1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
/* -*- mode: C++; tab-width: 4 -*- */
/* ===================================================================== *\
Copyright (c) 2000-2001 Palm, Inc. or its subsidiaries.
All rights reserved.
This file is part of the Palm OS Emulator.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
\* ===================================================================== */
#include "EmCommon.h"
#include "EmSPISlaveADS784x.h"
#include "EmLowMem.h" // EmLowMem_GetGlobal
#include "EmMemory.h" // CEnableFullAccess
#include "EmPalmStructs.h" // EmAliasSysBatteryDataStruct
#include "Logging.h"
#define PRINTF if (1) ; else LogAppendMsg
/********************************************************************
* Single-Ended Mode Channel Constants (adcSERDFR = 1)
********************************************************************/
#define adcSERTemp0 0x04 // Temperature 0
#define adcSERYPos 0x14 // Y-Position
#define adcSERBat 0x24 // Battery
#define adcSERZ1Pos 0x34 // Z1-Position
#define adcSERZ2Pos 0x44 // Z2-Position
#define adcSERXPos 0x54 // X-Position
#define adcSERAux 0x64 // Auxilliary
#define adcSERTemp1 0x74 // Temperature 1
/********************************************************************
* Differential Mode Channel Constants (adcSERDFR = 0)
********************************************************************/
#define adcDFRYPos 0x10 // Y-Position
#define adcDFRZ1Pos 0x30 // Z1-Position
#define adcDFRZ2Pos 0x40 // Z2-Position
#define adcDFRXPos 0x50 // X-Position
/********************************************************************
* Conversion Mode Resolution
********************************************************************/
#define adcMode12Bit 0x00 // 12-bit conversion
#define adcMode8Bit 0x08 // 8-bit conversion
/********************************************************************
* Power Down Bit Use (for Burr-Brown ADS7846)
********************************************************************/
#define adcPDADCOn 0x01 // If set, turn on the ADC converter
#define adcPDReferenceOn 0x02 // If set, the internal Vref reference is turned on
#define kChannelBits 0x70
// ---------------------------------------------------------------------------
// EmSPISlaveADS784x::EmSPISlaveADS784x
// ---------------------------------------------------------------------------
EmSPISlaveADS784x::EmSPISlaveADS784x ( EmADSChannelType ch0,
EmADSChannelType ch1,
EmADSChannelType ch2,
EmADSChannelType ch3,
EmADSChannelType ch4,
EmADSChannelType ch5,
EmADSChannelType ch6,
EmADSChannelType ch7) :
EmSPISlave (),
fBitBufferIn (0),
fBitBufferOut (0),
fNumBitsIn (0),
fPendingResult (0),
fHavePending (false),
fCommandBitsSeen (0)
{
fChannelUse[0] = ch0;
fChannelUse[1] = ch1;
fChannelUse[2] = ch2;
fChannelUse[3] = ch3;
fChannelUse[4] = ch4;
fChannelUse[5] = ch5;
fChannelUse[6] = ch6;
fChannelUse[7] = ch7;
// If there's a 7846-style battery, it *must* be on channel 2.
for (int ii = 0; ii < 8; ++ii)
{
if (fChannelUse[ii] == kChannelBattery7846)
{
EmAssert (ii == 2);
}
}
}
// ---------------------------------------------------------------------------
// EmSPISlaveADS784x::~EmSPISlaveADS784x
// ---------------------------------------------------------------------------
EmSPISlaveADS784x::~EmSPISlaveADS784x (void)
{
}
// ---------------------------------------------------------------------------
// EmSPISlaveADS784x::DoExchange
// ---------------------------------------------------------------------------
uint16 EmSPISlaveADS784x::DoExchange (uint16 control, uint16 data)
{
PRINTF ("");
PRINTF ("EmSPISlaveADS784x::DoExchange");
PRINTF ("control = 0x%04X, data = 0x%04X", control, data);
// -----------------------------------------------------------------------
// Merge the incoming bits with our current buffer.
// -----------------------------------------------------------------------
uint16 numBits = (control & hwrVZ328SPIMControlBitsMask) + 1;
uint32 oldBitsMask = ~0 << numBits;
uint32 newBitsMask = ~oldBitsMask;
PRINTF ("Before merging input: fBitBufferIn = 0x%04X, fNumBitsIn = 0x%04X", fBitBufferIn, fNumBitsIn);
fBitBufferIn = ((fBitBufferIn << numBits) & oldBitsMask) | (data & newBitsMask);
fNumBitsIn += numBits;
PRINTF ("After merging input: fBitBufferIn = 0x%04X, fNumBitsIn = 0x%04X", fBitBufferIn, fNumBitsIn);
// -----------------------------------------------------------------------
// Start processing the command bits.
// -----------------------------------------------------------------------
EmAssert (fNumBitsIn - fCommandBitsSeen - 1 >= 0);
uint16 result = 0;
uint32 mask = 1 << (fNumBitsIn - fCommandBitsSeen - 1);
while (mask)
{
// Shift out a bit.
{
result = (result << 1) | (fBitBufferOut >> 15);
fBitBufferOut <<= 1;
}
// If we haven't seen the Start bit yet, look for it.
if (fCommandBitsSeen == 0)
{
// If we found the Start bit, start counting the
// number of command bits as we stream through them.
if ((mask & fBitBufferIn) != 0)
{
fCommandBitsSeen++;
}
// Otherwise, adjust fNumBitsIn so that when we *do*
// find the Start bit, we know where it is.
else
{
fNumBitsIn--;
}
// If there's a pending conversion, load it into the
// output shift register after receiving the first
// bit after the last bit of the previous command.
this->LoadPendingConversion ();
}
else
{
fCommandBitsSeen++;
// If we've seen 8 bits, process the command, and then
// prepare for the next one.
if (fCommandBitsSeen == 8)
{
fNumBitsIn -= 8;
fCommandBitsSeen = 0;
uint8 command = fBitBufferIn >> fNumBitsIn;
this->ProcessCommand (command);
PRINTF ("After ProcessCommand: fPendingResult = 0x%04X", fPendingResult);
}
}
mask >>= 1;
}
// ----------------------------------------------------------------------
// Return the result.
// ----------------------------------------------------------------------
PRINTF ("result = 0x%04X", result);
return result;
}
// ---------------------------------------------------------------------------
// EmSPISlaveADS784x::ProcessCommand
// ---------------------------------------------------------------------------
void EmSPISlaveADS784x::ProcessCommand (uint8 command)
{
uint16 result = 0;
/*
Command format is:
+-----+-----+-----+-----+-----+-----+-----+-----+
| S | A2 | A1 | A0 | M | Ref | PD1 | PD0 |
+-----+-----+-----+-----+-----+-----+-----+-----+
S = Start Bit. Must be 1.
A2:0 = Channel select bits
M = 12/8 bit mode (1 = 8-bit)
Ref = Single-ended/Differential reference select bit
PD1:0 = Power down mode select bits.
We care about the A2:0 bits, since they tell us what data
is being asked for. We also care about the M bit, as that
determines how many bits we load into fBitBufferOut.
*/
int channel = (command & kChannelBits) >> 4;
EmAssert (channel >= 0 && channel <= 7);
switch (fChannelUse [channel])
{
case kChannelPenX:
case kChannelPenY:
{
result = 0;
break;
}
case kChannelBattery7843:
case kChannelBattery7846:
{
/*
The current batterly level is read with the following:
currentLevel = PrvAverageBattery ( );
PrvAverageBattery() reads the ADC battery value and then
uses a 7/8 averaging method to merge the new value into
previously averaged values.
"currentLevel" is then used to determine "batteryLevel"
as follows:
batteryLevel = (((UInt16)currentLevel + (battDataP->sysBattVoltageStepOffset))
* 100 + (battDataP->sysBattStepsPerVolt)/2)
/ (battDataP->sysBattStepsPerVolt);
"batteryLevel" is then used to search through the sysBattVoltageCurve
array to determine the percent charge.
Thus, in order to determine the "currentLevel" for a desired
"batteryLevel", we solve for it, getting:
currentLevel = (batteryLevel * battDataP->sysBattStepsPerVolt + 50) / 100 -
battDataP->sysBattVoltageStepOffset;
We can then get the "batteryLevel" from the voltage curve
array in the battery table. For example, for a 100% charge,
read sysBattVoltageCurve[10].
*/
CEnableFullAccess munge;
// Get a pointer to the system battery globals and determine
// what version table we're using.
emuptr sysBatteryDataP = EmLowMem_GetGlobal (sysBatteryDataP);
if (sysBatteryDataP)
{
EmAliasSysBatteryDataStructV1<PAS> sysBatteryData (sysBatteryDataP);
UInt16 sysBattDataStructVersion = sysBatteryData.sysBattDataStructVersion;
if (sysBattDataStructVersion <= 3)
{
UInt16 voltageCurve = 0;
UInt16 sysBattStepsPerVolt = 0;
Int16 sysBattVoltageStepOffset = 0;
// Fill out the above variables from the system battery globals,
// sorting out table version differences.
if (sysBattDataStructVersion == 1)
{
EmAliasSysBatteryDataStructV1<PAS> sysBatteryDataV1 (sysBatteryDataP);
voltageCurve = sysBatteryDataV1.sysBattVoltageCurve[10];
sysBattStepsPerVolt = sysBatteryDataV1.sysBattStepsPerVolt;
sysBattVoltageStepOffset = sysBatteryDataV1.sysBattVoltageStepOffset;
}
else if (sysBattDataStructVersion == 2)
{
EmAliasSysBatteryDataStructV2<PAS> sysBatteryDataV2 (sysBatteryDataP);
voltageCurve = sysBatteryDataV2.sysBattVoltageCurve[10];
sysBattStepsPerVolt = sysBatteryDataV2.sysBattStepsPerVolt;
sysBattVoltageStepOffset = sysBatteryDataV2.sysBattVoltageStepOffset;
}
else if (sysBattDataStructVersion == 3)
{
EmAliasSysBatteryDataStructV3<PAS> sysBatteryDataV3 (sysBatteryDataP);
voltageCurve = sysBatteryDataV3.sysBattVoltageCurve[10];
sysBattStepsPerVolt = sysBatteryDataV3.sysBattStepsPerVolt;
sysBattVoltageStepOffset = sysBatteryDataV3.sysBattVoltageStepOffset;
}
else
{
EmAssert (false);
}
PRINTF ("voltageCurve = %d", voltageCurve);
PRINTF ("sysBattStepsPerVolt = %d", sysBattStepsPerVolt);
PRINTF ("sysBattVoltageStepOffset = %d", sysBattVoltageStepOffset);
// Determine the result based on the formula in the comments above.
result = (voltageCurve *
sysBattStepsPerVolt + 50) / 100 -
sysBattVoltageStepOffset;
// Turn this into a 12 bit result.
result <<= 4;
if (fChannelUse [channel] == kChannelBattery7846)
{
result *= 2; // Account for the fact that the Palm OS battery
// tables assume a 5.0V reference voltage, while
// the 7846 uses 2.5V. (?)
result /= 4; // Account for 1:4 voltage divider
}
}
else
{
result = 0x0FFF;
}
}
else
{
result = 0x0FFF;
}
PRINTF ("result = 0x%04X", result);
break;
}
case kChannelDockSerial:
{
// Say that we're undocked.
result = 0x0000;
break;
}
case kChannelDockTwister:
{
// Say that we're undocked.
result = 0x0FFF;
break;
}
case kChannelTemp0:
{
result = 0x0FFF; // !!! Dummy value; need to determine real value
break;
}
case kChannelTemp1:
{
result = 0x0FFF; // !!! Dummy value; need to determine real value
break;
}
default:
EmAssert (false);
break;
}
fPendingResult = result << 4;
fHavePending = true;
}
// ---------------------------------------------------------------------------
// EmSPISlaveADS784x::LoadPendingConversion
// ---------------------------------------------------------------------------
void EmSPISlaveADS784x::LoadPendingConversion (void)
{
// -----------------------------------------------------------------------
// If there's a pending conversion, move it into the output shift register.
// -----------------------------------------------------------------------
if (fHavePending)
{
PRINTF ("Before merging pending: fBitBufferOut = 0x%04X", fBitBufferOut);
fHavePending = false;
fBitBufferOut = fPendingResult;
PRINTF ("After merging pending: fBitBufferOut = 0x%04X", fBitBufferOut);
}
}
|