1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/**********************************************************************
*
* PostGIS - Spatial Types for PostgreSQL
* http://postgis.net
*
* PostGIS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* PostGIS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
*
**********************************************************************
*
* Copyright 2015 Daniel Baston <dbaston@gmail.com>
*
**********************************************************************/
#include <string.h>
#include "liblwgeom_internal.h"
typedef struct {
const POINT2D* p1;
const POINT2D* p2;
const POINT2D* p3;
} SUPPORTING_POINTS;
static SUPPORTING_POINTS*
supporting_points_create()
{
SUPPORTING_POINTS* s = lwalloc(sizeof(SUPPORTING_POINTS));
s->p1 = NULL;
s->p2 = NULL;
s->p3 = NULL;
return s;
}
static void
supporting_points_destroy(SUPPORTING_POINTS* s)
{
lwfree(s);
}
static uint32_t
num_supporting_points(SUPPORTING_POINTS* support)
{
uint32_t N = 0;
if (support->p1 != NULL)
N++;
if (support->p2 != NULL)
N++;
if (support->p3 != NULL)
N++;
return N;
}
static int
add_supporting_point(SUPPORTING_POINTS* support, const POINT2D* p)
{
switch(num_supporting_points(support))
{
case 0: support->p1 = p;
break;
case 1: support->p2 = p;
break;
case 2: support->p3 = p;
break;
default: return LW_FAILURE;
}
return LW_SUCCESS;
}
static int
point_inside_circle(const POINT2D* p, const LWBOUNDINGCIRCLE* c)
{
if (!c)
return LW_FALSE;
if (distance2d_pt_pt(p, c->center) > c->radius)
return LW_FALSE;
return LW_TRUE;
}
static double
det(double m00, double m01, double m10, double m11)
{
return m00 * m11 - m01 * m10;
}
static void
circumcenter(const POINT2D* a, const POINT2D* b, const POINT2D* c, POINT2D* result)
{
double cx = c->x;
double cy = c->y;
double ax = a->x - cx;
double ay = a->y - cy;
double bx = b->x - cx;
double by = b->y - cy;
double denom = 2 * det(ax, ay, bx, by);
double numx = det(ay, ax * ax + ay * ay, by, bx * bx + by * by);
double numy = det(ax, ax * ax + ay * ay, bx, bx * bx + by * by);
result->x = cx - numx / denom;
result->y = cy + numy / denom;
}
static void
calculate_mbc_1(const SUPPORTING_POINTS* support, LWBOUNDINGCIRCLE* mbc)
{
mbc->radius = 0;
mbc->center->x = support->p1->x;
mbc->center->y = support->p1->y;
}
static void
calculate_mbc_2(const SUPPORTING_POINTS* support, LWBOUNDINGCIRCLE* mbc)
{
double d1, d2;
mbc->center->x = 0.5*(support->p1->x + support->p2->x);
mbc->center->y = 0.5*(support->p1->y + support->p2->y);
d1 = distance2d_pt_pt(mbc->center, support->p1);
d2 = distance2d_pt_pt(mbc->center, support->p2);
mbc->radius = FP_MAX(d1, d2);
}
static void
calculate_mbc_3(const SUPPORTING_POINTS* support, LWBOUNDINGCIRCLE* mbc)
{
double d1, d2, d3;
circumcenter(support->p1, support->p2, support->p3, mbc->center);
d1 = distance2d_pt_pt(mbc->center, support->p1);
d2 = distance2d_pt_pt(mbc->center, support->p2);
d3 = distance2d_pt_pt(mbc->center, support->p3);
mbc->radius = FP_MAX(FP_MAX(d1, d2), d3);
}
static int
calculate_mbc_from_support(SUPPORTING_POINTS* support, LWBOUNDINGCIRCLE* mbc)
{
switch(num_supporting_points(support))
{
case 0: break;
case 1: calculate_mbc_1(support, mbc);
break;
case 2: calculate_mbc_2(support, mbc);
break;
case 3: calculate_mbc_3(support, mbc);
break;
default: return LW_FAILURE;
}
return LW_SUCCESS;
}
static int
calculate_mbc(const POINT2D** points, uint32_t max_n, SUPPORTING_POINTS* support, LWBOUNDINGCIRCLE* mbc)
{
uint32_t i;
if(!calculate_mbc_from_support(support, mbc))
{
return LW_FAILURE;
}
if (num_supporting_points(support) == 3)
{
/* If we're entering the function with three supporting points already, our circle
* is already fully constrained - we couldn't add another supporting point if we
* needed to. So, there's no point in proceeding further. Welzl (1991) provides
* a much better explanation of why this works.
* */
return LW_SUCCESS;
}
for (i = 0; i < max_n; i++)
{
if (!point_inside_circle(points[i], mbc))
{
/* We've run into a point that isn't inside our circle. To fix this, we'll
* go back in time, and re-run the algorithm for each point we've seen so
* far, with the constraint that the current point must be on the boundary
* of the circle. Then, we'll continue on in this loop with the modified
* circle that by definition includes the current point. */
SUPPORTING_POINTS next_support;
memcpy(&next_support, support, sizeof(SUPPORTING_POINTS));
add_supporting_point(&next_support, points[i]);
if (!calculate_mbc(points, i, &next_support, mbc))
{
return LW_FAILURE;
}
}
}
return LW_SUCCESS;
}
static LWBOUNDINGCIRCLE*
lwboundingcircle_create()
{
LWBOUNDINGCIRCLE* c = lwalloc(sizeof(LWBOUNDINGCIRCLE));
c->center = lwalloc(sizeof(POINT2D));
c->radius = 0.0;
c->center->x = 0.0;
c->center->y = 0.0;
return c;
}
void
lwboundingcircle_destroy(LWBOUNDINGCIRCLE* c)
{
lwfree(c->center);
lwfree(c);
}
LWBOUNDINGCIRCLE*
lwgeom_calculate_mbc(const LWGEOM* g)
{
SUPPORTING_POINTS* support;
LWBOUNDINGCIRCLE* result;
LWPOINTITERATOR* it;
uint32_t num_points;
POINT2D** points;
POINT4D p;
uint32_t i;
int success;
if(g == NULL || lwgeom_is_empty(g))
return LW_FAILURE;
num_points = lwgeom_count_vertices(g);
it = lwpointiterator_create(g);
points = lwalloc(num_points * sizeof(POINT2D*));
for (i = 0; i < num_points; i++)
{
if(!lwpointiterator_next(it, &p))
{
uint32_t j;
for (j = 0; j < i; j++)
{
lwfree(points[j]);
}
lwpointiterator_destroy(it);
lwfree(points);
return LW_FAILURE;
}
points[i] = lwalloc(sizeof(POINT2D));
points[i]->x = p.x;
points[i]->y = p.y;
}
lwpointiterator_destroy(it);
support = supporting_points_create();
result = lwboundingcircle_create();
/* Technically, a randomized algorithm would demand that we shuffle the input points
* before we call calculate_mbc(). However, we make the (perhaps poor) assumption that
* the order we happen to find the points is as good as random, or close enough.
* */
success = calculate_mbc((const POINT2D**) points, num_points, support, result);
for (i = 0; i < num_points; i++)
{
lwfree(points[i]);
}
lwfree(points);
supporting_points_destroy(support);
if (!success)
return NULL;
return result;
}
|