1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
|
<?xml version="1.0" encoding="UTF-8"?>
<sect1 id="using_postgis_dbmanagement">
<title>Data Management</title>
<sect2 id="RefObject">
<title>GIS Objects</title>
<para>The GIS objects supported by PostGIS are a superset of the "Simple
Features" standard defined by the OpenGIS Consortium (OGC).
PostGIS supports all the objects and functions specified in the OGC
"Simple Features for SQL" specification (SFS).</para>
<para>PostGIS extends the standard with support for embedded SRID information.</para>
<sect3 id="OpenGISWKBWKT">
<title>OpenGIS WKB and WKT</title>
<para>The OpenGIS specification defines two standard ways of expressing
spatial objects: the Well-Known Text (WKT) form and the Well-Known
Binary (WKB) form. Both WKT and WKB include information about the type
of the object and the coordinates which form the object.</para>
<para>Examples of the text representations (WKT) of the spatial objects
of the features are as follows:</para>
<itemizedlist>
<listitem>
<para>POINT(0 0)</para>
</listitem>
<listitem>
<para>POINT Z (0 0 0)</para>
</listitem>
<listitem>
<para>POINT ZM (0 0 0 0)</para>
</listitem>
<listitem>
<para>LINESTRING(0 0,1 1,1 2)</para>
</listitem>
<listitem>
<para>POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))</para>
</listitem>
<listitem>
<para>MULTIPOINT((0 0),(1 2))</para>
</listitem>
<listitem>
<para>MULTIPOINT Z ((0 0 0),(1 2 3))</para>
</listitem>
<listitem>
<para>MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))</para>
</listitem>
<listitem>
<para>MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))</para>
</listitem>
<listitem>
<para>GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))</para>
</listitem>
</itemizedlist>
<para>The OpenGIS specification also requires that the internal storage
format of spatial objects include a spatial referencing system
identifier (SRID). The SRID is required when creating spatial objects
for insertion into the database.</para>
<para>Input/Output of these formats are available using the following
interfaces:</para>
<programlisting>bytea WKB = ST_AsBinary(geometry);
text WKT = ST_AsText(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);
geometry = ST_GeometryFromText(text WKT, SRID);</programlisting>
<para>For example, a valid insert statement to create and insert an OGC
spatial object would be:</para>
<programlisting>INSERT INTO geotable ( the_geom, the_name )
VALUES ( ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');</programlisting>
</sect3>
<sect3 id="EWKB_EWKT">
<title>PostGIS EWKB, EWKT and Canonical Forms</title>
<para>First OpenGIS specifications (prior to 1.2.0) only support 2D geometries,
and the associated SRID is *never* embedded in the input/output representations.</para>
<para>Even though the last OpenGIS specification 1.2.1 supports 3DM and 3DZ coordinates
specifing ZM qualifiers, it does not include yet the associated SRID in the
input/output representations.</para>
<para>PostGIS extended formats add 3DM, 3DZ, 4D coordinates support and embedded
SRID information. However, PostGIS EWKB/EWKT outputs have several peculiarities:</para>
<itemizedlist>
<listitem>
<para>For 3DZ geometries they will drop the Z qualifier:</para>
<para>OpenGIS: POINT Z (1 2 3)</para>
<para>EWKB/EWKT: POINT(1 2 3)</para>
</listitem>
<listitem>
<para>For 3DM geometries they will keep the M qualifier:</para>
<para>OpenGIS: POINT M (1 2 3)</para>
<para>EWKB/EWKT: POINTM(1 2 3)</para>
</listitem>
<listitem>
<para>For 4D geometries they will drop the ZM qualifiers:</para>
<para>OpenGIS: POINT ZM (1 2 3 4)</para>
<para>EWKB/EWKT: POINT(1 2 3 4)</para>
</listitem>
</itemizedlist>
<para>By doing this, PostGIS EWKB/EWKT avoids over-specifying dimensionality and a whole
categories of potential errors that ISO admits, e.g.:</para>
<itemizedlist>
<listitem>
<para>POINT ZM (1 1)</para>
</listitem>
<listitem>
<para>POINT ZM (1 1 1)</para>
</listitem>
<listitem>
<para>POINT (1 1 1 1)</para>
</listitem>
</itemizedlist>
<caution>
<para>PostGIS extended formats are currently superset of the OGC one (every valid WKB/WKT is a valid EWKB/EWKT)
but this might vary in the future, specifically if OGC comes out with a new format conflicting with our
extensions. Thus you SHOULD NOT rely on this feature!</para>
</caution>
<para>Examples of the text representations (EWKT) of the extended
spatial objects of the features are as follows.</para>
<itemizedlist>
<listitem>
<para>POINT(0 0 0) -- XYZ</para>
</listitem>
<listitem>
<para>SRID=32632;POINT(0 0) -- XY with SRID</para>
</listitem>
<listitem>
<para>POINTM(0 0 0) -- XYM</para>
</listitem>
<listitem>
<para>POINT(0 0 0 0) -- XYZM</para>
</listitem>
<listitem>
<para>SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID</para>
</listitem>
<listitem>
<para>MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4
1))</para>
</listitem>
<listitem>
<para>POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2
0,1 1 0))</para>
</listitem>
<listitem>
<para>MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2
0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))</para>
</listitem>
<listitem>
<para>GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )</para>
</listitem>
<listitem>
<para>MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )</para>
</listitem>
<listitem>
<para>POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )</para>
</listitem>
<listitem>
<para>TRIANGLE ((0 0, 0 9, 9 0, 0 0))</para>
</listitem>
<listitem>
<para>TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )</para>
</listitem>
</itemizedlist>
<para>Conversion between these formats is available using the following interfaces:</para>
<programlisting>bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);</programlisting>
<para>For example, a valid insert statement to create and insert a
PostGIS spatial object would be:</para>
<programlisting>INSERT INTO geotable ( the_geom, the_name )
VALUES ( ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place' )</programlisting>
<para>The "canonical forms" of a PostgreSQL type are the representations
you get with a simple query (without any function call) and the one
which is guaranteed to be accepted with a simple insert, update or copy.
For the PostGIS 'geometry' type these are:
<programlisting>- Output
- binary: EWKB
ascii: HEXEWKB (EWKB in hex form)
- Input
- binary: EWKB
ascii: HEXEWKB|EWKT </programlisting></para>
<para>For example this statement reads EWKT and returns HEXEWKB in the
process of canonical ascii input/output:</para>
<programlisting>=# SELECT 'SRID=4;POINT(0 0)'::geometry;
geometry
----------------------------------------------------
01010000200400000000000000000000000000000000000000
(1 row)</programlisting>
</sect3>
<sect3 id="SQL_MM_Part3">
<title>SQL-MM Part 3</title>
<para>The SQL Multimedia Applications Spatial specification extends the
simple features for SQL spec by defining a number of circularly
interpolated curves.</para>
<para>The SQL-MM definitions include 3DM, 3DZ and 4D coordinates, but do
not allow the embedding of SRID information.</para>
<para>The Well-Known Text extensions are not yet fully supported.
Examples of some simple curved geometries are shown below:</para>
<itemizedlist>
<listitem>
<para>CIRCULARSTRING(0 0, 1 1, 1 0)</para>
<para>CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)</para>
<para>The CIRCULARSTRING is the basic curve type, similar to a
LINESTRING in the linear world. A single segment required three
points, the start and end points (first and third) and any other
point on the arc. The exception to this is for a closed circle,
where the start and end points are the same. In this case the
second point MUST be the center of the arc, ie the opposite side of
the circle. To chain arcs together, the last point of the previous
arc becomes the first point of the next arc, just like in
LINESTRING. This means that a valid circular string must have an
odd number of points greater than 1.</para>
</listitem>
<listitem>
<para>COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))</para>
<para>A compound curve is a single, continuous curve that has both
curved (circular) segments and linear segments. That means that
in addition to having well-formed components, the end point of
every component (except the last) must be coincident with the
start point of the following component.</para>
</listitem>
<listitem>
<para>CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3
3, 3 1, 1 1))</para>
<para>Example compound curve in a curve polygon:
CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),(4 3, 4 5, 1 4, 0 0)),
CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1) )
</para>
<para>A CURVEPOLYGON is just like a polygon, with an outer ring
and zero or more inner rings. The difference is that a ring can
take the form of a circular string, linear string or compound
string.</para>
<para>As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.</para>
</listitem>
<listitem>
<para>MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))</para>
<para>The MULTICURVE is a collection of curves, which can include
linear strings, circular strings or compound strings.</para>
</listitem>
<listitem>
<para>MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0
0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10, 10 10),(11 11, 11.5
11, 11 11.5, 11 11)))</para>
<para>This is a collection of surfaces, which can be (linear)
polygons or curve polygons.</para>
</listitem>
</itemizedlist>
<note>
<para>All floating point comparisons within the SQL-MM implementation
are performed to a specified tolerance, currently 1E-8.</para>
</note>
</sect3>
</sect2>
<sect2 id="PostGIS_Geography">
<title>PostGIS Geography Type</title>
<para>The geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units (degrees). </para>
<para>The basis for the PostGIS geometry type is a plane. The shortest path between two points on the plane is a straight line. That means calculations on geometries (areas, distances, lengths, intersections, etc) can be calculated using cartesian mathematics and straight line vectors.</para>
<para>The basis for the PostGIS geographic type is a sphere. The shortest path between two points on the sphere is a great circle arc. That means that calculations on geographies (areas, distances, lengths, intersections, etc) must be calculated on the sphere, using more complicated mathematics. For more accurate measurements, the calculations must take the actual spheroidal shape of the world into account.</para>
<para>Because the underlying mathematics is much more complicated, there are fewer functions defined for the geography type than for the geometry type. Over time, as new algorithms are added, the capabilities of the geography type will expand.</para>
<para>It uses a data type called <varname>geography</varname>. None of the GEOS functions support the <varname>geography</varname>
type. As a workaround one can convert back and forth between geometry and geography types.</para>
<para>Prior to PostGIS 2.2, the geography type only supported WGS 84 long lat (SRID:4326).
For PostGIS 2.2 and above, any long/lat based spatial reference system defined in the <varname>spatial_ref_sys</varname> table can be used.
You can even add your own custom spheroidal spatial reference system as described in <ulink url="http://www.bostongis.com/blog/index.php?/archives/266-geography-type-is-not-limited-to-earth.html">geography type is not limited to earth</ulink>.</para>
<para>Regardless which spatial reference system you use, the units returned by the measurement (<xref linkend="ST_Distance" />, <xref linkend="ST_Length" />, <xref linkend="ST_Perimeter" />, <xref linkend="ST_Area" />) and for input of <xref linkend="ST_DWithin" /> are in meters.</para>
<para>The geography type uses the PostgreSQL typmod definition format so that a table with a geography field
can be added in a single step. All the standard OGC formats except for curves are supported.</para>
<sect3 id="Geography_Basics">
<title>Geography Basics</title>
<para>The geography type does not support curves, TINS, or POLYHEDRALSURFACEs, but other geometry types are supported. Standard geometry type data will autocast to geography if it is of SRID 4326. You can also use the EWKT and EWKB
conventions to insert data.</para>
<itemizedlist>
<listitem>
<para>POINT: Creating a table with 2D point geography when srid is not specified defaults to 4326 WGS 84 long lat:</para>
<para><programlisting>CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );</programlisting></para>
<para>POINT: Creating a table with 2D point geography in NAD83 longlat:</para>
<para><programlisting>CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );</programlisting></para>
<para>Creating a table with z coordinate point and explicitly specifying srid</para>
<para><programlisting>CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );</programlisting></para>
</listitem>
<listitem>
<para>LINESTRING</para>
<para><programlisting>CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );</programlisting></para>
</listitem>
<listitem>
<para>POLYGON</para>
<para><programlisting>--polygon NAD 1927 long lat
CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );</programlisting></para>
</listitem>
<listitem>
<para>MULTIPOINT</para>
</listitem>
<listitem>
<para>MULTILINESTRING</para>
</listitem>
<listitem>
<para>MULTIPOLYGON</para>
</listitem>
<listitem>
<para>GEOMETRYCOLLECTION</para>
</listitem>
<!-- TODO: Add other examples -->
</itemizedlist>
<para>The geography fields get registered in the <varname>geography_columns</varname> system view.</para>
<para>Now, check the "geography_columns" view and see that your table is listed.</para>
<para>You can create a new table with a GEOGRAPHY column using the CREATE TABLE syntax.</para>
<para>
<programlisting>CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR(64),
location GEOGRAPHY(POINT,4326)
);</programlisting>
</para>
<para>Note that the location column has type GEOGRAPHY and that geography type supports two optional modifiers: a type modifier that restricts the kind of shapes and dimensions allowed in the column; an SRID modifier that restricts the coordinate reference identifier to a particular number.</para>
<para>Allowable values for the type modifier are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON. The modifier also supports dimensionality restrictions through suffixes: Z, M and ZM. So, for example a modifier of 'LINESTRINGM' would only allow line strings with three dimensions in, and would treat the third dimension as a measure.
Similarly, 'POINTZM' would expect four dimensional data.</para>
<para>If you do not specify an SRID, the SRID will default to 4326 WGS 84 long/lat will be used, and all calculations will proceed using WGS84.</para>
<para>Once you have created your table, you can see it in the GEOGRAPHY_COLUMNS table:</para>
<para><programlisting>
-- See the contents of the metadata view
SELECT * FROM geography_columns;</programlisting></para>
<para>You can insert data into the table the same as you would if it was using a GEOMETRY column:</para>
<para><programlisting>-- Add some data into the test table
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');</programlisting></para>
<para>Creating an index works the same as GEOMETRY.
PostGIS will note that the column type is GEOGRAPHY and create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.</para>
<para><programlisting>-- Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST ( location );</programlisting>
</para>
<para>Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values should be expected in meters (or square meters for areas).</para>
<para><programlisting>-- Show a distance query and note, London is outside the 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);</programlisting>
</para>
<para>You can see the power of GEOGRAPHY in action by calculating how close a plane flying from Seattle to London (LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)).</para>
<para><programlisting>-- Distance calculation using GEOGRAPHY (122.2km)
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)'::geography);</programlisting>
</para>
<para><programlisting>-- Distance calculation using GEOMETRY (13.3 "degrees")
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)'::geometry);</programlisting>
</para>
<para>Testing different lon/lat projects.
Any long lat spatial reference system listed in <varname>spatial_ref_sys</varname> table is allowed.</para>
<para> <programlisting>-- NAD 83 lon/lat
SELECT 'SRID=4269;POINT(-123 34)'::geography;
geography
----------------------------------------------------
0101000020AD1000000000000000C05EC00000000000004140
(1 row)</programlisting>
<programlisting>-- NAD27 lon/lat
SELECT 'SRID=4267;POINT(-123 34)'::geography;
geography
----------------------------------------------------
0101000020AB1000000000000000C05EC00000000000004140
(1 row)</programlisting>
<programlisting>-- NAD83 UTM zone meters, yields error since its a meter based projection
SELECT 'SRID=26910;POINT(-123 34)'::geography;
ERROR: Only lon/lat coordinate systems are supported in geography.
LINE 1: SELECT 'SRID=26910;POINT(-123 34)'::geography;</programlisting></para>
<para>The GEOGRAPHY type calculates the true shortest distance over the sphere between Reykjavik and the great circle flight path between Seattle and London.</para>
<para> <ulink url="http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR">Great Circle mapper</ulink>
The GEOMETRY type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to London plotted on a flat map of the world. The nominal units of the result might be called "degrees", but the result doesn't correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.</para>
</sect3>
<sect3 id="PostGIS_GeographyVSGeometry">
<title>When to use Geography Data type over Geometry data type</title>
<para>The geography type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.</para>
<para>The type you choose should be conditioned on the expected working area of the application you are building. Will your data span the globe or a large continental area, or is it local to a state, county or municipality? </para>
<itemizedlist>
<listitem><para>If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the best solution, in terms of performance and functionality available.</para></listitem>
<listitem><para>If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without having to worry about projection details.
You store your data in longitude/latitude, and use the functions that have been defined on GEOGRAPHY.</para></listitem>
<listitem><para>If you don't understand projections, and you don't want to learn about them, and you're prepared to accept the limitations in functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY.
Simply load your data up as longitude/latitude and go from there.</para></listitem>
</itemizedlist>
<para>Refer to <xref linkend="PostGIS_TypeFunctionMatrix" /> for compare between
what is supported for Geography vs. Geometry. For a brief listing and description of Geography functions, refer to
<xref linkend="PostGIS_GeographyFunctions" />
</para>
</sect3>
<sect3 id="PostGIS_Geography_AdvancedFAQ">
<title>Geography Advanced FAQ</title>
<qandaset>
<qandaentry>
<question>
<para>Do you calculate on the sphere or the spheroid?</para>
</question>
<answer>
<para> By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in local areas match up will with local planar results in good local projections.
Over larger areas, the spheroidal calculations will be more accurate than any calculation done on a projected plane.
</para>
<para>All the geography functions have the option of using a sphere calculation, by setting a final boolean parameter to 'FALSE'. This will somewhat speed up calculations, particularly for cases where the geometries are very simple.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>What about the date-line and the poles?</para>
</question>
<answer>
<para> All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude)
so a shape that crosses the dateline is, from a calculation point of view, no different from any other shape.
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>What is the longest arc you can process?</para>
</question>
<answer>
<para>We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined by the *shorter* of the two paths along the great circle.
As a consequence, shapes that have arcs of more than 180 degrees will not be correctly modelled.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?</para>
</question>
<answer>
<para>Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge,
so the index tends to pull the feature no matter what query you run; the number of vertices is huge,
and tests (distance, containment) have to traverse the vertex list at least once and sometimes N times
(with N being the number of vertices in the other candidate feature).
</para>
<para>As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you "denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and so queries don't have to pull out the whole object every time. Please consult <xref linkend="ST_Subdivide" /> function documentation.
Just because you *can* store all of Europe in one polygon doesn't mean you *should*.</para>
</answer>
</qandaentry>
</qandaset>
</sect3>
</sect2>
<sect2>
<title>Spatial Metadata Tables</title>
<para>The OpenGIS "Simple Features Specification for SQL" defines some
metadata tables to describe geometry table structure and coordinate systems.
In order to ensure that metadata remains consistent,
operations such as creating and removing a spatial column are carried out
through special procedures defined by OpenGIS.</para>
<para>There are two OpenGIS meta-data tables:
<varname>SPATIAL_REF_SYS</varname> and
<varname>GEOMETRY_COLUMNS</varname>. The
<varname>SPATIAL_REF_SYS</varname> table holds the numeric IDs and textual
descriptions of coordinate systems used in the spatial database.</para>
<sect3 id="spatial_ref_sys">
<title>The SPATIAL_REF_SYS Table and Spatial Reference Systems</title>
<para>The <varname>SPATIAL_REF_SYS</varname> table used by PostGIS
is an OGC-compliant database table that lists over 3000
known <ulink url="https://en.wikipedia.org/wiki/Spatial_reference_system">spatial reference systems</ulink>
and details needed to transform (reproject) between them.</para>
<para>The PostGIS <varname>SPATIAL_REF_SYS</varname> table contains over 3000 of
the most common spatial reference system definitions that are handled by the
<ulink url="https://proj.org">PROJ</ulink> projection library.
But there are many coordinate systems that it does not contain.
You can define your own custom spatial reference system if you are familiar with PROJ constructs.
Keep in mind that most spatial reference systems are regional
and have no meaning when used outside of the bounds they were intended for.</para>
<para>A resource for finding spatial reference systems not defined in the core set is <ulink url="http://spatialreference.org/">http://spatialreference.org/</ulink></para>
<para>Some commonly used spatial reference systems are:
<ulink url="http://spatialreference.org/ref/epsg/4326/">4326 - WGS 84 Long Lat</ulink>,
<ulink url="http://spatialreference.org/ref/epsg/4269/">4269 - NAD 83 Long Lat</ulink>,
<ulink url="http://spatialreference.org/ref/epsg/3395/">3395 - WGS 84 World Mercator</ulink>,
<ulink url="http://spatialreference.org/ref/epsg/2163/">2163 - US National Atlas Equal Area</ulink>,
and the 60 WGS84 UTM zones.
UTM zones are one of the most ideal for measurement, but only cover 6-degree regions.
(To determine which UTM zone to use for your area of interest, see the <ulink url="http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance">utmzone PostGIS plpgsql helper function</ulink>.)
</para>
<para>
US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state.
Most of the meter-based ones are in the core set, but many of the
feet-based ones or ESRI created ones will need to be copied from <ulink url="http://spatialreference.org">spatialreference.org</ulink>.
</para>
<para>You can even define non-Earth-based coordinate systems,
such as <ulink url="http://spatialreference.org/ref/iau2000/mars-2000/">Mars 2000</ulink>
This Mars coordinate system is non-planar (it's in degrees spheroidal),
but you can use it with the <varname>geography</varname> type to obtain length and proximity measurements in meters instead of degrees.</para>
<para>The <varname>SPATIAL_REF_SYS</varname> table definition is:</para>
<programlisting>CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR(2048),
proj4text VARCHAR(2048)
)</programlisting>
<para>The columns are:</para>
<variablelist>
<varlistentry>
<term>SRID</term>
<listitem>
<para>An integer code that uniquely identifies the <ulink url="http://en.wikipedia.org/wiki/SRID">Spatial
Reference System</ulink> (SRS) within the database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AUTH_NAME</term>
<listitem>
<para>The name of the standard or standards body that is being
cited for this reference system. For example, "EPSG" is a
valid <varname>AUTH_NAME</varname>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AUTH_SRID</term>
<listitem>
<para>The ID of the Spatial Reference System as defined by the
Authority cited in the <varname>AUTH_NAME</varname>. In the case
of EPSG, this is where the EPSG projection code would go.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SRTEXT</term>
<listitem>
<para>The Well-Known Text representation of the Spatial Reference
System. An example of a WKT SRS representation is:</para>
<programlisting>PROJCS["NAD83 / UTM Zone 10N",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]
],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]
],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1]
]</programlisting>
<para>For a listing of EPSG projection codes and their
corresponding WKT representations, see <ulink
url="http://www.opengeospatial.org/">http://www.opengeospatial.org/</ulink>.
For a discussion of SRS WKT in general, see the OpenGIS "Coordinate
Transformation Services Implementation Specification" at <ulink
url="http://www.opengeospatial.org/standards">http://www.opengeospatial.org/standards</ulink>.
For information on the European Petroleum Survey Group (EPSG) and
their database of spatial reference systems, see <ulink
url="http://www.epsg.org/">http://www.epsg.org</ulink>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PROJ4TEXT</term>
<listitem>
<para>PostGIS uses the PROJ library to provide coordinate
transformation capabilities. The <varname>PROJ4TEXT</varname>
column contains the Proj4 coordinate definition string for a
particular SRID. For example:</para>
<programlisting>+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m</programlisting>
<para>For more information see the
<ulink url="https://proj.org/">Proj4 web site</ulink>.
The <filename>spatial_ref_sys.sql</filename> file contains both
<varname>SRTEXT</varname> and <varname>PROJ4TEXT</varname>
definitions for all EPSG projections.</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3 id="geometry_columns">
<title>The GEOMETRY_COLUMNS View</title>
<para><varname>GEOMETRY_COLUMNS</varname> is a view reading from database system catalog tables.
Its structure is:</para>
<programlisting>\d geometry_columns</programlisting>
<screen> View "public.geometry_columns"
Column | Type | Modifiers
-------------------+------------------------+-----------
f_table_catalog | character varying(256) |
f_table_schema | character varying(256) |
f_table_name | character varying(256) |
f_geometry_column | character varying(256) |
coord_dimension | integer |
srid | integer |
type | character varying(30) |</screen>
<para>The columns are:</para>
<variablelist>
<varlistentry>
<term>F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME</term>
<listitem>
<para>The fully qualified name of the feature table containing the
geometry column. Note that the terms "catalog" and "schema" are
Oracle-ish. There is not PostgreSQL analogue of "catalog" so that
column is left blank -- for "schema" the PostgreSQL schema name is
used (<varname>public</varname> is the default).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>F_GEOMETRY_COLUMN</term>
<listitem>
<para>The name of the geometry column in the feature table.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>COORD_DIMENSION</term>
<listitem>
<para>The spatial dimension (2, 3 or 4 dimensional) of the
column.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SRID</term>
<listitem>
<para>The ID of the spatial reference system used for the
coordinate geometry in this table. It is a foreign key reference
to the <varname>SPATIAL_REF_SYS</varname>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>TYPE</term>
<listitem>
<para>The type of the spatial object. To restrict the spatial
column to a single type, use one of: POINT, LINESTRING, POLYGON,
MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or
corresponding XYM versions POINTM, LINESTRINGM, POLYGONM,
MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM, GEOMETRYCOLLECTIONM.
For heterogeneous (mixed-type) collections, you can use "GEOMETRY"
as the type.</para>
<note>
<para>This attribute is (probably) not part of the OpenGIS
specification, but is required for ensuring type
homogeneity.</para>
</note>
</listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3 id="Create_Spatial_Table">
<title>Creating a Spatial Table</title>
<para>Creating a table with spatial data, can be done in one step. As shown in the following example
which creates a roads table with a 2D linestring geometry column in WGS84 long lat</para>
<programlisting>CREATE TABLE ROADS (ID serial, ROAD_NAME text, geom geometry(LINESTRING,4326) );</programlisting>
<para>We can add additional columns using standard ALTER TABLE command as we do in this next example where we add a 3-D linestring.</para>
<programlisting>ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);</programlisting>
</sect3>
<sect3 id="Manual_Register_Spatial_Column">
<title>Manually Registering Geometry Columns</title>
<para>Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct the registration in the geometry_columns table
by constraining the column or doing an alter table. For views, you could expose using a CAST operation.
Note, if your column is typmod based, the creation process would register it correctly, so no need to do anything.
Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry column.</para>
<programlisting>-- Lets say you have a view created like this
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) As geom, f_name
FROM public.mytable;
-- For it to register correctly
-- You need to cast the geometry
--
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395)::geometry(Geometry, 3395) As geom, f_name
FROM public.mytable;
-- If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name
FROM public.mytable;</programlisting>
<programlisting>--Lets say you created a derivative table by doing a bulk insert
SELECT poi.gid, poi.geom, citybounds.city_name
INTO myschema.my_special_pois
FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom);
-- Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist(geom);
-- If your points are 3D points or 3M points,
-- then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd
ON my_special_pois USING gist(geom gist_geometry_ops_nd);
-- To manually register this new table's geometry column in geometry_columns.
-- Note it will also change the underlying structure of the table to
-- to make the column typmod based.
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass);
-- If you are using PostGIS 2.0 and for whatever reason, you
-- you need the constraint based definition behavior
-- (such as case of inherited tables where all children do not have the same type and srid)
-- set optional use_typmod argument to false
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false); </programlisting>
<para>Although the old-constraint based method is still supported, a constraint-based geometry column used directly
in a view, will not register correctly in geometry_columns, as will a typmod one.
In this example we define a column using typmod and another using constraints.</para>
<programlisting>CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT,4326));
SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);</programlisting>
<para>If we run in psql</para>
<programlisting>\d pois_ny;</programlisting>
<para>We observe they are defined differently -- one is typmod, one is constraint</para>
<screen> Table "public.pois_ny"
Column | Type | Modifiers
-----------+-----------------------+------------------------------------------------------
gid | integer | not null default nextval('pois_ny_gid_seq'::regclass)
poi_name | text |
cat | character varying(20) |
geom | geometry(Point,4326) |
geom_2160 | geometry |
Indexes:
"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:
"enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2)
"enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text
OR geom_2160 IS NULL)
"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)</screen>
<para>In geometry_columns, they both register correctly</para>
<programlisting>SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns
WHERE f_table_name = 'pois_ny';</programlisting>
<screen>f_table_name | f_geometry_column | srid | type
-------------+-------------------+------+-------
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT</screen>
<para>However -- if we were to create a view like this</para>
<programlisting>CREATE VIEW vw_pois_ny_parks AS
SELECT *
FROM pois_ny
WHERE cat='park';
SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';</programlisting>
<para>The typmod based geom view column registers correctly,
but the constraint based one does not.</para>
<screen> f_table_name | f_geometry_column | srid | type
------------------+-------------------+------+----------
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 0 | GEOMETRY</screen>
<para>This may change in future versions of PostGIS, but for now
to force the constraint-based view column to register correctly, you need to do this:</para>
<programlisting>DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
geom,
geom_2160::geometry(POINT,2160) As geom_2160
FROM pois_ny
WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';</programlisting>
<screen> f_table_name | f_geometry_column | srid | type
------------------+-------------------+------+-------
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 2160 | POINT</screen>
</sect3>
</sect2>
<!-- ============================================================== -->
<sect2 id="OGC_Validity">
<title>Geometry Validation</title>
<para>PostGIS is compliant with the Open Geospatial Consortium’s (OGC)
OpenGIS Specifications. As such, many PostGIS methods require, or more
accurately, assume that geometries that are operated on are both simple
and valid. For example, it does not make sense to calculate the area of
a polygon that has a hole defined outside of the polygon, or to construct
a polygon from a non-simple boundary line.</para>
<para>According to the OGC Specifications, a <emphasis>simple</emphasis>
geometry is one that has no anomalous geometric points, such as self
intersection or self tangency and primarily refers to 0 or 1-dimensional
geometries (i.e. <varname>[MULTI]POINT, [MULTI]LINESTRING</varname>).
Geometry validity, on the other hand, primarily refers to 2-dimensional
geometries (i.e. <varname>[MULTI]POLYGON)</varname> and defines the set
of assertions that characterizes a valid polygon. The description of each
geometric class includes specific conditions that further detail geometric
simplicity and validity.</para>
<para>A <varname>POINT</varname> is inherently <emphasis>simple</emphasis>
as a 0-dimensional geometry object.</para>
<para><varname>MULTIPOINT</varname>s are <emphasis>simple</emphasis> if
no two coordinates (<varname>POINT</varname>s) are equal (have identical
coordinate values).</para>
<para>A <varname>LINESTRING</varname> is <emphasis>simple</emphasis> if
it does not pass through the same <varname>POINT</varname> twice (except
for the endpoints, in which case it is referred to as a linear ring and
additionally considered closed).</para>
<informaltable border="0" frame="none">
<tgroup cols="2" align="center">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple01.png" />
</imageobject>
<caption><para><emphasis role="bold">(a)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple02.png" />
</imageobject>
<caption><para><emphasis role="bold">(b)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple03.png" />
</imageobject>
<caption><para><emphasis role="bold">(c)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple04.png" />
</imageobject>
<caption><para><emphasis role="bold">(d)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
<tgroup cols="1">
<tbody>
<row>
<entry><para><emphasis role="bold">(a)</emphasis> and
<emphasis role="bold">(c)</emphasis> are simple
<varname>LINESTRING</varname>s, <emphasis role="bold">(b)</emphasis>
and <emphasis role="bold">(d)</emphasis> are not.</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>A <varname>MULTILINESTRING</varname> is <emphasis>simple</emphasis>
only if all of its elements are simple and the only intersection between
any two elements occurs at <varname>POINT</varname>s that are on the
boundaries of both elements. </para>
<informaltable border="0" frame="none">
<tgroup cols="3" align="center">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple05.png" />
</imageobject>
<caption><para><emphasis role="bold">(e)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple06.png" />
</imageobject>
<caption><para><emphasis role="bold">(f)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_issimple07.png" />
</imageobject>
<caption><para><emphasis role="bold">(g)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
<tgroup cols="1">
<tbody>
<row>
<entry><para><emphasis role="bold">(e)</emphasis> and
<emphasis role="bold">(f)</emphasis> are simple
<varname>MULTILINESTRING</varname>s, <emphasis role="bold">(g)</emphasis>
is not.</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>By definition, a <varname>POLYGON</varname> is always
<emphasis>simple</emphasis>. It is <emphasis>valid</emphasis> if no two
rings in the boundary (made up of an exterior ring and interior rings)
cross. The boundary of a <varname>POLYGON</varname> may intersect at a
<varname>POINT</varname> but only as a tangent (i.e. not on a line).
A <varname>POLYGON</varname> may not have cut lines or spikes and the
interior rings must be contained entirely within the exterior ring.</para>
<informaltable border="0" frame="none">
<tgroup cols="3" align="center">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid01.png" />
</imageobject>
<caption><para><emphasis role="bold">(h)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid02.png" />
</imageobject>
<caption><para><emphasis role="bold">(i)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid03.png" />
</imageobject>
<caption><para><emphasis role="bold">(j)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid04.png" />
</imageobject>
<caption><para><emphasis role="bold">(k)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid05.png" />
</imageobject>
<caption><para><emphasis role="bold">(l)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid06.png" />
</imageobject>
<caption><para><emphasis role="bold">(m)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
<tgroup cols="1">
<tbody>
<row>
<entry><para><emphasis role="bold">(h)</emphasis> and
<emphasis role="bold">(i)</emphasis> are valid
<varname>POLYGON</varname>s, <emphasis role="bold">(j-m)</emphasis>
cannot be represented as single <varname>POLYGON</varname>s, but
<emphasis role="bold">(j)</emphasis> and <emphasis role="bold">(m)</emphasis>
could be represented as a valid <varname>MULTIPOLYGON</varname>.
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>A <varname>MULTIPOLYGON</varname> is <emphasis>valid</emphasis>
if and only if all of its elements are valid and the interiors of no two
elements intersect. The boundaries of any two elements may touch, but
only at a finite number of <varname>POINT</varname>s.</para>
<informaltable border="0" frame="none">
<tgroup cols="2" align="center">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid07.png" />
</imageobject>
<caption><para><emphasis role="bold">(n)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid08.png" />
</imageobject>
<caption><para><emphasis role="bold">(o)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_isvalid09.png" />
</imageobject>
<caption><para><emphasis role="bold">(p)</emphasis></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
<tgroup cols="1">
<tbody>
<row>
<entry><para><emphasis role="bold">(n)</emphasis> and
<emphasis role="bold">(o)</emphasis> are not valid
<varname>MULTIPOLYGON</varname>s.
<emphasis role="bold">(p)</emphasis>, however, is valid.</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>Most of the functions implemented by the GEOS library rely on the
assumption that your geometries are valid as specified by the OpenGIS
Simple Feature Specification. To check simplicity or validity of
geometries you can use the <link linkend="ST_IsSimple">ST_IsSimple()</link> and
<link linkend="ST_IsValid">ST_IsValid()</link></para>
<programlisting>-- Typically, it doesn't make sense to check
-- for validity on linear features since it will always return TRUE.
-- But in this example, PostGIS extends the definition of the OGC IsValid
-- by returning false if a LineString has less than 2 *distinct* vertices.
gisdb=# SELECT
ST_IsValid('LINESTRING(0 0, 1 1)'),
ST_IsValid('LINESTRING(0 0, 0 0, 0 0)');
st_isvalid | st_isvalid
------------+-----------
t | f</programlisting>
<para>By default, PostGIS does not apply this validity check on geometry
input, because testing for validity needs lots of CPU time for complex
geometries, especially polygons. If you do not trust your data sources,
you can manually enforce such a check to your tables by adding a check
constraint:</para>
<programlisting>ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(the_geom));</programlisting>
<para>If you encounter any strange error messages such as "GEOS
Intersection() threw an error!" when calling PostGIS functions with valid
input geometries, you likely found an error in either PostGIS or one of
the libraries it uses, and you should contact the PostGIS developers.
The same is true if a PostGIS function returns an invalid geometry for
valid input.</para>
<note>
<para>Strictly compliant OGC geometries cannot have Z or M values. The
<link linkend="ST_IsValid">ST_IsValid()</link> function won't consider
higher dimensioned geometries invalid! Invocations of <link
linkend="AddGeometryColumn">AddGeometryColumn()</link> will add a
constraint checking geometry dimensions, so it is enough to specify 2
there.</para>
</note>
</sect2>
<sect2 id="loading-data">
<title>Loading Spatial Data</title>
<para>Once you have created a spatial table, you are ready to upload spatial
data to the database. There are two built-in ways to get spatial data into a
PostGIS/PostgreSQL database: using formatted SQL statements or using the
Shapefile loader.</para>
<sect3>
<title>Using SQL to Load Data</title>
<para>If spatial data can be converted to a text representation (as either WKT or WKB), then using
SQL might be the easiest way to get data into PostGIS.
Data can be bulk-loaded into PostGIS/PostgreSQL by loading a
text file of SQL <code>INSERT</code> statements using the <code>psql</code> SQL utility.</para>
<para>A SQL load file (<filename>roads.sql</filename> for example)
might look like this:</para>
<programlisting>BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;</programlisting>
<para>The SQL file can be loaded into PostgreSQL using <code>psql</code>:</para>
<programlisting>psql -d [database] -f roads.sql</programlisting>
</sect3>
<sect3 id="shp2pgsql_usage">
<title>Using the Shapefile Loader</title>
<para>
The <filename>shp2pgsql</filename> data loader converts Shapefiles into SQL suitable for
insertion into a PostGIS/PostgreSQL database either in geometry or geography format.
The loader has several operating modes selected by command line flags.
</para>
<para>There is also a <filename>shp2pgsql-gui</filename> graphical interface with most
of the options as the command-line loader.
This may be easier to use for one-off non-scripted loading or if you are new to PostGIS.
It can also be configured as a plugin to PgAdminIII.
</para>
<variablelist>
<varlistentry>
<term>(c|a|d|p) These are mutually exclusive options:</term>
<listitem>
<para>
<variablelist>
<varlistentry>
<term>-c</term>
<listitem>
<para>
Creates a new table and populates it from the Shapefile. <emphasis>This is the
default mode.</emphasis>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-a</term>
<listitem>
<para>
Appends data from the Shapefile into the database table. Note that to use this
option to load multiple files, the files must have the same attributes and same
data types.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-d</term>
<listitem>
<para>
Drops the database table before creating a new table with the data in the Shapefile.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-p</term>
<listitem>
<para>
Only produces the table creation SQL code, without adding any actual data. This
can be used if you need to completely separate the table creation and data loading
steps.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-?</term>
<listitem>
<para>
Display help screen.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-D</term>
<listitem>
<para>
Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and
-d. It is much faster to load than the default "insert" SQL format. Use this for very
large data sets.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-s [<FROM_SRID>:]<SRID></term>
<listitem>
<para>
Creates and populates the geometry tables with the specified SRID.
Optionally specifies that the input shapefile uses the given
FROM_SRID, in which case the geometries will be reprojected to the
target SRID.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-k</term>
<listitem>
<para>
Keep identifiers' case (column, schema and attributes). Note that attributes in Shapefile
are all UPPERCASE.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-i</term>
<listitem>
<para>
Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the
DBF header signature appears to warrant it.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-I</term>
<listitem>
<para>
Create a GiST index on the geometry column.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-m</term>
<listitem>
<para>
-m <filename>a_file_name</filename> Specify a file containing a set of mappings of (long) column
names to 10 character DBF column names. The content of the file is one or
more lines of two names separated by white space and no trailing or
leading space. For example:
<programlisting>COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-S </term>
<listitem>
<para>
Generate simple geometries instead of MULTI geometries. Will only succeed if
all the geometries are actually single (I.E. a MULTIPOLYGON with a single shell, or
or a MULTIPOINT with a single vertex).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-t <dimensionality></term>
<listitem>
<para>
Force the output geometry to have the specified dimensionality. Use the following
strings to indicate the dimensionality: 2D, 3DZ, 3DM, 4D.
</para>
<para>
If the input has fewer dimensions that specified, the output will have those dimensions filled
in with zeroes. If the input has more dimensions that specified, the unwanted dimensions will
be stripped.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-w</term>
<listitem>
<para>
Output WKT format, instead of WKB. Note that this can
introduce coordinate drifts due to loss of precision.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-e</term>
<listitem>
<para>
Execute each statement on its own, without using a transaction.
This allows loading of the majority of good data when there are some bad
geometries that generate errors. Note that this cannot be used with the
-D flag as the "dump" format always uses a transaction.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-W <encoding></term>
<listitem>
<para>
Specify encoding of the input data (dbf file). When used, all attributes of the dbf are
converted from the specified encoding to UTF8. The resulting SQL output will contain a
<code>SET CLIENT_ENCODING to UTF8</code> command, so that the backend will be able to
reconvert from UTF8 to whatever encoding the database is configured to use internally.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-N <policy></term>
<listitem>
<para>
NULL geometries handling policy (insert*,skip,abort)
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-n</term>
<listitem>
<para>
-n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode
and load just the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-G</term>
<listitem>
<para>
Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-T <tablespace></term>
<listitem>
<para>
Specify the tablespace for the new table. Indexes will still use the
default tablespace unless the -X parameter is also used. The PostgreSQL
documentation has a good description on when to use custom tablespaces.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-X <tablespace></term>
<listitem>
<para>
Specify the tablespace for the new table's indexes. This applies to
the primary key index, and the GIST spatial index if -I is also used.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
An example session using the loader to create an input file and loading it might look like
this:
</para>
<programlisting># shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
# psql -d roadsdb -f roads.sql</programlisting>
<para>
A conversion and load can be done in one step using UNIX pipes:
</para>
<programlisting># shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb</programlisting>
</sect3>
</sect2>
<sect2 id="extracting-data">
<title>Extracting Spatial Data</title>
<para>Spatial data can be extracted from the database using either SQL or the
Shapefile dumper. The section on SQL presents some of
the functions available to do comparisons and queries on spatial tables.
</para>
<sect3>
<title>Using SQL to Extract Data</title>
<para>The most straightforward way of extracting spatial data out of the
database is to use a SQL <code>SELECT</code> query
to define the data set to be extracted
and dump the resulting columns into a parsable text file:</para>
<programlisting>db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;
road_id | geom | road_name
--------+-----------------------------------------+-----------
1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING(192783 228138,192612 229814) | Paul St
4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)</programlisting>
<para>There will be times when some kind of restriction is
necessary to cut down the number of records returned. In the case of
attribute-based restrictions, use the same SQL syntax as used
with a non-spatial table. In the case of spatial restrictions, the
following functions are useful:</para>
<variablelist>
<varlistentry>
<term>ST_Intersects</term>
<listitem>
<para>This function tells whether two geometries share any space.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>=</term>
<listitem>
<para>This tests whether two geometries are
geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0
0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).
</para>
</listitem>
</varlistentry>
</variablelist>
<para>Next, you can use these operators in queries. Note that when
specifying geometries and boxes on the SQL command line, you must
explicitly turn the string representations into geometries function.
The 312 is a fictitious spatial reference system that matches our data.
So, for example:</para>
<programlisting>SELECT road_id, road_name
FROM roads
WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;</programlisting>
<para>The above query would return the single record from the
"ROADS_GEOM" table in which the geometry was equal to that value.</para>
<para>To check whether some of the roads passes in the area defined by a polygon:</para>
<programlisting>SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');</programlisting>
<para>The most common spatial query will probably be a "frame-based"
query, used by client software, like data browsers and web mappers, to
grab a "map frame" worth of data for display. </para>
<para>When using the "&&" operator, you can specify either a
BOX3D as the comparison feature or a GEOMETRY. When you specify a
GEOMETRY, however, its bounding box will be used for the
comparison.</para>
<para>Using a "BOX3D" object for the frame, such a query looks like this:</para>
<programlisting>SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);</programlisting>
<para>Note the use of the SRID 312, to specify the projection of the envelope.</para>
</sect3>
<sect3 id="pgsql2shp-usage">
<title>Using the Shapefile Dumper</title>
<para>The <filename>pgsql2shp</filename> table dumper connects
to the database and converts a table (possibly defined by a query) into
a shape file. The basic syntax is:</para>
<programlisting>pgsql2shp [<options>] <database> [<schema>.]<table></programlisting>
<programlisting>pgsql2shp [<options>] <database> <query></programlisting>
<para>The commandline options are:</para>
<variablelist>
<varlistentry>
<term>-f <filename></term>
<listitem>
<para>Write the output to a particular filename.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-h <host></term>
<listitem>
<para>The database host to connect to.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-p <port></term>
<listitem>
<para>The port to connect to on the database host.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-P <password></term>
<listitem>
<para>The password to use when connecting to the database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-u <user></term>
<listitem>
<para>The username to use when connecting to the database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-g <geometry column></term>
<listitem>
<para>In the case of tables with multiple geometry columns, the
geometry column to use when writing the shape file.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-b</term>
<listitem>
<para>Use a binary cursor. This will make the operation faster,
but will not work if any NON-geometry attribute in the table lacks
a cast to text.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-r</term>
<listitem>
<para>Raw mode. Do not drop the <varname>gid</varname> field, or
escape column names.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-m <varname>filename</varname></term>
<listitem>
<para> Remap identifiers to ten character names.
The content of the file is lines of two symbols separated by
a single white space and no trailing or leading space:
VERYLONGSYMBOL SHORTONE
ANOTHERVERYLONGSYMBOL SHORTER
etc.</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
</sect2>
<sect2 id="build-indexes">
<title>Building Spatial Indexes</title>
<para>Indexes make using a spatial database for large data sets
possible. Without indexing, a search for features would require a
sequential scan of every record in the database. Indexing speeds up
searching by organizing the data into a structure which can be quickly
traversed to find records.
</para>
<para>The B-tree index method commonly used for attribute data
is not very useful for spatial data, since it only supports storing and querying
data in a single dimension.
Data such as geometry which has 2 or more dimensions)
requires an index method that supports range query across all the data dimensions.
(That said, it is possible to effectively index so-called XY data using a B-tree
and explict range searches.)
One of the main advantages of PostgreSQL for spatial data handling is that it offers several kinds of
indexes which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.</para>
<itemizedlist>
<listitem>
<para><emphasis role="bold">GiST (Generalized Search Tree)</emphasis> indexes break up data into
"things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS
data. PostGIS uses an R-Tree index implemented on top of GiST to index
spatial data. GiST is the most commonly-used and versatile spatial index method,
and offers very good query performance.
</para>
</listitem>
<listitem>
<para><emphasis role="bold">BRIN (Block Range Index)</emphasis> indexes operate by summarizing
the spatial extent of ranges of table records.
Search is done via a scan of the ranges.
BRIN is only appropriate for use for some kinds of data
(spatially sorted, with infrequent or no update).
But it provides much faster index create time, and much smaller index size.
</para>
</listitem>
<listitem>
<para><emphasis role="bold">SP-GiST (Space-Partitioned Generalized Search Tree)</emphasis>
is a generic index method that supports partitioned search trees
such as quad-trees, k-d trees, and radix trees (tries).
</para>
</listitem>
</itemizedlist>
<para>For more information see the
<ulink url="https://postgis.net/workshops/postgis-intro/indexing.html">PostGIS Workshop</ulink>,
and the <ulink url="https://www.postgresql.org/docs/current/indexes.html">PostgreSQL documentation</ulink>.
</para>
<sect3 id="gist_indexes">
<title>GiST Indexes</title>
<para>GiST stands for "Generalized Search Tree" and is a generic form of
indexing. In addition to GIS indexing, GiST is used to speed up searches
on all kinds of irregular data structures (integer arrays, spectral
data, etc) which are not amenable to normal B-Tree indexing.</para>
<para>Once a GIS data table exceeds a few thousand rows, you will want
to build an index to speed up spatial searches of the data (unless all
your searches are based on attributes, in which case you'll want to
build a normal index on the attribute fields).</para>
<para>The syntax for building a GiST index on a "geometry" column is as
follows:</para>
<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] ); </programlisting></para>
<para>The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one using this syntax:</para>
<programlisting>CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);</programlisting>
<para>Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates, so on a production system you may want to do in in a slower CONCURRENTLY-aware way:</para>
<para><programlisting>CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] ); </programlisting></para>
<para>After building an index, it is sometimes helpful to force PostgreSQL to collect
table statistics, which are used to optimize query plans:</para>
<para><programlisting>VACUUM ANALYZE [table_name] [(column_name)];</programlisting></para>
</sect3>
<sect3 id="brin_indexes">
<title>BRIN Indexes</title>
<para>BRIN stands for "Block Range Index". It is an general-purpose
<ulink url="https://www.postgresql.org/docs/current/brin.html">index method</ulink> introduced in PostgreSQL 9.5.
BRIN is a <emphasis>lossy</emphasis>
index method, meaning that a a secondary check is required to confirm
that a record matches a given search condition
(which is the case for all provided spatial indexes).
It provides much faster index creation and much smaller index size,
with reasonable read performance.
Its primary purpose is to support indexing very large tables
on columns which have a correlation with their
physical location within the table. In addition to spatial indexing,
BRIN can speed up searches on various kinds of attribute data
structures (integer, arrays etc).</para>
<para>Once a spatial table exceeds a few thousand rows, you will want
to build an index to speed up spatial searches of the data.
GiST indexes are very performant as long as their size doesn't exceed the amount of RAM
available for the database, and as long as you can afford the index storage
size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
considered as an alternative.</para>
<para>A BRIN index stores the bounding box enclosing
all the geometries contained in the rows in a contiguous set of table blocks,
called a <emphasis>block range</emphasis>.
When executing a query using the index the block ranges are scanned to
find the ones that intersect the query extent.
This is efficient only if the data is physically ordered so that the bounding
boxes for block ranges have minimal overlap (and ideally are mutually exclusive).
The resulting index is very small in size,
but is typically less performant for read than a GiST index over the same data.</para>
<para>Building a BRIN index is much less CPU-intensive than building a GiST index.
It's common to find that a BRIN index is ten times faster to build
than a GiST index over the same data. And because a BRIN index stores only one
bounding box for each range of table blocks, it's common to use
up to a thousand times less disk space than a GiST index.</para>
<para>You can choose the number of blocks to summarize in a range. If you
decrease this number, the index will be bigger but will probably provide
better performance.</para>
<para>For BRIN to be effective, the table data should be stored in
a physical order which minimizes the amount of block extent overlap.
It may be that the data is already sorted appropriately
(for instance, if it is loaded from another dataset that is already sorted in spatial order).
Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key.
One way to do this is to create a new table sorted by the geometry values
(which in recent PostGIS versions uses an efficient Hilbert curve ordering):
</para>
<para><programlisting>
CREATE TABLE table_sorted AS
SELECT * FROM table ORDER BY geom;
</programlisting></para>
<para>Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index,
and clustering on that index:
</para>
<para><programlisting>
CREATE INDEX idx_temp_geohash ON table
USING btree (ST_GeoHash( ST_Transform( geom, 4326 ), 20));
CLUSTER table USING idx_temp_geohash;
</programlisting></para>
<para>The syntax for building a BRIN index on a <code>geometry</code> column is:</para>
<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geome_col] ); </programlisting></para>
<para>The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:</para>
<programlisting>
CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);</programlisting>
<para>You can also get a 4D-dimensional index using the 4D operator class:</para>
<programlisting>
CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);</programlisting>
<para>The above commands use the default number of blocks in a range, which is 128.
To specify the number of blocks to summarise in a range, use this syntax</para>
<para><programlisting>
CREATE INDEX [indexname] ON [tablename]
USING BRIN ( [geome_col] ) WITH (pages_per_range = [number]); </programlisting></para>
<para>Keep in mind that a BRIN index only stores one index
entry for a large number of rows. If your table stores geometries with
a mixed number of dimensions, it's likely that the resulting index will
have poor performance. You can avoid this performance penalty by
choosing the operator class with the least number of dimensions of the
stored geometries
</para>
<para>The <code>geography</code> datatype is supported for BRIN indexing. The
syntax for building a BRIN index on a geography column is:</para>
<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geog_col] ); </programlisting></para>
<para>The above syntax builds a 2D-index for geospatial objects on the spheroid. </para>
<para>Currently, only "inclusion support" is provided, meaning
that just the <varname>&&</varname>, <varname>~</varname> and
<varname>@</varname> operators can be used for the 2D cases (for both
<code>geometry</code> and <code>geography</code>), and just the <varname>&&&</varname>
operator for 3D geometries.
There is currently no support for kNN searches.</para>
<para>An important difference between BRIN and other index types is that the database does not
maintain the index dynamically. Changes to spatial data in the table
are simply appended to the end of the index. This will cause index search performance to
degrade over time. The index can be updated by performing a <code>VACUUM</code>,
or by using a special function <code>brin_summarize_new_values(regclass)</code>.
For this reason BRIN may be most appropriate for use with data that is read-only,
or only rarely changing. For more information refer to the
<ulink url="https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION">manual</ulink>.
</para>
<para>To summarize using BRIN for spatial data:
</para>
<itemizedlist>
<listitem><para>Index build time is very fast, and index size is very small.</para></listitem>
<listitem><para>Index query time is slower than GiST, but can still be very acceptable.</para></listitem>
<listitem><para>Requires table data to be sorted in a spatial ordering.</para></listitem>
<listitem><para>Requires manual index maintenance.</para></listitem>
<listitem><para>Most appropriate for very large tables,
with low or no overlap (e.g. points),
and which are static or change infrequently.</para></listitem>
</itemizedlist>
</sect3>
<sect3 id="spgist_indexes">
<title>SP-GiST Indexes</title>
<para>SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is
a generic form of indexing that supports partitioned search trees, such as
quad-trees, k-d trees, and radix trees (tries). The common feature of these
data structures is that they repeatedly divide the search space into
partitions that need not be of equal size. In addition to GIS indexing,
SP-GiST is used to speed up searches on many kinds of data, such as phone
routing, ip routing, substring search, etc. </para>
<para>As it is the case for GiST indexes, SP-GiST indexes are lossy, in the
sense that they store the bounding box enclosing spatial objects.
SP-GiST indexes can be considered as an alternative to GiST indexes. The
performance tests reveal that SP-GiST indexes are especially beneficial
when there are many overlapping objects, that is, with so-called
“spaghetti data”.</para>
<para>Once a GIS data table exceeds a few thousand rows, an SP-GiST index
may be used to speed up spatial searches of the data. The syntax for
building an SP-GiST index on a "geometry" column is as follows:</para>
<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); </programlisting></para>
<para>The above syntax will build a 2-dimensional index. A 3-dimensional
index for the geometry type can be created using the 3D operator class:</para>
<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);</programlisting></para>
<para>Building a spatial index is a computationally intensive operation.
It also blocks write access to your table for the time it creates, so on a
production system you may want to do in in a slower CONCURRENTLY-aware way:</para>
<para><programlisting>CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); </programlisting></para>
<para>After building an index, it is sometimes helpful to force PostgreSQL to
collect table statistics, which are used to optimize query plans:</para>
<para><programlisting>VACUUM ANALYZE [table_name] [(column_name)];</programlisting></para>
<para>An SP-GiST index can accelerate queries involving the following operators:</para>
<itemizedlist>
<listitem><para><<, &<, &>, >>, <<|, &<|, |&>, |>>, &&, @>, <@, and ~=, for 2-dimensional indexes,</para></listitem>
<listitem><para> &/&, ~==, @>>, and <<@, for 3-dimensional indexes.</para></listitem>
</itemizedlist>
<para>There is no support for kNN searches at the moment.</para>
</sect3>
<sect3>
<title>Using Indexes</title>
<para>Ordinarily, indexes invisibly speed up data access: once the index
is built, the PostgreSQL query planner automatically decides when to use index
information to speed up a query plan. Unfortunately, the
query planner sometimes does not optimize the use of GiST indexes,
so queries end up using slow sequential scans instead of a spatial index.</para>
<para>If you find your spatial indexes are not being used,
there are a couple things you can do:</para>
<itemizedlist>
<listitem>
<para>Examine the query plan and check your query actually computes the
thing you need. An erroneous JOIN, either forgotten or to the wrong table,
can unexpectedly retrieve table records multiple times.
To get the query plan, execute with <code>EXPLAIN</code> in front of the query.</para>
</listitem>
<listitem>
<para>Make sure statistics are gathered about the number
and distributions of values in a table, to provide the query planner
with better information to make decisions around index usage.
<command>VACUUM ANALYZE</command> will compute both.</para>
<para>You should regularly vacuum your databases anyways - many PostgreSQL DBAs have
<command>VACUUM</command> run as an off-peak cron job on a regular basis.</para>
</listitem>
<listitem>
<para>If vacuuming does not help, you can temporarily force the planner to use
the index information by using the <command>set enable_seqscan to off;</command>
command. This way you can check whether planner is at all capable to generate
an index accelerated query plan for your query.
You should only use this command only for debug: generally
speaking, the planner knows better than you do about when to use
indexes. Once you have run your query, do not forget to set
<varname>ENABLE_SEQSCAN</varname> back on, so that other queries will utilize
the planner as normal.</para>
</listitem>
<listitem>
<para>If <command>set enable_seqscan to off;</command> helps your query to run,
your Postgres is likely not tuned for your hardware.
If you find the planner wrong about the cost of sequential vs
index scans try reducing the value of <varname>random_page_cost</varname> in
postgresql.conf or using <command>set random_page_cost to 1.1;</command>. Default value for
the parameter is 4, try setting it to 1 (on SSD) or 2 (on fast magnetic disks).
Decreasing the value makes the planner more inclined of using Index scans.</para>
</listitem>
<listitem>
<para>If <command>set enable_seqscan to off;</command> does not help your query,
the query may be using a SQL construct that the Postgres planner is not yet able to optimize.
It may be possible to rewrite the query in a way that the planner is able to handle.
For example, a subquery with an inline SELECT may not produce an efficient plan,
but could possibly be rewritten using a LATERAL JOIN.</para>
</listitem>
</itemizedlist>
</sect3>
</sect2>
</sect1>
|