File: lwkmeans.c

package info (click to toggle)
postgis 2.3.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 58,660 kB
  • ctags: 10,181
  • sloc: ansic: 132,858; sql: 131,148; xml: 46,460; sh: 4,832; perl: 4,476; makefile: 2,749; python: 1,198; yacc: 442; lex: 131
file content (236 lines) | stat: -rw-r--r-- 5,428 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <float.h>
#include <math.h>

#include "kmeans.h"
#include "liblwgeom_internal.h"


static double lwkmeans_pt_distance(const Pointer a, const Pointer b)
{
	POINT2D *pa = (POINT2D*)a;
	POINT2D *pb = (POINT2D*)b;

	double dx = (pa->x - pb->x);
	double dy = (pa->y - pb->y);

	return dx*dx + dy*dy;
}

static int lwkmeans_pt_closest(const Pointer * objs, size_t num_objs, const Pointer a)
{
	int i;
	double d;
	double d_closest = FLT_MAX;
	int closest = -1;

	assert(num_objs > 0);

	for (i = 0; i < num_objs; i++)
	{
		/* Skip nulls/empties */
		if (!objs[i])
			continue;

		d = lwkmeans_pt_distance(objs[i], a);
		if (d < d_closest)
		{
			d_closest = d;
			closest = i;
		}
	}

	return closest;
}

static void lwkmeans_pt_centroid(const Pointer * objs, const int * clusters, size_t num_objs, int cluster, Pointer centroid)
{
	int i;
	int num_cluster = 0;
	POINT2D sum;
	POINT2D **pts = (POINT2D**)objs;
	POINT2D *center = (POINT2D*)centroid;

	sum.x = sum.y = 0.0;

	if (num_objs <= 0) return;

	for (i = 0; i < num_objs; i++)
	{
		/* Skip points that are not of interest */
		if (clusters[i] != cluster) continue;

		sum.x += pts[i]->x;
		sum.y += pts[i]->y;
		num_cluster++;
	}
	if (num_cluster)
	{
		sum.x /= num_cluster;
		sum.y /= num_cluster;
		*center = sum;
	}
	return;
}


int *
lwgeom_cluster_2d_kmeans(const LWGEOM **geoms, int ngeoms, int k)
{
	int i;
	int num_centroids = 0;
	LWGEOM **centroids;
	POINT2D *centers_raw;
	const POINT2D *cp;
	POINT2D min = { DBL_MAX,   DBL_MAX };
	POINT2D max = { -DBL_MAX, -DBL_MAX };
	double dx, dy;
	kmeans_config config;
	kmeans_result result;
	int *seen;
	int sidx = 0;

	assert(k>0);
	assert(ngeoms>0);
	assert(geoms);
	
	if (ngeoms<k)
	{
		lwerror("%s: number of geometries is less than the number of clusters requested", __func__);
	}

	/* We'll hold the temporary centroid objects here */
	centroids = lwalloc(sizeof(LWGEOM*) * ngeoms);

	/* The vector of cluster means. We have to allocate a */
	/* chunk of memory for these because we'll be mutating them */
	/* in the kmeans algorithm */
	centers_raw = lwalloc(sizeof(POINT2D) * k);

	/* K-means configuration setup */
	config.objs = lwalloc(sizeof(Pointer) * ngeoms);
	config.num_objs = ngeoms;
	config.clusters = lwalloc(sizeof(int) * ngeoms);
	config.centers = lwalloc(sizeof(Pointer) * k);
	config.k = k;
	config.max_iterations = 0;
	config.distance_method = lwkmeans_pt_distance;
	config.centroid_method = lwkmeans_pt_centroid;

	/* Clean the memory */
	memset(config.objs, 0, sizeof(Pointer) * ngeoms);
	memset(config.clusters, 0, sizeof(int) * ngeoms);
	memset(config.centers, 0, sizeof(Pointer) * k);

	/* Prepare the list of object pointers for K-means */
	for (i = 0; i < ngeoms; i++)
	{
		const LWGEOM *geom = geoms[i];
		LWPOINT *lwpoint;

		/* Null/empty geometries get a NULL pointer */
		if ((!geom) || lwgeom_is_empty(geom))
		{
			config.objs[i] = NULL;
			continue;
		}

		/* If the input is a point, use its coordinates */
		/* If its not a point, convert it to one via centroid */
		if (lwgeom_get_type(geom) != POINTTYPE)
		{
			LWGEOM *centroid = lwgeom_centroid(geom);
			if ((!centroid) || lwgeom_is_empty(centroid))
			{
				config.objs[i] = NULL;
				continue;
			}
			centroids[num_centroids++] = centroid;
			lwpoint = lwgeom_as_lwpoint(centroid);
		}
		else
		{
			lwpoint = lwgeom_as_lwpoint(geom);
		}

		/* Store a pointer to the POINT2D we are interested in */
		cp = getPoint2d_cp(lwpoint->point, 0);
		config.objs[i] = (Pointer)cp;

		/* Since we're already here, let's calculate the extrema of the set */
		if (cp->x < min.x) min.x = cp->x;
		if (cp->y < min.y) min.y = cp->y;
		if (cp->x > max.x) max.x = cp->x;
		if (cp->y > max.y) max.y = cp->y;
	}

	/*
	* We map a uniform assignment of points in the area covered by the set
	* onto actual points in the set
	*/
	dx = (max.x - min.x)/k;
	dy = (max.y - min.y)/k;
	seen = lwalloc(sizeof(int)*config.k);
	for (i = 0; i < k; i++)
	{
		int closest;
		POINT2D p;
		int j;

		/* Calculate a point in the range */
		p.x = min.x + dx * (i + 0.5);
		p.y = min.y + dy * (i + 0.5);

		/* Find the data point closest to the calculated point */
		closest = lwkmeans_pt_closest(config.objs, config.num_objs, &p);
		
		/* If something is terrible wrong w/ data, cannot find a closest */
		if (closest < 0)
			lwerror("unable to calculate cluster seed points, too many NULLs or empties?");

		/* Ensure we aren't already using that point as a seed */
		j = 0;
		while(j < sidx)
		{
			if (seen[j] == closest)
			{
				closest = (closest + 1) % config.num_objs;
			}
			else
			{
				j++;
			}
		}
		seen[sidx++] = closest;

		/* Copy the point coordinates into the initial centers array */
		/* This is ugly, but the centers array is an array of */
		/* pointers to points, not an array of points */
		centers_raw[i] = *((POINT2D*)config.objs[closest]);
		config.centers[i] = &(centers_raw[i]);
	}

	result = kmeans(&config);

	/* Before error handling, might as well clean up all the inputs */
	lwfree(config.objs);
	lwfree(config.centers);
	lwfree(centers_raw);
	lwfree(centroids);
	lwfree(seen);

	/* Good result */
	if (result == KMEANS_OK)
		return config.clusters;

	/* Bad result, not going to need the answer */
	lwfree(config.clusters);
	if (result == KMEANS_EXCEEDED_MAX_ITERATIONS)
	{
		lwerror("%s did not converge after %d iterations", __func__, config.max_iterations);
		return NULL;
	}

	/* Unknown error */
	return NULL;
}