ_REGISTER (tmr2Control) & hwr328TmrControlEnInterrupt) != 0)
{
WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) | hwr328IntLoTimer2);
EmRegs328::UpdateInterrupts ();
}
}
}
if ((fCycle += increment) > READ_REGISTER (tmr2Compare))
{
fCycle = 0;
if (++fTick >= 100)
{
fTick = 0;
if (++fSec >= 60)
{
fSec = 0;
if (++fMin >= 60)
{
fMin = 0;
if (++fHour >= 24)
{
fHour = 0;
}
}
}
}
}
}
// ---------------------------------------------------------------------------
// EmRegs328::CycleSlowly
// ---------------------------------------------------------------------------
// Handles periodic events that need to occur when the processor cycles (like
// updating timer registers). This function is called in two places from
// Emulator::Execute. Interestingly, the loop runs 3% FASTER if this function
// is in its own separate function instead of being inline.
void EmRegs328::CycleSlowly (Bool sleeping)
{
UNUSED_PARAM(sleeping)
// See if a hard button is pressed.
EmAssert (gSession);
if (gSession->HasButtonEvent ())
{
EmButtonEvent event = gSession->GetButtonEvent ();
if (event.fButton == kElement_CradleButton)
{
EmRegs328::HotSyncEvent (event.fButtonIsDown);
}
else
{
EmRegs328::ButtonEvent (event.fButton, event.fButtonIsDown);
}
}
// See if there's anything new ("Put the data on the bus")
EmRegs328::UpdateUARTState (false);
// Check to see if the RTC alarm is ready to go off. First see
// if the RTC is enabled, and that the alarm event isn't already
// registered (the latter check is just an optimization).
if ((READ_REGISTER (rtcIntEnable) & hwr328RTCIntEnableAlarm) != 0 &&
(READ_REGISTER (rtcIntStatus) & hwr328RTCIntStatusAlarm) == 0)
{
uint32 rtcAlarm = READ_REGISTER (rtcAlarm);
long almHour = (rtcAlarm & hwr328RTCAlarmHoursMask) >> hwr328RTCAlarmHoursOffset;
long almMin = (rtcAlarm & hwr328RTCAlarmMinutesMask) >> hwr328RTCAlarmMinutesOffset;
long almSec = (rtcAlarm & hwr328RTCAlarmSecondsMask) >> hwr328RTCAlarmSecondsOffset;
long almInSeconds = (almHour * 60 * 60) + (almMin * 60) + almSec;
long nowHour;
long nowMin;
long nowSec;
::GetHostTime (&nowHour, &nowMin, &nowSec);
long nowInSeconds = (nowHour * 60 * 60) + (nowMin * 60) + nowSec;
if (almInSeconds <= nowInSeconds)
{
WRITE_REGISTER (rtcIntStatus, READ_REGISTER (rtcIntStatus) | hwr328RTCIntStatusAlarm);
EmRegs328::UpdateRTCInterrupts ();
}
}
}
// ---------------------------------------------------------------------------
// EmRegs328::TurnSoundOff
// ---------------------------------------------------------------------------
void EmRegs328::TurnSoundOff (void)
{
uint16 pwmControl = READ_REGISTER (pwmControl);
WRITE_REGISTER (pwmControl, pwmControl & ~hwr328PWMControlEnable);
}
// ---------------------------------------------------------------------------
// EmRegs328::ResetTimer
// ---------------------------------------------------------------------------
void EmRegs328::ResetTimer (void)
{
WRITE_REGISTER (tmr2Counter, 0);
}
// ---------------------------------------------------------------------------
// EmRegs328::ResetRTC
// ---------------------------------------------------------------------------
void EmRegs328::ResetRTC (void)
{
fHour = 15;
fMin = 0;
fSec = 0;
fTick = 0;
fCycle = 0;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetInterruptLevel
// ---------------------------------------------------------------------------
int32 EmRegs328::GetInterruptLevel (void)
{
uint16 intStatusHi = READ_REGISTER (intStatusHi);
uint16 intStatusLo = READ_REGISTER (intStatusLo);
// Level 7 = IRQ7.
if ((intStatusHi & hwr328IntHiNMI) != 0)
return 7;
// Level 6 = SPIS, TMR1, IRQ6.
if ((intStatusHi & (hwr328IntHiTimer1 | hwr328IntHiSPIS | hwr328IntHiIRQ6)) != 0)
return 6;
// Level 5 = PEN.
if ((intStatusHi & hwr328IntHiPen) != 0)
return 5;
// Level 4 = SPIM, TMR2, UART, WDT, RTC, KB, PWM, INT0 - INT7.
if ((intStatusLo & ( hwr328IntLoAllKeys |
hwr328IntLoPWM |
hwr328IntLoKbd |
// hwr328IntLoLCDC |
hwr328IntLoRTC |
hwr328IntLoWDT |
hwr328IntLoTimer2 |
hwr328IntLoSPIM)) != 0)
return 4;
// Level 3 = IRQ3.
if ((intStatusHi & hwr328IntHiIRQ3) != 0)
return 3;
// Level 2 = IRQ2.
if ((intStatusHi & hwr328IntHiIRQ2) != 0)
return 2;
// Level 1 = IRQ1.
if ((intStatusHi & hwr328IntHiIRQ1) != 0)
return 1;
// Level 0.
return -1;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetInterruptBase
// ---------------------------------------------------------------------------
int32 EmRegs328::GetInterruptBase (void)
{
return READ_REGISTER (intVector) & 0xF8;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetLCDHasFrame
// ---------------------------------------------------------------------------
Bool EmRegs328::GetLCDHasFrame (void)
{
return false;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetLCDBeginEnd
// ---------------------------------------------------------------------------
void EmRegs328::GetLCDBeginEnd (emuptr& begin, emuptr& end)
{
emuptr baseAddr = READ_REGISTER (lcdStartAddr);
int rowBytes = READ_REGISTER (lcdPageWidth) * 2;
int height = READ_REGISTER (lcdScreenHeight) + 1;
begin = baseAddr;
end = baseAddr + rowBytes * height;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetLCDScanlines
// ---------------------------------------------------------------------------
void EmRegs328::GetLCDScanlines (EmScreenUpdateInfo& info)
{
// Get the screen metrics.
int32 bpp = 1 << (READ_REGISTER (lcdPanelControl) & 0x01);
int32 width = READ_REGISTER (lcdScreenWidth) + 1;
int32 height = READ_REGISTER (lcdScreenHeight) + 1;
int32 rowBytes = READ_REGISTER (lcdPageWidth) * 2;
emuptr baseAddr = READ_REGISTER (lcdStartAddr);
info.fLeftMargin = READ_REGISTER (lcdPanningOffset) & 0x0F;
EmPixMapFormat format = bpp == 1 ? kPixMapFormat1 :
bpp == 2 ? kPixMapFormat2 :
bpp == 4 ? kPixMapFormat4 :
kPixMapFormat8;
RGBList colorTable;
this->PrvGetPalette (colorTable);
// Set format, size, and color table of EmPixMap.
info.fImage.SetSize (EmPoint (width, height));
info.fImage.SetFormat (format);
info.fImage.SetRowBytes (rowBytes);
info.fImage.SetColorTable (colorTable);
// Determine first and last scanlines to fetch, and fetch them.
info.fFirstLine = (info.fScreenLow - baseAddr) / rowBytes;
info.fLastLine = (info.fScreenHigh - baseAddr - 1) / rowBytes + 1;
long firstLineOffset = info.fFirstLine * rowBytes;
long lastLineOffset = info.fLastLine * rowBytes;
EmMem_memcpy (
(void*) ((uint8*) info.fImage.GetBits () + firstLineOffset),
baseAddr + firstLineOffset,
lastLineOffset - firstLineOffset);
}
// ---------------------------------------------------------------------------
// EmRegs328::GetUARTDevice
// ---------------------------------------------------------------------------
// Return what sort of device is hooked up to the given UART.
EmUARTDeviceType EmRegs328::GetUARTDevice (int /*uartNum*/)
{
Bool serEnabled = this->GetLineDriverState (kUARTSerial);
Bool irEnabled = this->GetLineDriverState (kUARTIR);
// It's probably an error to have them both enabled at the same
// time. !!! TBD: make this an error message.
EmAssert (!(serEnabled && irEnabled));
if (serEnabled)
return kUARTSerial;
if (irEnabled)
return kUARTIR;
return kUARTNone;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetDynamicHeapSize
// ---------------------------------------------------------------------------
int32 EmRegs328::GetDynamicHeapSize (void)
{
uint32 result = 0;
uint32 csCSelect0 = READ_REGISTER (csCSelect0) & ADDRESS_MASK;
uint32 csCSelect1 = READ_REGISTER (csCSelect1) & ADDRESS_MASK;
if (csCSelect0 == 0x0000 && csCSelect1 == 0x0000)
{
result = 0 * 1024L;
}
else if (csCSelect0 == 0x0070 && csCSelect1 == 0x0000)
{
result = 32 * 1024L;
}
else if (csCSelect0 == 0x00F0 && csCSelect1 == 0x0000)
{
result = 64 * 1024L;
}
else if (csCSelect0 == 0x0070 && csCSelect1 == 0x0070)
{
// This one's odd, but the Symbol seems to (temporarily)
// set up this configuration when running with 2Meg of RAM.
result = 96 * 1024L;
}
else if (csCSelect0 == 0x00F0 && csCSelect1 == 0x0070)
{
result = 96 * 1024L;
}
else if (csCSelect0 == 0x01F0 && csCSelect1 == 0x0000)
{
result = 128 * 1024L;
}
else if (csCSelect0 == 0x03F0 && csCSelect1 == 0x0000)
{
result = 256 * 1024L;
}
else
{
EmAssert (false);
}
if (!ChipSelectsConfigured())
{
result = 16 * 1024L * 1024L;
}
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetROMSize
// ---------------------------------------------------------------------------
int32 EmRegs328::GetROMSize (void)
{
uint32 result = 2 * 1024L * 1024L;
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetROMBaseAddress
// ---------------------------------------------------------------------------
emuptr EmRegs328::GetROMBaseAddress (void)
{
if (!this->ChipSelectsConfigured())
{
return 0xFFFFFFFF;
}
return 0x10C00000; // use known value
}
// ---------------------------------------------------------------------------
// EmRegs328::ChipSelectsConfigured
// ---------------------------------------------------------------------------
Bool EmRegs328::ChipSelectsConfigured (void)
{
return READ_REGISTER (csAGroupBase) & 0x0001;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetSystemClockFrequency
// ---------------------------------------------------------------------------
int32 EmRegs328::GetSystemClockFrequency (void)
{
uint16 pllControl = READ_REGISTER (pllControl);
uint16 pllFreqSel = READ_REGISTER (pllFreqSel);
uint16 PC = (pllFreqSel & 0x00FF);
uint16 QC = (pllFreqSel & 0x0F00) >> 8;
uint32 result = 32768L * (14 * (PC + 1) + QC + 1);
// Divide by the system clock scaler, if needed.
switch (pllControl & 0x0F00)
{
case hwr328PLLControlSysVCODiv2:
result /= 2;
break;
case hwr328PLLControlSysVCODiv4:
result /= 4;
break;
case hwr328PLLControlSysVCODiv8:
result /= 8;
break;
case hwr328PLLControlSysVCODiv16:
result /= 16;
break;
}
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetCanStop
// ---------------------------------------------------------------------------
Bool EmRegs328::GetCanStop (void)
{
// Make sure Timer 2 is enabled or the RTC interrupt is enabled.
if ((READ_REGISTER (tmr2Control) & hwr328TmrControlEnable) != 0)
return true;
if ((READ_REGISTER (rtcIntEnable) & hwr328RTCIntEnableAlarm) != 0)
return true;
return false;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetAsleep
// ---------------------------------------------------------------------------
Bool EmRegs328::GetAsleep (void)
{
return ((READ_REGISTER (pllControl) & hwr328PLLControlDisable) != 0);
}
// ---------------------------------------------------------------------------
// EmRegs328::GetPortInputValue
// ---------------------------------------------------------------------------
// Return the GPIO values for the pins on the port. These values are used
// if the select pins are high.
uint8 EmRegs328::GetPortInputValue (int port)
{
uint8 result = 0;
if (port == 'D')
{
result = this->GetPortInternalValue (port);
}
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetPortInternalValue
// ---------------------------------------------------------------------------
// Return the dedicated values for the pins on the port. These values are
// used if the select pins are low.
uint8 EmRegs328::GetPortInternalValue (int port)
{
uint8 result = 0;
if (port == 'C')
{
// This makes the power on key work. If the signal is not asserted, the
// unit will not transition between asleep and awake (cf. HwrSleep, HwrWake).
result |= hwr328PortCNMI;
}
else if (port == 'D')
{
// If the ID_DETECT pin is asserted, load the data lines with the
// hardware ID.
if (EmRegs328::IDDetectAsserted ())
{
result |= EmRegs328::GetHardwareID ();
}
// Otherwise, load the lines with keyboard information.
else
{
// Get the INT bits that need to be set.
result |= this->GetKeyBits ();
}
}
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::PortDataChanged
// ---------------------------------------------------------------------------
void EmRegs328::PortDataChanged (int port, uint8, uint8 newValue)
{
if (port == 'D')
{
// Clear the interrupt bits that are having a 1 written to them.
// Only clear them if they're configured as edge-senstive.
uint8 portDIntEdge = READ_REGISTER (portDIntEdge);
PRINTF ("EmRegs328::PortDataChanged (D): fPortDEdge = 0x%02lX", (uint32) (uint8) fPortDEdge);
PRINTF ("EmRegs328::PortDataChanged (D): portDIntEdge = 0x%02lX", (uint32) (uint8) portDIntEdge);
PRINTF ("EmRegs328::PortDataChanged (D): newValue = 0x%02lX", (uint32) (uint8) newValue);
fPortDEdge &= ~(newValue & portDIntEdge);
PRINTF ("EmRegs328::PortDataChanged (D): fPortDEdge = 0x%02lX", (uint32) (uint8) fPortDEdge);
// Set the new interrupt state.
EmRegs328::UpdatePortDInterrupts ();
}
}
// ---------------------------------------------------------------------------
// EmRegs328::pllFreqSelRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::pllFreqSelRead (emuptr address, int size)
{
// Simulate the rising and falling of the CLK32 signal so that functions
// like HwrPreRAMInit, HwrShutDownPLL, PrvSetPLL, and PrvShutDownPLL
// won't hang.
uint16 pllFreqSel = READ_REGISTER (pllFreqSel) ^ 0x8000;
WRITE_REGISTER (pllFreqSel, pllFreqSel);
// Finish up by doing a standard read.
return EmRegs328::StdRead (address, size);
}
// ---------------------------------------------------------------------------
// EmRegs328::portXDataRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::portXDataRead (emuptr address, int)
{
// The value read can come from three different places:
//
// - the value what was written to the data register
// - any dedicated inputs
// - any GPIO inputs
//
// The value returned depends on the settings of the SEL and DIR
// registers. So let's get those settings, the values from the three
// input sources, and build up a return value based on those.
int port = GetPort (address);
uint8 sel = StdRead (address + 2, 1);
uint8 dir = StdRead (address - 1, 1);
uint8 output = StdRead (address + 0, 1);
uint8 input = EmHAL::GetPortInputValue (port);
uint8 intFn = EmHAL::GetPortInternalValue (port);
uint8 xsel = sel;
uint8 xdir = dir;
uint8 xoutput = output;
uint8 xinput = input;
uint8 xintFn = intFn;
if (port == 'D')
{
sel = 0xFF; // No "select" bit in low nybble, so set for IO values.
// The system will poll portD twice in KeyBootKeys to see
// if any keys are down. Wait at least that long before
// letting up any boot keys maintained by the session. When we
// do call ReleaseBootKeys, set our counter to -1 as a flag not
// to call it any more.
if (fPortDDataCount != 0xFFFFFFFF && ++fPortDDataCount >= 2 * 2)
{
fPortDDataCount = 0xFFFFFFFF;
gSession->ReleaseBootKeys ();
}
}
// Use the internal chip function bits if the "sel" bits are zero.
intFn &= ~sel;
// Otherwise, use the I/O bits.
output &= sel & dir; // Use the output bits if the "dir" is one.
input &= sel & ~dir; // Use the input bits if the "dir" is zero.
// Assert that there are no overlaps.
EmAssert ((output & input) == 0);
EmAssert ((output & intFn) == 0);
EmAssert ((input & intFn) == 0);
// Mush everything together.
uint8 result = output | input | intFn;
// If this is port D, flip the bits if the POLARITY register says to.
// (!!! Does this inversion apply only to input bits? That is, the
// bits where the "dir" register has 0 bits?)
if (0 && port == 'D')
{
uint8 polarity = READ_REGISTER (portDPolarity);
PRINTF ("EmRegs328::portXDataRead: polarity = 0x%02lX", (uint32) polarity);
result ^= polarity;
}
PRINTF ("EmRegs328::port%cDataRead: sel dir output input intFn result", (char) port);
PRINTF ("EmRegs328::port%cDataRead: 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX",
(char) port, (uint32) xsel, (uint32) xdir, (uint32) xoutput, (uint32) xinput, (uint32) xintFn, (uint32) result);
return result;
}
// ---------------------------------------------------------------------------
// EmRegs328::tmr1StatusRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::tmr1StatusRead (emuptr address, int size)
{
uint16 tmr1Counter = READ_REGISTER (tmr1Counter) + 16;
uint16 tmr1Compare = READ_REGISTER (tmr1Compare);
uint16 tmr1Control = READ_REGISTER (tmr1Control);
// Increment the timer.
WRITE_REGISTER (tmr1Counter, tmr1Counter);
// If the timer has passed the specified value...
if ( (tmr1Counter - tmr1Compare) < 16 )
{
// Set the flag saying the timer timed out.
uint16 tmr1Status = READ_REGISTER (tmr1Status) | hwr328TmrStatusCompare;
WRITE_REGISTER (tmr1Status, tmr1Status);
// If it's not a free-running timer, reset it to zero.
if ((tmr1Control & hwr328TmrControlFreeRun) == 0)
{
WRITE_REGISTER (tmr1Counter, 0);
}
}
// Remember this guy for later (see EmRegs328::tmr1StatusWrite())
fLastTmr1Status |= READ_REGISTER (tmr1Status);
// Finish up by doing a standard read.
return EmRegs328::StdRead (address, size);
}
// ---------------------------------------------------------------------------
// EmRegs328::tmr2StatusRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::tmr2StatusRead (emuptr address, int size)
{
#if 0 // (Greg doesn't do this for Timer 2...I wonder why)
/*
ram_rom.cpp: DBReg::tmr2StatusRead: Hmm, I don't update the TMR2 count
value. As with everything else that's missing in my DragonBall
emulation, it's probably because I never found anything that needed it.
If you know otherwise, by all means implement it. Also, the magic value
of 16 counts per status read seemed to be about right for the programmed
timer 1 frequency. It isn't likely to be right for timer 2.
-- Greg
*/
uint16 tmr2Counter = READ_REGISTER (tmr2Counter) + 16;
uint16 tmr2Compare = READ_REGISTER (tmr2Compare);
uint16 tmr2Control = READ_REGISTER (tmr2Control);
// Increment the timer.
WRITE_REGISTER (tmr2Counter, tmr2Counter);
// If the timer has passed the specified value...
if ( (tmr2Counter - tmr2Compare) < 16 )
{
// Set the flag saying the timer timed out.
uint16 tmr2Status = READ_REGISTER (tmr1Status) | hwr328TmrStatusCompare;
WRITE_REGISTER (tmr2Status, tmr2Status);
// If it's not a free-running timer, reset it to zero.
if ( (tmr2Control & hwr328TmrControlFreeRun) == 0 )
WRITE_REGISTER (tmr2Counter, 0);
}
#endif
fLastTmr2Status |= READ_REGISTER (tmr2Status); // remember this guy for later (see EmRegs328::tmr2StatusWrite())
// Finish up by doing a standard read.
return EmRegs328::StdRead (address, size);
}
// ---------------------------------------------------------------------------
// EmRegs328::uartRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::uartRead (emuptr address, int size)
{
// If this is a full read, get the next byte from the FIFO.
Bool refreshRxData = (address == addressof (uReceive)) && (size == 2);
// See if there's anything new ("Put the data on the bus")
EmRegs328::UpdateUARTState (refreshRxData);
// Finish up by doing a standard read.
return EmRegs328::StdRead (address, size);
}
// ---------------------------------------------------------------------------
// EmRegs328::rtcHourMinSecRead
// ---------------------------------------------------------------------------
uint32 EmRegs328::rtcHourMinSecRead (emuptr address, int size)
{
// Get the desktop machine's time.
long hour, min, sec;
if (Hordes::IsOn ())
{
hour = fHour;
min = fMin;
sec = fSec;
}
else
{
::GetHostTime (&hour, &min, &sec);
}
// Update the register.
WRITE_REGISTER (rtcHourMinSec, (hour << hwr328RTCHourMinSecHoursOffset)
| (min << hwr328RTCHourMinSecMinutesOffset)
| (sec << hwr328RTCHourMinSecSecondsOffset));
// Finish up by doing a standard read.
return EmRegs328::StdRead (address, size);
}
// ---------------------------------------------------------------------------
// EmRegs328::csASelect1Write
// ---------------------------------------------------------------------------
void EmRegs328::csASelect1Write (emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Check its new state and update our ram-protect flag.
gMemAccessFlags.fProtect_SRAMSet = (READ_REGISTER (csASelect1) & 0x0008) != 0;
}
// ---------------------------------------------------------------------------
// EmRegs328::csCSelect0Write
// ---------------------------------------------------------------------------
void EmRegs328::csCSelect0Write (emuptr address, int size, uint32 value)
{
uint32 csCSelect0 = READ_REGISTER (csCSelect0);
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Check to see if the unprotected memory range changed.
if ((csCSelect0 & ADDRESS_MASK) != (READ_REGISTER (csCSelect0) & ADDRESS_MASK))
{
EmAssert (gSession);
gSession->ScheduleResetBanks ();
}
}
// ---------------------------------------------------------------------------
// EmRegs328::csCSelect1Write
// ---------------------------------------------------------------------------
void EmRegs328::csCSelect1Write (emuptr address, int size, uint32 value)
{
uint32 csCSelect1 = READ_REGISTER (csCSelect1);
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Check to see if the unprotected memory range changed.
if ((csCSelect1 & ADDRESS_MASK) != (READ_REGISTER (csCSelect1) & ADDRESS_MASK))
{
EmAssert (gSession);
gSession->ScheduleResetBanks ();
}
}
// ---------------------------------------------------------------------------
// EmRegs328::intMaskHiWrite
// ---------------------------------------------------------------------------
void EmRegs328::intMaskHiWrite (emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::intMaskLoWrite
// ---------------------------------------------------------------------------
void EmRegs328::intMaskLoWrite (emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::intStatusHiWrite
// ---------------------------------------------------------------------------
void EmRegs328::intStatusHiWrite (emuptr address, int size, uint32 value)
{
// IRQ1, IRQ2, IRQ3, IRQ6 and IRQ7 are cleared by writing to their
// respective status bits. We handle those there. Since there are
// no interrupt status bits like this in intStatusLo, we don't need
// a handler for that register; we only handle intStatusHi.
// Even though this is a 16-bit register as defined by the Palm headers,
// it's a 32-bit register according to Dragonball docs, and is in fact
// accessed that way in the kernal files (cf. HwrIRQ4Handler). In those
// cases, we're still only interested in access to the IRQ# bits, so we
// can turn 4-byte accesses into 2-byte accesses.
if (size == 4)
value >>= 16;
// Take into account the possibility of 1-byte accesses, too. If we're
// accessing the upper byte, just return. If we're accessing the lower
// byte, we can treat it as a 2-byte access.
else if (size == 1 && address == addressof (intStatusHi))
return;
// Now we can treat the rest of this function as a word-write to intStatusHi.
uint16 intPendingHi = READ_REGISTER (intPendingHi);
// For each interrupt:
// If we're writing to that interrupt's status bit and its edge bit is set:
// - clear the interrupt's pending bit
// - respond to the new interrupt state.
#undef CLEAR_PENDING_INTERRUPT
#define CLEAR_PENDING_INTERRUPT(edge, irq) \
if ( (READ_REGISTER (intControl) & edge) && (value & (irq)) ) \
{ \
intPendingHi &= ~(irq); \
}
CLEAR_PENDING_INTERRUPT (hwr328IntCtlEdge1, hwr328IntHiIRQ1);
CLEAR_PENDING_INTERRUPT (hwr328IntCtlEdge2, hwr328IntHiIRQ2);
CLEAR_PENDING_INTERRUPT (hwr328IntCtlEdge3, hwr328IntHiIRQ3);
CLEAR_PENDING_INTERRUPT (hwr328IntCtlEdge6, hwr328IntHiIRQ6);
// IRQ7 is not edge-programmable, so clear it if we're merely writing to it.
if (value & hwr328IntHiNMI)
{
intPendingHi &= ~(hwr328IntHiNMI);
}
// If we're emulating the user pressing the hotsync button, make sure the
// interrupt stays asserted. (!!! Should we use the same technique for
// other buttons, too? It doesn't seem to be needed right now, but doing
// that may more closely mirror the hardware.)
if (fHotSyncButtonDown)
{
intPendingHi |= hwr328IntHiIRQ1;
}
else
{
intPendingHi &= ~hwr328IntHiIRQ1;
}
WRITE_REGISTER (intPendingHi, intPendingHi);
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::portXDataWrite
// ---------------------------------------------------------------------------
void EmRegs328::portXDataWrite (emuptr address, int size, uint32 value)
{
// Get the old value before updating it.
uint8 oldValue = StdRead (address, size);
// Take a snapshot of the line driver states.
Bool driverStates[kUARTEnd];
EmHAL::GetLineDriverStates (driverStates);
// Now update the value with a standard write.
StdWrite (address, size, value);
// Let anyone know that it's changed.
int port = GetPort (address);
PRINTF ("EmRegs328::port%cDataWrite: oldValue = 0x%02lX", (char) port, (uint32) (uint8) oldValue);
PRINTF ("EmRegs328::port%cDataWrite: newValue = 0x%02lX", (char) port, (uint32) (uint8) value);
EmHAL::PortDataChanged (port, oldValue, value);
// Respond to any changes in the line driver states.
EmHAL::CompareLineDriverStates (driverStates);
}
// ---------------------------------------------------------------------------
// EmRegs328::portDIntReqEnWrite
// ---------------------------------------------------------------------------
void EmRegs328::portDIntReqEnWrite (emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Set the new interrupt state.
EmRegs328::UpdatePortDInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::tmr1StatusWrite
// ---------------------------------------------------------------------------
void EmRegs328::tmr1StatusWrite (emuptr address, int size, uint32 value)
{
UNUSED_PARAM(address)
UNUSED_PARAM(size)
EmAssert (size == 2); // This function's a hell of a lot easier to write if
// we assume only full-register access.
// Get the current value.
uint16 tmr1Status = READ_REGISTER (tmr1Status);
// If the user had previously read the status bits while they
// were set, then it's OK for them to be clear now. Otherwise,
// we have to merge any set status bits back in.
tmr1Status &= value | ~fLastTmr1Status; // fLastTmr1Status was set in EmRegs328::tmr1StatusRead()
WRITE_REGISTER (tmr1Status, tmr1Status);
fLastTmr1Status = 0;
if ((tmr1Status & hwr328TmrStatusCompare) == 0)
{
uint16 intPendingHi = READ_REGISTER (intPendingHi) & ~hwr328IntHiTimer1;
WRITE_REGISTER (intPendingHi, intPendingHi);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
}
// ---------------------------------------------------------------------------
// EmRegs328::tmr2StatusWrite
// ---------------------------------------------------------------------------
void EmRegs328::tmr2StatusWrite (emuptr address, int size, uint32 value)
{
UNUSED_PARAM(address)
UNUSED_PARAM(size)
EmAssert (size == 2); // This function's a hell of a lot easier to write if
// we assume only full-register access.
// Get the current value.
uint16 tmr2Status = READ_REGISTER (tmr2Status);
// If the user had previously read the status bits while they
// were set, then it's OK for them to be clear now. Otherwise,
// we have to merge any set status bits back in.
tmr2Status &= value | ~fLastTmr2Status; // fLastTmr2Status was set in EmRegs328::tmr2StatusRead()
WRITE_REGISTER (tmr2Status, tmr2Status);
fLastTmr2Status = 0;
if ( (tmr2Status & hwr328TmrStatusCompare) == 0 )
{
uint16 intPendingLo = READ_REGISTER (intPendingLo) & ~hwr328IntLoTimer2;
WRITE_REGISTER (intPendingLo, intPendingLo);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
}
// ---------------------------------------------------------------------------
// EmRegs328::wdCounterWrite
// ---------------------------------------------------------------------------
void EmRegs328::wdCounterWrite (emuptr address, int size, uint32 value)
{
UNUSED_PARAM(address)
UNUSED_PARAM(size)
UNUSED_PARAM(value)
// Always set it to zero (a write to this register always resets it).
WRITE_REGISTER (wdCounter, 0);
}
// ---------------------------------------------------------------------------
// EmRegs328::spiMasterControlWrite
// ---------------------------------------------------------------------------
void EmRegs328::spiMasterControlWrite (emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Get the current value.
uint16 spiMasterControl = READ_REGISTER (spiMasterControl);
// Check to see if data exchange and interrupts are enabled.
#define BIT_MASK (hwr328SPIMControlExchange | hwr328SPIMControlIntEnable)
if ((spiMasterControl & BIT_MASK) != 0)
{
// If so, assert the interrupt and clear the exchange bit.
spiMasterControl |= hwr328SPIMControlIntStatus;
spiMasterControl &= ~hwr328SPIMControlExchange;
WRITE_REGISTER (spiMasterControl, spiMasterControl);
/*
// If we wanted digitizer data, load it into the SPIM data register.
switch (READ_REGISTER (portFData) & hwrTD1PortFPanelMask)
{
case (hwrTD1PortFPanelCfgXMeas):
WRITE_REGISTER (spiMasterData, (0xFF - Hardware::fgPen_HorzLocation) * 2);
break;
case (hwrTD1PortFPanelCfgYMeas):
WRITE_REGISTER (spiMasterData, (0xFF - Hardware::fgPen_VertLocation) * 2);
break;
}
*/
}
}
// ---------------------------------------------------------------------------
// EmRegs328::uartWrite
// ---------------------------------------------------------------------------
void EmRegs328::uartWrite(emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// If this write included the TX_DATA field, signal that it needs to
// be transmitted.
Bool sendTxData =
((address == addressof (uTransmit)) && (size == 2)) ||
((address == addressof (uTransmit) + 1) && (size == 1));
// React to any changes.
EmRegs328::UARTStateChanged (sendTxData);
}
// ---------------------------------------------------------------------------
// EmRegs328::lcdRegisterWrite
// ---------------------------------------------------------------------------
void EmRegs328::lcdRegisterWrite(emuptr address, int size, uint32 value)
{
// First, get the old value in case we need to see what changed.
uint32 oldValue = EmRegs328::StdRead (address, size);
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Note what changed.
if (address == addressof (lcdScreenWidth))
{
EmScreen::InvalidateAll ();
}
else if (address == addressof (lcdScreenHeight))
{
EmScreen::InvalidateAll ();
}
else if (address == addressof (lcdPanelControl))
{
if (((value ^ oldValue) & hwr328LcdPanelControlGrayScale) != 0)
{
EmScreen::InvalidateAll ();
}
}
else if (address == addressof (lcdStartAddr))
{
// Make sure the low-bit is always zero.
uint32 lcdStartAddr = READ_REGISTER (lcdStartAddr) & 0xFFFFFFFE;
WRITE_REGISTER (lcdStartAddr, lcdStartAddr);
EmScreen::InvalidateAll ();
}
else if (address == addressof (lcdPageWidth))
{
if (value != oldValue)
{
EmScreen::InvalidateAll ();
}
}
}
// ---------------------------------------------------------------------------
// EmRegs328::rtcControlWrite
// ---------------------------------------------------------------------------
void EmRegs328::rtcControlWrite(emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Respond to the new interrupt state.
EmRegs328::UpdateRTCInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::rtcIntStatusWrite
// ---------------------------------------------------------------------------
void EmRegs328::rtcIntStatusWrite(emuptr address, int size, uint32 value)
{
// Status bits are cleared by writing ones to them.
// If we're doing a byte-write to the upper byte, shift the byte
// so that we can treat the operation as a word write. If we're
// doing a byte-write to the lower byte, this extension will happen
// automatically.
if (address == addressof (rtcIntStatus) && size == 1)
value <<= 8;
// Get the current value.
uint16 rtcIntStatus = READ_REGISTER (rtcIntStatus);
// Clear the requested bits.
rtcIntStatus &= ~value;
// Update the register.
WRITE_REGISTER (rtcIntStatus, rtcIntStatus);
// Respond to the new interrupt state.
EmRegs328::UpdateRTCInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::rtcIntEnableWrite
// ---------------------------------------------------------------------------
void EmRegs328::rtcIntEnableWrite(emuptr address, int size, uint32 value)
{
// Do a standard update of the register.
EmRegs328::StdWrite (address, size, value);
// Respond to the new interrupt state.
EmRegs328::UpdateRTCInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::ButtonEvent
// ---------------------------------------------------------------------------
// Handles a Palm device button event by updating the appropriate registers.
void EmRegs328::ButtonEvent (SkinElementType button, Bool buttonIsDown)
{
uint16 bitNumber = this->ButtonToBits (button);
// Get the bits that should have been set with the previous set
// of pressed keys. We use this old value to update the port D interrupts.
uint8 oldBits = this->GetKeyBits ();
// Update the set of keys that are currently pressed.
if (buttonIsDown)
{
fKeyBits |= bitNumber; // Remember the key bit
}
else
{
fKeyBits &= ~bitNumber; // Forget the key bit
}
// Now get the new set of bits that should be set.
uint8 newBits = this->GetKeyBits ();
PRINTF ("EmRegs328::ButtonEvent: fKeyBits = 0x%04lX", (uint32) fKeyBits);
PRINTF ("EmRegs328::ButtonEvent: oldBits = 0x%02lX", (uint32) oldBits);
PRINTF ("EmRegs328::ButtonEvent: newBits = 0x%02lX", (uint32) newBits);
// Set the interrupt bits for the bits that went from off to on.
// These get cleared when portDData is written to.
fPortDEdge |= newBits & ~oldBits;
PRINTF ("EmRegs328::ButtonEvent: fPortDEdge = 0x%02lX", (uint32) fPortDEdge);
// Set the new interrupt state.
EmRegs328::UpdatePortDInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::HotSyncEvent
// ---------------------------------------------------------------------------
// Handles a HotSync button event by updating the appropriate registers.
void EmRegs328::HotSyncEvent (Bool iButton_IsDown)
{
// If the button changes state, set or clear the HotSync interrupt.
uint16 intPendingHi = READ_REGISTER (intPendingHi);
if (iButton_IsDown)
{
intPendingHi |= hwr328IntHiIRQ1;
fHotSyncButtonDown = true;
}
else
{
intPendingHi &= ~hwr328IntHiIRQ1;
fHotSyncButtonDown = false;
}
WRITE_REGISTER (intPendingHi, intPendingHi);
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::GetKeyBits
// ---------------------------------------------------------------------------
uint8 EmRegs328::GetKeyBits (void)
{
// Return the key bits
uint8 portDPullupEn = READ_REGISTER (portDPullupEn); // Interested where bits are one
uint8 keyBits = portDPullupEn & fKeyBits;
PRINTF ("EmRegs328::GetKeyBits: keyBits = 0x%02lX", (uint32) keyBits);
return keyBits;
}
// ---------------------------------------------------------------------------
// EmRegs328::ButtonToBits
// ---------------------------------------------------------------------------
uint16 EmRegs328::ButtonToBits (SkinElementType button)
{
uint16 bitNumber = 0;
switch (button)
{
case kElement_None: break;
case kElement_PowerButton: bitNumber = keyBitPower; break;
case kElement_UpButton: bitNumber = keyBitPageUp; break;
case kElement_DownButton: bitNumber = keyBitPageDown; break;
case kElement_App1Button: bitNumber = keyBitHard1; break;
case kElement_App2Button: bitNumber = keyBitHard2; break;
case kElement_App3Button: bitNumber = keyBitHard3; break;
case kElement_App4Button: bitNumber = keyBitHard4; break;
case kElement_CradleButton: bitNumber = keyBitCradle; break;
case kElement_Antenna: bitNumber = keyBitAntenna; break;
case kElement_ContrastButton: bitNumber = keyBitContrast; break;
/*
// Symbol-specific
case kElement_TriggerLeft: bitNumber = keyBitTrigLeft; break;
case kElement_TriggerCenter: bitNumber = keyBitTrigCenter; break;
case kElement_TriggerRight: bitNumber = keyBitTrigRight; break;
case kElement_UpButtonLeft: bitNumber = keyBitPageUpLeft; break;
case kElement_UpButtonRight: bitNumber = keyBitPageUpRight; break;
case kElement_DownButtonLeft: bitNumber = keyBitPageDownLeft; break;
case kElement_DownButtonRight: bitNumber = keyBitPageDownRight; break;
*/
default: EmAssert (false);
}
return bitNumber;
}
// ---------------------------------------------------------------------------
// EmRegs328::UpdateInterrupts
// ---------------------------------------------------------------------------
// Determines whether an interrupt has occurred by copying the Interrupt
// Pending Register to the Interrupt Status Register.
void EmRegs328::UpdateInterrupts (void)
{
// Copy the Interrupt Pending Register to the Interrupt Status
// Register, but ignore interrupts that are being masked.
// Note: this function is not sensitive to the byte ordering of the registers,
// so their contents don't need to be accessed via READ_REGISTER or WRITE_REGISTER.
f68328Regs.intStatusHi = f68328Regs.intPendingHi & ~f68328Regs.intMaskHi;
f68328Regs.intStatusLo = f68328Regs.intPendingLo & ~f68328Regs.intMaskLo;
PRINTF ("EmRegs328::UpdateInterrupts: intMask = 0x%04lX %04lX",
(uint32) f68328Regs.intMaskHi, (uint32) f68328Regs.intMaskLo);
PRINTF ("EmRegs328::UpdateInterrupts: intPending = 0x%04lX %04lX",
(uint32) f68328Regs.intPendingHi, (uint32) f68328Regs.intPendingLo);
// If the Interrupt Status Register isn't clear, flag an interrupt.
if (f68328Regs.intStatusHi || f68328Regs.intStatusLo)
{
regs.spcflags |= SPCFLAG_INT;
PRINTF ("EmRegs328::UpdateInterrupts: intStatus = 0x%04lX %04lX",
(uint32) f68328Regs.intStatusHi, (uint32) f68328Regs.intStatusLo);
}
}
// ---------------------------------------------------------------------------
// EmRegs328::UpdatePortDInterrupts
// ---------------------------------------------------------------------------
// Determine what interrupts need to be generated based on the current
// settings in portDData and fPortDEdge.
void EmRegs328::UpdatePortDInterrupts (void)
{
// Update INT0-INT7 of the Interrupt-Pending register (bits 8-15 of the low word).
// First, get those bits and clear them out.
uint16 intPendingLo = READ_REGISTER (intPendingLo) & ~hwr328IntLoAllKeys;
// Initialize the variable to hold the new interrupt settings.
uint8 newBits = 0;
// Get some other values we're going to need:
uint8 portDDir = READ_REGISTER (portDDir); // Interrupt on inputs only (when pin is low)
uint8 portDData = EmHAL::GetPortInputValue ('D');
uint8 portDPolarity = READ_REGISTER (portDPolarity);
uint8 portDIntReqEn = READ_REGISTER (portDIntReqEn);
uint8 portDIntEdge = READ_REGISTER (portDIntEdge);
// We have a line-level interrupt if:
//
// - line-level interrupts are requested
// - the GPIO bit matches the polarity bit
newBits |= ~portDIntEdge & portDData & portDPolarity;
newBits |= ~portDIntEdge & ~portDData & ~portDPolarity;
// We have an edge interrupt if:
//
// - edge interrupts are requested
// - an edge has been recorded
//
// Note that we should distinguish between rising and falling edges.
// For historical reasons, that's not done, and the Palm OS doesn't
// look for them, so it's OK for now.
newBits |= portDIntEdge & fPortDEdge & portDPolarity;
newBits |= portDIntEdge & 0 & ~portDPolarity;
// Only have interrupts if they're enabled and the pin is configured for input.
newBits &= portDIntReqEn & ~portDDir;
PRINTF ("EmRegs328::UpdatePortDInterrupts: Dir Data Pol Req Edg PDE bits");
PRINTF ("EmRegs328::UpdatePortDInterrupts: 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX",
(uint32) portDDir, (uint32) portDData, (uint32) portDPolarity, (uint32) portDIntReqEn, (uint32) portDIntEdge,
(uint32) fPortDEdge, (uint32) newBits);
// Merge in the new values and write out the result.
intPendingLo |= (((uint16) newBits) << 8) & hwr328IntLoAllKeys;
WRITE_REGISTER (intPendingLo, intPendingLo);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::UpdateRTCInterrupts
// ---------------------------------------------------------------------------
// Determine whether to set or clear the RTC bit in the interrupt pending
// register based on the current RTC register values.
void EmRegs328::UpdateRTCInterrupts (void)
{
// See if the RTC is enabled.
Bool rtcEnabled = (READ_REGISTER (rtcControl) & hwr328RTCControlRTCEnable) != 0;
// See if there are any RTC events that need to trigger an interrupt.
#define BITS_TO_CHECK ( \
hwr328RTCIntEnableSec | \
hwr328RTCIntEnable24Hr | \
hwr328RTCIntEnableAlarm | \
hwr328RTCIntEnableMinute | \
hwr328RTCIntEnableStopWatch )
uint16 rtcIntStatus = READ_REGISTER (rtcIntStatus);
uint16 rtcIntEnable = READ_REGISTER (rtcIntEnable);
uint16 rtcIntPending = rtcIntStatus & rtcIntEnable & BITS_TO_CHECK;
Bool havePendingEvents = rtcIntPending != 0;
// If the RTC is enabled and there are pending events, set the interrupt.
// Otherwise, clear the interrupt.
uint16 intPendingLo = READ_REGISTER (intPendingLo);
if (rtcEnabled && havePendingEvents)
{
intPendingLo |= hwr328IntLoRTC; // have events, so set interrupt
}
else
{
intPendingLo &= ~hwr328IntLoRTC; // no events, so clear interrupt
}
// Update the interrupt pending register.
WRITE_REGISTER (intPendingLo, intPendingLo);
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::IDDetectAsserted
// ---------------------------------------------------------------------------
// cf. HwrIdentifyFeatures and HwrPreRAMInit.
Bool EmRegs328::IDDetectAsserted (void)
{
uint8 portEDir = READ_REGISTER (portEDir);
uint8 portEData = READ_REGISTER (portEData);
uint8 portEPullupEn = READ_REGISTER (portEPullupEn);
const uint8 kMask = hwrTD1PortENoBacklight;
return (portEDir & kMask) == kMask &&
(portEData & kMask) == 0 &&
(portEPullupEn & kMask) == 0;
}
// ---------------------------------------------------------------------------
// EmRegs328::GetHardwareID
// ---------------------------------------------------------------------------
UInt8 EmRegs328::GetHardwareID (void)
{
// Determine the hardware ID.
// Note: Because of a Poser bug, I don't think any of the following actually
// gets executed. 328 ROMs first check to see if they're on a PalmPilot
// by executing the following:
//
// if (!(baseP->portEData & hwrTD1PortENoBacklight)) {
// ...on PalmPilot...
// } else {
// ...execute ID DETECT...
// }
//
// In Poser, hwrTD1PortENoBacklight is always zero (that's the bug), and
// so we always think we're on a PalmPilot, regardless of what 328 device
// we selected.
EmAssert (gSession);
EmDevice device = gSession->GetDevice ();
long miscFlags = device.HardwareID ();
// Reverse map the following:
// GHwrMiscFlags = 0;
// if ( (keyState & keyBitHard1) == 0) GHwrMiscFlags |= hwrMiscFlagID1;
// if ( (keyState & keyBitHard2) == 0) GHwrMiscFlags |= hwrMiscFlagID2;
// if ( (keyState & keyBitHard3) == 0) GHwrMiscFlags |= hwrMiscFlagID3;
// if ( (keyState & keyBitHard4) == 0) GHwrMiscFlags |= hwrMiscFlagID4;
uint8 keyState = ~0;
if ((miscFlags & hwrMiscFlagID1) != 0) keyState &= ~keyBitHard1;
if ((miscFlags & hwrMiscFlagID2) != 0) keyState &= ~keyBitHard2;
if ((miscFlags & hwrMiscFlagID3) != 0) keyState &= ~keyBitHard3;
if ((miscFlags & hwrMiscFlagID4) != 0) keyState &= ~keyBitHard4;
return keyState;
}
// ---------------------------------------------------------------------------
// EmRegs328::UARTStateChanged
// ---------------------------------------------------------------------------
void EmRegs328::UARTStateChanged (Bool sendTxData)
{
EmUARTDragonball::State state (EmUARTDragonball::kUART_Dragonball);
EmRegs328::MarshalUARTState (state);
fUART->StateChanged (state, sendTxData);
EmRegs328::UnmarshalUARTState (state);
EmRegs328::UpdateUARTInterrupts (state);
}
// ---------------------------------------------------------------------------
// EmRegs328::UpdateUARTState
// ---------------------------------------------------------------------------
void EmRegs328::UpdateUARTState (Bool refreshRxData)
{
EmUARTDragonball::State state (EmUARTDragonball::kUART_Dragonball);
EmRegs328::MarshalUARTState (state);
fUART->UpdateState (state, refreshRxData);
UnmarshalUARTState (state);
EmRegs328::UpdateUARTInterrupts (state);
}
// ---------------------------------------------------------------------------
// EmRegs328::UpdateUARTInterrupts
// ---------------------------------------------------------------------------
void EmRegs328::UpdateUARTInterrupts (const EmUARTDragonball::State& state)
{
// Generate the appropriate interrupts.
if (state.RX_FULL_ENABLE && state.RX_FIFO_FULL ||
state.RX_HALF_ENABLE && state.RX_FIFO_HALF ||
state.RX_RDY_ENABLE && state.DATA_READY ||
state.TX_EMPTY_ENABLE && state.TX_FIFO_EMPTY ||
state.TX_HALF_ENABLE && state.TX_FIFO_HALF ||
state.TX_AVAIL_ENABLE && state.TX_AVAIL)
{
// Set the UART interrupt.
WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) | hwr328IntLoUART);
}
else
{
// Clear the UART interrupt.
WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) & ~hwr328IntLoUART);
}
// Respond to the new interrupt state.
EmRegs328::UpdateInterrupts ();
}
// ---------------------------------------------------------------------------
// EmRegs328::MarshalUARTState
// ---------------------------------------------------------------------------
void EmRegs328::MarshalUARTState (EmUARTDragonball::State& state)
{
uint16 uControl = READ_REGISTER (uControl);
uint16 uBaud = READ_REGISTER (uBaud);
uint16 uReceive = READ_REGISTER (uReceive);
uint16 uTransmit = READ_REGISTER (uTransmit);
uint16 uMisc = READ_REGISTER (uMisc);
state.UART_ENABLE = (uControl & hwr328UControlUARTEnable) != 0;
state.RX_ENABLE = (uControl & hwr328UControlRxEnable) != 0;
state.TX_ENABLE = (uControl & hwr328UControlTxEnable) != 0;
state.RX_CLK_CONT = (uControl & hwr328UControlRxClock1x) != 0;
state.PARITY_EN = (uControl & hwr328UControlParityEn) != 0;
state.ODD_EVEN = (uControl & hwr328UControlParityOdd) != 0;
state.STOP_BITS = (uControl & hwr328UControlStopBits2) != 0;
state.CHAR8_7 = (uControl & hwr328UControlDataBits8) != 0;
state.GPIO_DELTA_ENABLE = (uControl & hwr328UControlGPIODeltaEn) != 0; // 68328 only
// state.OLD_ENABLE = (uControl & hwrEZ328UControlOldDataEn) != 0; // 68EZ328 only
state.CTS_DELTA_ENABLE = (uControl & hwr328UControlCTSDeltaEn) != 0;
state.RX_FULL_ENABLE = (uControl & hwr328UControlRxFullEn) != 0;
state.RX_HALF_ENABLE = (uControl & hwr328UControlRxHalfEn) != 0;
state.RX_RDY_ENABLE = (uControl & hwr328UControlRxRdyEn) != 0;
state.TX_EMPTY_ENABLE = (uControl & hwr328UControlTxEmptyEn) != 0;
state.TX_HALF_ENABLE = (uControl & hwr328UControlTxHalfEn) != 0;
state.TX_AVAIL_ENABLE = (uControl & hwr328UControlTxAvailEn) != 0;
// Baud control register bits
// These are all values the user sets; we just look at them.
state.GPIO_DELTA = (uBaud & hwr328UBaudGPIODelta) != 0; // 68328 only
state.GPIO = (uBaud & hwr328UBaudGPIOData) != 0; // 68328 only
state.GPIO_DIR = (uBaud & hwr328UBaudGPIODirOut) != 0; // 68328 only
state.GPIO_SRC = (uBaud & hwr328UBaudGPIOSrcBaudGen) != 0; // 68328 only
// state.UCLK_DIR = (uBaud & hwrEZ328UBaudUCLKDirOut) != 0; // 68EZ328 only
state.BAUD_SRC = (uBaud & hwr328UBaudBaudSrcGPIO) != 0;
state.DIVIDE = (uBaud & hwr328UBaudDivider) >> hwr328UBaudDivideBitOffset;
state.PRESCALER = (uBaud & hwr328UBaudPrescaler);
// Receive register bits
// These are all input bits; we set them, not the user.
state.RX_FIFO_FULL = (uReceive & hwr328UReceiveFIFOFull) != 0;
state.RX_FIFO_HALF = (uReceive & hwr328UReceiveFIFOHalf) != 0;
state.DATA_READY = (uReceive & hwr328UReceiveDataRdy) != 0;
// state.OLD_DATA = (uReceive & hwrEZ328UReceiveOldData) != 0; // 68EZ328 only
state.OVRUN = (uReceive & hwr328UReceiveOverrunErr) != 0;
state.FRAME_ERROR = (uReceive & hwr328UReceiveFrameErr) != 0;
state.BREAK = (uReceive & hwr328UReceiveBreakErr) != 0;
state.PARITY_ERROR = (uReceive & hwr328UReceiveParityErr) != 0;
state.RX_DATA = (uReceive & hwr328UReceiveData);
// Transmitter register bits
// We set everything except TX_DATA; the user sets that
// value and ONLY that value.
state.TX_FIFO_EMPTY = (uTransmit & hwr328UTransmitFIFOEmpty) != 0;
state.TX_FIFO_HALF = (uTransmit & hwr328UTransmitFIFOHalf) != 0;
state.TX_AVAIL = (uTransmit & hwr328UTransmitTxAvail) != 0;
state.SEND_BREAK = (uTransmit & hwr328UTransmitSendBreak) != 0;
state.IGNORE_CTS = (uTransmit & hwr328UTransmitIgnoreCTS) != 0;
// state.BUSY = (uTransmit & hwrEZ328UTransmitBusy) != 0; // 68EZ328 only
state.CTS_STATUS = (uTransmit & hwr328UTransmitCTSStatus) != 0;
state.CTS_DELTA = (uTransmit & hwr328UTransmitCTSDelta) != 0;
state.TX_DATA = (uTransmit & hwr328UTransmitData);
// Misc register bits
// These are all values the user sets; we just look at them.
// state.BAUD_TEST = (uMisc & hwrEZ328UMiscBaudTest) != 0; // 68EZ328 only
state.CLK_SRC = (uMisc & hwr328UMiscClkSrcGPIO) != 0;
state.FORCE_PERR = (uMisc & hwr328UMiscForceParityErr) != 0;
state.LOOP = (uMisc & hwr328UMiscLoopback) != 0;
// state.BAUD_RESET = (uMisc & hwrEZ328UMiscBaudReset) != 0; // 68EZ328 only
// state.IR_TEST = (uMisc & hwrEZ328UMiscIRTestEn) != 0; // 68EZ328 only
state.RTS_CONT = (uMisc & hwr328UMiscRTSThruFIFO) != 0;
state.RTS = (uMisc & hwr328UMiscRTSOut) != 0;
state.IRDA_ENABLE = (uMisc & hwr328UMiscIRDAEn) != 0;
state.IRDA_LOOP = (uMisc & hwr328UMiscLoopIRDA) != 0;
// state.RX_POL = (uMisc & hwrEZ328UMiscRXPolarityInv) != 0; // 68EZ328 only
// state.TX_POL = (uMisc & hwrEZ328UMiscTXPolarityInv) != 0; // 68EZ328 only
}
// ---------------------------------------------------------------------------
// EmRegs328::UnmarshalUARTState
// ---------------------------------------------------------------------------
void EmRegs328::UnmarshalUARTState (const EmUARTDragonball::State& state)
{
uint16 uControl = 0;
uint16 uBaud = 0;
uint16 uReceive = 0;
uint16 uTransmit = 0;
uint16 uMisc = 0;
if (state.UART_ENABLE) uControl |= hwr328UControlUARTEnable;
if (state.RX_ENABLE) uControl |= hwr328UControlRxEnable;
if (state.TX_ENABLE) uControl |= hwr328UControlTxEnable;
if (state.RX_CLK_CONT) uControl |= hwr328UControlRxClock1x;
if (state.PARITY_EN) uControl |= hwr328UControlParityEn;
if (state.ODD_EVEN) uControl |= hwr328UControlParityOdd;
if (state.STOP_BITS) uControl |= hwr328UControlStopBits2;
if (state.CHAR8_7) uControl |= hwr328UControlDataBits8;
if (state.GPIO_DELTA_ENABLE)uControl |= hwr328UControlGPIODeltaEn; // 68328 only
// if (state.OLD_ENABLE) uControl |= hwrEZ328UControlOldDataEn; // 68EZ328 only
if (state.CTS_DELTA_ENABLE) uControl |= hwr328UControlCTSDeltaEn;
if (state.RX_FULL_ENABLE) uControl |= hwr328UControlRxFullEn;
if (state.RX_HALF_ENABLE) uControl |= hwr328UControlRxHalfEn;
if (state.RX_RDY_ENABLE) uControl |= hwr328UControlRxRdyEn;
if (state.TX_EMPTY_ENABLE) uControl |= hwr328UControlTxEmptyEn;
if (state.TX_HALF_ENABLE) uControl |= hwr328UControlTxHalfEn;
if (state.TX_AVAIL_ENABLE) uControl |= hwr328UControlTxAvailEn;
// Baud control register bits
// These are all values the user sets; we just look at them.
if (state.GPIO_DELTA) uBaud |= hwr328UBaudGPIODelta; // 68328 only
if (state.GPIO) uBaud |= hwr328UBaudGPIOData; // 68328 only
if (state.GPIO_DIR) uBaud |= hwr328UBaudGPIODirOut; // 68328 only
if (state.GPIO_SRC) uBaud |= hwr328UBaudGPIOSrcBaudGen; // 68328 only
// if (state.UCLK_DIR) uBaud |= hwrEZ328UBaudUCLKDirOut; // 68EZ328 only
if (state.BAUD_SRC) uBaud |= hwr328UBaudBaudSrcGPIO;
uBaud |= (state.DIVIDE << hwr328UBaudDivideBitOffset) & hwr328UBaudDivider;
uBaud |= (state.PRESCALER) & hwr328UBaudPrescaler;
// Receive register bits
// These are all input bits; we set them, not the user.
if (state.RX_FIFO_FULL) uReceive |= hwr328UReceiveFIFOFull;
if (state.RX_FIFO_HALF) uReceive |= hwr328UReceiveFIFOHalf;
if (state.DATA_READY) uReceive |= hwr328UReceiveDataRdy;
// if (state.OLD_DATA) uReceive |= hwrEZ328UReceiveOldData; // 68EZ328 only
if (state.OVRUN) uReceive |= hwr328UReceiveOverrunErr;
if (state.FRAME_ERROR) uReceive |= hwr328UReceiveFrameErr;
if (state.BREAK) uReceive |= hwr328UReceiveBreakErr;
if (state.PARITY_ERROR) uReceive |= hwr328UReceiveParityErr;
uReceive |= (state.RX_DATA) & hwr328UReceiveData;
// Transmitter register bits
// We set everything except TX_DATA; the user sets that
// value and ONLY that value.
if (state.TX_FIFO_EMPTY) uTransmit |= hwr328UTransmitFIFOEmpty;
if (state.TX_FIFO_HALF) uTransmit |= hwr328UTransmitFIFOHalf;
if (state.TX_AVAIL) uTransmit |= hwr328UTransmitTxAvail;
if (state.SEND_BREAK) uTransmit |= hwr328UTransmitSendBreak;
if (state.IGNORE_CTS) uTransmit |= hwr328UTransmitIgnoreCTS;
// if (state.BUSY) uTransmit |= hwrEZ328UTransmitBusy; // 68EZ328 only
if (state.CTS_STATUS) uTransmit |= hwr328UTransmitCTSStatus;
if (state.CTS_DELTA) uTransmit |= hwr328UTransmitCTSDelta;
uTransmit |= (state.TX_DATA) & hwr328UTransmitData;
// Misc register bits
// These are all values the user sets; we just look at them.
// if (state.BAUD_TEST) uMisc |= hwrEZ328UMiscBaudTest; // 68EZ328 only
if (state.CLK_SRC) uMisc |= hwr328UMiscClkSrcGPIO;
if (state.FORCE_PERR) uMisc |= hwr328UMiscForceParityErr;
if (state.LOOP) uMisc |= hwr328UMiscLoopback;
// if (state.BAUD_RESET) uMisc |= hwrEZ328UMiscBaudReset; // 68EZ328 only
// if (state.IR_TEST) uMisc |= hwrEZ328UMiscIRTestEn; // 68EZ328 only
if (state.RTS_CONT) uMisc |= hwr328UMiscRTSThruFIFO;
if (state.RTS) uMisc |= hwr328UMiscRTSOut;
if (state.IRDA_ENABLE) uMisc |= hwr328UMiscIRDAEn;
if (state.IRDA_LOOP) uMisc |= hwr328UMiscLoopIRDA;
// if (state.RX_POL) uMisc |= hwrEZ328UMiscRXPolarityInv; // 68EZ328 only
// if (state.TX_POL) uMisc |= hwrEZ328UMiscTXPolarityInv; // 68EZ328 only
WRITE_REGISTER (uControl, uControl);
WRITE_REGISTER (uBaud, uBaud);
WRITE_REGISTER (uReceive, uReceive);
WRITE_REGISTER (uTransmit, uTransmit);
WRITE_REGISTER (uMisc, uMisc);
}
// ---------------------------------------------------------------------------
// EmRegs328::GetPort
// ---------------------------------------------------------------------------
// Given an address, return a value indicating what port it is associated with.
int EmRegs328::GetPort (emuptr address)
{
const long MASK = 0x00000FF8;
switch (address & MASK)
{
case 0x0400: return 'A';
case 0x0408: return 'B';
case 0x0410: return 'C';
case 0x0418: return 'D';
case 0x0420: return 'E';
case 0x0428: return 'F';
case 0x0430: return 'G';
case 0x0438: return 'J';
case 0x0440: return 'K';
case 0x0448: return 'M';
}
EmAssert (false);
return 0;
}
// ---------------------------------------------------------------------------
// EmRegs328::PrvGetPalette
// ---------------------------------------------------------------------------
void EmRegs328::PrvGetPalette (RGBList& thePalette)
{
// !!! TBD
Preference<RGBType> pref1 (kPrefKeyBackgroundColor);
Preference<RGBType> pref2 (kPrefKeyHighlightColor);
RGBType foreground (0, 0, 0);
RGBType background;
if (this->GetLCDBacklightOn ())
{
if (pref2.Loaded ())
background = *pref2;
else
background = ::SkinGetHighlightColor ();
}
else
{
if (pref1.Loaded ())
background = *pref1;
else
background = ::SkinGetBackgroundColor ();
}
long br = ((long) background.fRed);
long bg = ((long) background.fGreen);
long bb = ((long) background.fBlue);
long dr = ((long) foreground.fRed) - ((long) background.fRed);
long dg = ((long) foreground.fGreen) - ((long) background.fGreen);
long db = ((long) foreground.fBlue) - ((long) background.fBlue);
int32 bpp = 1 << (READ_REGISTER (lcdPanelControl) & 0x01);
int32 numColors = 1 << bpp;
thePalette.resize (numColors);
for (int color = 0; color < numColors; ++color)
{
thePalette[color].fRed = (UInt8) (br + dr * color / (numColors - 1));
thePalette[color].fGreen = (UInt8) (bg + dg * color / (numColors - 1));
thePalette[color].fBlue = (UInt8) (bb + db * color / (numColors - 1));
}
}
|