EJB3 Spatial Tutorial

Spatial EJB3 is a quick investigation to see if it is possible to integrate the Java 5 annotation
approach, Illustration 1,to mark a property of an object as spatial and to delegate to the EJB3
persistence model to store and retrieve this data.

[AType (type = "org.postgis.hibernate. GeometryType™)
[Zolumn (name="location™, coluwmnmbefinition="Geometry™)
public Geometrvy getLocation() |

return location:
K

lllustration 1: Geometry Annotation

The project utilises JBoss and PostGIS, future iterations will look to remove the dependency on JBoss
and Hibernate to incorporate other Application Servers.

The tutorial will be a step by step guide to getting started with EJB3 and Spatial Annotations, it
assumes that the user has little knowledge of Java 5 annotations. Please contribute back to this
document with your comments.

The document will walk through the steps to allow users to post co-ordinates specify their positions to
a JBoss server and for this data to be stored and retrieved from a PostGIS database. Interestingly the
tutorial will use Java 5 annotations to mark the Java POJOs as web services, the security required, and
Python will be the client application.

If you have downloaded the associated source code, then running ant deploy will build and deploy the
application and configuration files to JBoss. (Note: edit paths to match your system).

This document assumes you have already installed PostGIS and PostgreSQL 8.1.x!

Installing JBoss

JBoss Application Server is the #1 most widely used Java application server on the market. Hundreds
of professional open source developers have contributed to the JBoss Application Server over the
vears and community contributors are not only welcome but encouraged. In fact all JBoss employed
contributors to the JBoss Application Server were hired from the community and each of them
contributed to an open source project in one way or another.’

Key benefits of Enterprise Java to the geo-spatial community include;
e Geo-spatial feature persistence using Java Annotations
e Clustering of applications to provide high availability services
e Security, new and integrated using Java Authentication and Authorisation Service (JAAS)
e Transactional Support
e EJB3 is simple!

Install the JBoss Application Server using the web start installer available at
http://labs.jboss.com/portal/jbossas/download this tutorial was written using the 4.0.4 version of
Jboss. Select the EJB3 option as in [llustration 2: JEMS Installer.

http://labs.jboss.com/portal/jbossas/download

C0X

" Selected InstallType Size
. ms al & Full J2EE 1.4 server profile with,,, 73 MBvtes
(") default & base J2EE 1.4 server profile 65 MEvtes
o9 & ejb3 profile supporting the Full ... 62 MBytes
{3 ejb3-clustered & ejb3 profile suppaorting the Full ., 66 MBytes
() jms 8 M3 1.1 server profile, <font c,.. 35 MBytes
JBoss iy L ; .
) ' 1 minimal & minirnal 0% microkernel profile,., 27 MBytes
Application) portal & 15R168 portal service on top a... 70 MBvtes
Server () komcat & Servlet 2.4 container profile, =.., 21 MBytes
The simply
powerful J2EE
application
SEernver
wwwljboss.com
Description
& gh3 profile supporting the full gb3 spec with tomcat. Note, this requires a JOES
runtime and is not a J2EE 1.4 compatible confiouration.

JEoss i The Professional Open Source Company

(Grewas) [Ower] (G]

Hlustration 2: JEMS Installer

Configuration Steps;

e Copy the posgresql and postgis jdbc drivers from postgres home\jdbc to
jboss_home\server\default\lib

e Define an enterprise data source in jboss_home\server\default\deploy by copying the
following XML into geodata-ds,xml (naming convention mydatasourcename-ds.xml)

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
<local-tx-datasource>
<jndi-name>GeoDataDS</jndi-name>
<connection-url>jdbc:postgresql://127.0.0.1:5432/geotest</connection-url>
<driver-class>org.postgis.DriverWrapper</driver-class>
<user-name>geo</user-name>
<password>geo</password>
<metadata>

<type-mapping>PostgreSQL 8.1</type-mapping>

</metadata>

</local-tx-datasource>

</datasources>

Configure PostGIS

This section assumes the user is familiar with setting up a PostGIS database, if not there is a useful

tutorial here (http://www.bostongis.com/?content name=postgis_tut01)

e Create a Postgis database called geotest (or rename the database in the datasource above)

http://www.bostongis.com/?content_name=postgis_tut01

CREATE TABLE people
(
id serial NOT NULL,
name text,
surname text,
"location" geometry,
ingested TIMESTAMP,
CONSTRAINT people_pkey PRIMARY KEY (id),
CONSTRAINT enforce_dims_location CHECK (ndims("location") = 2),
CONSTRAINT enforce_srid_location CHECK (srid("location") = -1)
)
WITHOUT OIDS;
ALTER TABLE people OWNER TO geo;

CREATE INDEX people_location_index ON people USING gist ("location");

Java Application

The tutorial code will use a JMS queue to do the actual data ingestion into PostGIS, however with the
amount of data we are loading it doesn't justify this approach; Queues however are scalable and will
therefore be demonstrated.

JMS queue
Create an XML file called ingest-service.xml in the JBOSS HOME!\server\default\deploy

<?xml version="1.0" encoding="UTF-8"?>
<server>
<mbean code="org.jboss.mq.server.jmx.Queue"
name="jboss.mq.destination:service=Queue,name=ingestQueue">
<depends optional-attribute-name="DestinationManager">jboss.mq:service=DestinationManager</depends>
</mbean>
</server>

The name of this JIMS queue is ingestQueue, and we are going to see how easy it is to do place and
read messages off this queue using EJB3.

The two steps to this integration are to write the Message Driven Bean (MDB) that is going to receive
the data, and the session bean that is going to handle the request to ingest the data.

Message Driven Bean

We are going to create a MDB called IngestMDB using Java 5 annotations. To configure a java bean
in Java 5 we use the following annotations, which can be overridden using a standard ejb-jar.xml if
required.

@MessageDriven(activationConfig={

@ActivationConfigProperty(
propertyName="destinationType",
propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(
propertyName="destination",
propertyValue="queue/ingestQueue"),

@ActivationConfigProperty(
propertyName="acknowledgeMode",
propertyValue="Auto-acknowledge")

b

public class IngestMDB implements MessagelListener {

In the annotations we have specified the queue we are listening to, and the acknowledge mode of the
MDB.

To ingest the data, we are going to parse the message, and create a geometry entity which will be
ingested into PostGIS.

Using annotations we can get the object we need to persist the sent data in one line;

@PersistenceContext (unitName="People")

private EntityManager entityManager;

Where the persistence context is defined in the associated persistence.xml (see source).

POJO Entity Bean

A POJO is a plain old Java object, very simple bean implementing standard Java 'getters' and 'setters'.
The whole aim of this exercise it to be able to persist and retrieve geometry types, and fortunately
thanks to annotations, and the great work in the PostGIS JDBC driver it is easy.

@Entity

@Table (name="people™)
@NamedQuery (name="findPerson",
query="SELECT DISTINCT OBJECT (p) FROM PersonEntity p WHERE ((p.name
= :name) AND (p.surname = :surname)) ORDER BY p.date")
public class PersonEntity {

The entity and the reference table are all defined by annotations, and we use an EJB-QL query to
retrieve objects, JBoss / Hibernate annotations all support native SQL queries.

Question: Do the users want to do spatial queries in PostGIS space, or object space using the Java
Topology Suite?

Having written a custom GeometryType for Hibernate (in the source) we can mark up our location
column as a Geometry

@Type (type = "org.postgis.hibernate.GeometryType")
@Column (name="location", columnDefinition="Geometry")
public Geometry getLocation() {

It is as simple as that, to persist the data we use the entity manager;

entityManager.persist (person);

SOAP Annotations Java Bean

We want python, or another client to be able to talk to the server, and we certainly don't want to be
doing this all by hand :-)

We can use JBossWS which uses standard annotations to mark out beans as SOAP services;

@Stateless

@WebService (
name = "EndpointInterface",
targetNamespace = "http://org.postgis/ejb/UserBean",
serviceName = "PeopleFinder")

@SOAPBinding(style = SOAPBinding.Style.RPC)
public class UserBean implements UserBeanRemote({

If JBoss is running, look at http://localhost:8080/jbossws/ to see your service.

Security can be added by updating JBossWS to the latest version

http://localhost:8080/jbossws/

http://today.java.net/pub/n/JBossws-1.0.1.GA

and annotating the class with (for example)
@SecuritybDomain (value = "JBossWS")

@RunAs (value = "friend")

Python Web Service Client (SOAPpy)

Following the instructions here;

htto: liveintopyil web_services/install html

and noting that fpconst has moved to here!

http://cheeseshop.python.org/pypi/fpconst/0.7.2

we can execute the following code to interact with our web service

from SOAPpy import SOAPProxy

name = 'Joe’

surname = 'Bloggs'

lat = 52.0

lon =0.0

url = "http://localhost:8080/ingest/UserBean’

namespace = 'http://org.postgis/ejb/UserBean’

server = SOAPProxy(url, namespace)
server.ingest(name=name, surname=surname, lat=lat, lon=Ion)
p = server.findPerson(name="Joe"', surname="'Bloggs"')

print p

Executing the following SQL confirms this has persisted to PostGIS;
SELECT id, name, surname, AsText(location), ingested FROM people;

Part 2 of the tutorial will cover Entity Bean Spatial queries, and security in more depth.
Contact:

Norman Barker, norman.barker@gmail.com

http://cheeseshop.python.org/pypi/fpconst/0.7.2
http://www.diveintopython.org/soap_web_services/install.html
http://today.java.net/pub/n/JBossws-1.0.1.GA

	EJB3 Spatial Tutorial
	Installing JBoss
	Configure PostGIS
	Java Application
	JMS queue
	Message Driven Bean

	POJO Entity Bean
	SOAP Annotations Java Bean
	Python Web Service Client (SOAPpy)

