1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/**********************************************************************
*
* PostGIS - Spatial Types for PostgreSQL
* http://postgis.net
*
* PostGIS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* PostGIS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
*
**********************************************************************
*
* Copyright (C) 2009-2012 Paul Ramsey <pramsey@cleverelephant.ca>
*
**********************************************************************/
#include "liblwgeom_internal.h"
#include "lwgeom_log.h"
#include "lwtree.h"
/**
* Internal nodes have their point references set to NULL.
*/
static int rect_node_is_leaf(const RECT_NODE *node)
{
return (node->p1 != NULL);
}
/**
* Recurse from top of node tree and free all children.
* does not free underlying point array.
*/
void rect_tree_free(RECT_NODE *node)
{
if ( node->left_node )
{
rect_tree_free(node->left_node);
node->left_node = 0;
}
if ( node->right_node )
{
rect_tree_free(node->right_node);
node->right_node = 0;
}
lwfree(node);
}
/* 0 => no containment */
int rect_tree_contains_point(const RECT_NODE *node, const POINT2D *pt, int *on_boundary)
{
if ( FP_CONTAINS_INCL(node->ymin, pt->y, node->ymax) )
{
if ( rect_node_is_leaf(node) )
{
double side = lw_segment_side(node->p1, node->p2, pt);
if ( side == 0 )
*on_boundary = LW_TRUE;
return (side < 0 ? -1 : 1 );
}
else
{
return rect_tree_contains_point(node->left_node, pt, on_boundary) +
rect_tree_contains_point(node->right_node, pt, on_boundary);
}
}
/* printf("NOT in measure range\n"); */
return 0;
}
int rect_tree_intersects_tree(const RECT_NODE *n1, const RECT_NODE *n2)
{
LWDEBUGF(4,"n1 (%.9g %.9g,%.9g %.9g) vs n2 (%.9g %.9g,%.9g %.9g)",n1->xmin,n1->ymin,n1->xmax,n1->ymax,n2->xmin,n2->ymin,n2->xmax,n2->ymax);
/* There can only be an edge intersection if the rectangles overlap */
if ( ! ( FP_GT(n1->xmin, n2->xmax) || FP_GT(n2->xmin, n1->xmax) || FP_GT(n1->ymin, n2->ymax) || FP_GT(n2->ymin, n1->ymax) ) )
{
LWDEBUG(4," interaction found");
/* We can only test for a true intersection if the nodes are both leaf nodes */
if ( rect_node_is_leaf(n1) && rect_node_is_leaf(n2) )
{
LWDEBUG(4," leaf node test");
/* Check for true intersection */
if ( lw_segment_intersects(n1->p1, n1->p2, n2->p1, n2->p2) )
return LW_TRUE;
else
return LW_FALSE;
}
else
{
LWDEBUG(4," internal node found, recursing");
/* Recurse to children */
if ( rect_node_is_leaf(n1) )
{
if ( rect_tree_intersects_tree(n2->left_node, n1) || rect_tree_intersects_tree(n2->right_node, n1) )
return LW_TRUE;
else
return LW_FALSE;
}
else
{
if ( rect_tree_intersects_tree(n1->left_node, n2) || rect_tree_intersects_tree(n1->right_node, n2) )
return LW_TRUE;
else
return LW_FALSE;
}
}
}
else
{
LWDEBUG(4," no interaction found");
return LW_FALSE;
}
}
/**
* Create a new leaf node, calculating a measure value for each point on the
* edge and storing pointers back to the end points for later.
*/
RECT_NODE* rect_node_leaf_new(const POINTARRAY *pa, int i)
{
POINT2D *p1, *p2;
RECT_NODE *node;
p1 = (POINT2D*)getPoint_internal(pa, i);
p2 = (POINT2D*)getPoint_internal(pa, i+1);
/* Zero length edge, doesn't get a node */
if ( FP_EQUALS(p1->x, p2->x) && FP_EQUALS(p1->y, p2->y) )
return NULL;
node = lwalloc(sizeof(RECT_NODE));
node->p1 = p1;
node->p2 = p2;
node->xmin = FP_MIN(p1->x,p2->x);
node->xmax = FP_MAX(p1->x,p2->x);
node->ymin = FP_MIN(p1->y,p2->y);
node->ymax = FP_MAX(p1->y,p2->y);
node->left_node = NULL;
node->right_node = NULL;
return node;
}
/**
* Create a new internal node, calculating the new measure range for the node,
* and storing pointers to the child nodes.
*/
RECT_NODE* rect_node_internal_new(RECT_NODE *left_node, RECT_NODE *right_node)
{
RECT_NODE *node = lwalloc(sizeof(RECT_NODE));
node->p1 = NULL;
node->p2 = NULL;
node->xmin = FP_MIN(left_node->xmin, right_node->xmin);
node->xmax = FP_MAX(left_node->xmax, right_node->xmax);
node->ymin = FP_MIN(left_node->ymin, right_node->ymin);
node->ymax = FP_MAX(left_node->ymax, right_node->ymax);
node->left_node = left_node;
node->right_node = right_node;
return node;
}
/**
* Build a tree of nodes from a point array, one node per edge, and each
* with an associated measure range along a one-dimensional space. We
* can then search that space as a range tree.
*/
RECT_NODE* rect_tree_new(const POINTARRAY *pa)
{
int num_edges, num_children, num_parents;
int i, j;
RECT_NODE **nodes;
RECT_NODE *node;
RECT_NODE *tree;
if ( pa->npoints < 2 )
{
return NULL;
}
/*
** First create a flat list of nodes, one per edge.
** For each vertex, transform into our one-dimensional measure.
** Hopefully, when projected, the points turn into a fairly
** uniformly distributed collection of measures.
*/
num_edges = pa->npoints - 1;
nodes = lwalloc(sizeof(RECT_NODE*) * pa->npoints);
j = 0;
for ( i = 0; i < num_edges; i++ )
{
node = rect_node_leaf_new(pa, i);
if ( node ) /* Not zero length? */
{
nodes[j] = node;
j++;
}
}
/*
** If we sort the nodelist first, we'll get a more balanced tree
** in the end, but at the cost of sorting. For now, we just
** build the tree knowing that point arrays tend to have a
** reasonable amount of sorting already.
*/
num_children = j;
num_parents = num_children / 2;
while ( num_parents > 0 )
{
j = 0;
while ( j < num_parents )
{
/*
** Each new parent includes pointers to the children, so even though
** we are over-writing their place in the list, we still have references
** to them via the tree.
*/
nodes[j] = rect_node_internal_new(nodes[2*j], nodes[(2*j)+1]);
j++;
}
/* Odd number of children, just copy the last node up a level */
if ( num_children % 2 )
{
nodes[j] = nodes[num_children - 1];
num_parents++;
}
num_children = num_parents;
num_parents = num_children / 2;
}
/* Take a reference to the head of the tree*/
tree = nodes[0];
/* Free the old list structure, leaving the tree in place */
lwfree(nodes);
return tree;
}
|