1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/**********************************************************************
*
* PostGIS - Spatial Types for PostgreSQL
* http://postgis.net
*
* PostGIS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* PostGIS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
*
**********************************************************************
*
* Copyright 2015 Daniel Baston <dbaston@gmail.com>
*
**********************************************************************/
#include <float.h>
#include "liblwgeom_internal.h"
#include "lwgeom_log.h"
static void
calc_distances_3d(const POINT3D* curr, const POINT3D* points, uint32_t npoints, double* distances)
{
uint32_t i;
for (i = 0; i < npoints; i++)
{
distances[i] = distance3d_pt_pt(curr, &points[i]);
}
}
static double
iterate_3d(POINT3D* curr, const POINT3D* points, uint32_t npoints, double* distances)
{
uint32_t i;
POINT3D next = { 0, 0, 0 };
double delta;
double denom = 0;
char hit = LW_FALSE;
calc_distances_3d(curr, points, npoints, distances);
for (i = 0; i < npoints; i++)
{
if (distances[i] == 0)
hit = LW_TRUE;
else
denom += 1.0 / distances[i];
}
for (i = 0; i < npoints; i++)
{
if (distances[i] > 0)
{
next.x += (points[i].x / distances[i]) / denom;
next.y += (points[i].y / distances[i]) / denom;
next.z += (points[i].z / distances[i]) / denom;
}
}
/* If any of the intermediate points in the calculation is found in the
* set of input points, the standard Weiszfeld method gets stuck with a
* divide-by-zero.
*
* To get ourselves out of the hole, we follow an alternate procedure to
* get the next iteration, as described in:
*
* Vardi, Y. and Zhang, C. (2011) "A modified Weiszfeld algorithm for the
* Fermat-Weber location problem." Math. Program., Ser. A 90: 559-566.
* DOI 10.1007/s101070100222
*
* Available online at the time of this writing at
* http://www.stat.rutgers.edu/home/cunhui/papers/43.pdf
*/
if (hit)
{
double dx = 0;
double dy = 0;
double dz = 0;
double r_inv;
POINT3D alt;
for (i = 0; i < npoints; i++)
{
if (distances[i] > 0)
{
dx += (points[i].x - curr->x) / distances[i];
dy += (points[i].y - curr->y) / distances[i];
dz += (points[i].y - curr->z) / distances[i];
}
}
r_inv = 1.0 / sqrt ( dx*dx + dy*dy + dz*dz );
alt.x = FP_MAX(0, 1.0 - r_inv)*next.x + FP_MIN(1.0, r_inv)*curr->x;
alt.y = FP_MAX(0, 1.0 - r_inv)*next.y + FP_MIN(1.0, r_inv)*curr->y;
alt.z = FP_MAX(0, 1.0 - r_inv)*next.z + FP_MIN(1.0, r_inv)*curr->z;
next = alt;
}
delta = distance3d_pt_pt(curr, &next);
curr->x = next.x;
curr->y = next.y;
curr->z = next.z;
return delta;
}
static POINT3D
init_guess(const POINT3D* points, uint32_t npoints)
{
POINT3D guess = { 0, 0, 0 };
uint32_t i;
for (i = 0; i < npoints; i++)
{
guess.x += points[i].x / npoints;
guess.y += points[i].y / npoints;
guess.z += points[i].z / npoints;
}
return guess;
}
static POINT3D*
lwmpoint_extract_points_3d(const LWMPOINT* g, uint32_t* ngeoms)
{
uint32_t i;
uint32_t n = 0;
int is_3d = lwgeom_has_z((LWGEOM*) g);
POINT3D* points = lwalloc(g->ngeoms * sizeof(POINT3D));
for (i = 0; i < g->ngeoms; i++)
{
LWGEOM* subg = lwcollection_getsubgeom((LWCOLLECTION*) g, i);
if (!lwgeom_is_empty(subg))
{
getPoint3dz_p(((LWPOINT*) subg)->point, 0, (POINT3DZ*) &points[n++]);
if (!is_3d)
points[n-1].z = 0.0; /* in case the getPoint functions return NaN in the future for 2d */
}
}
if (ngeoms != NULL)
*ngeoms = n;
return points;
}
LWPOINT*
lwmpoint_median(const LWMPOINT* g, double tol, uint32_t max_iter, char fail_if_not_converged)
{
uint32_t npoints; /* we need to count this ourselves so we can exclude empties */
uint32_t i;
double delta = DBL_MAX;
double* distances;
POINT3D* points = lwmpoint_extract_points_3d(g, &npoints);
POINT3D median;
if (npoints == 0)
{
lwfree(points);
return lwpoint_construct_empty(g->srid, 0, 0);
}
median = init_guess(points, npoints);
distances = lwalloc(npoints * sizeof(double));
for (i = 0; i < max_iter && delta > tol; i++)
{
delta = iterate_3d(&median, points, npoints, distances);
}
lwfree(points);
lwfree(distances);
if (fail_if_not_converged && delta > tol)
{
lwerror("Median failed to converge within %g after %d iterations.", tol, max_iter);
return NULL;
}
if (lwgeom_has_z((LWGEOM*) g))
{
return lwpoint_make3dz(g->srid, median.x, median.y, median.z);
}
else
{
return lwpoint_make2d(g->srid, median.x, median.y);
}
}
LWPOINT*
lwgeom_median(const LWGEOM* g, double tol, uint32_t max_iter, char fail_if_not_converged)
{
switch( lwgeom_get_type(g) )
{
case POINTTYPE:
return lwpoint_clone(lwgeom_as_lwpoint(g));
case MULTIPOINTTYPE:
return lwmpoint_median(lwgeom_as_lwmpoint(g), tol, max_iter, fail_if_not_converged);
default:
lwerror("Unsupported geometry type in lwgeom_median");
return NULL;
}
}
|