1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
<?xml version="1.0" encoding="UTF-8"?>
<sect1 id="Clustering_Functions">
<sect1info>
<abstract>
<para>These functions implement clustering algorithms for sets of geometries.</para>
</abstract>
</sect1info>
<title>Clustering Functions</title>
<refentry id="ST_ClusterDBSCAN">
<refnamediv>
<refname>ST_ClusterDBSCAN</refname>
<refpurpose>Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>integer <function>ST_ClusterDBSCAN</function></funcdef>
<paramdef><type>geometry winset </type>
<parameter>geom</parameter></paramdef>
<paramdef><type>float8 </type>
<parameter>eps</parameter></paramdef>
<paramdef><type>integer </type>
<parameter>minpoints</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>
Returns cluster number for each input geometry, based on a 2D implementation of the
<ulink url="https://en.wikipedia.org/wiki/DBSCAN">Density-based spatial clustering of applications with noise (DBSCAN)</ulink>
algorithm. Unlike <xref linkend="ST_ClusterKMeans" />, it does not require the number of clusters to be specified, but instead
uses the desired <link linkend="ST_Distance">distance</link> (<varname>eps</varname>) and density (<varname>minpoints</varname>) parameters to construct each cluster.
</para>
<para>
An input geometry will be added to a cluster if it is either:
<itemizedlist>
<listitem>
<para>
A "core" geometry, that is within <varname>eps</varname> <link linkend="ST_Distance">distance</link> of at least <varname>minpoints</varname> input geometries (including itself) or
</para>
</listitem>
<listitem>
<para>
A "border" geometry, that is within <varname>eps</varname> <link linkend="ST_Distance">distance</link> of a core geometry.
</para>
</listitem>
</itemizedlist>
</para>
<para>
Note that border geometries may be within <varname>eps</varname> distance of core geometries in more than one cluster; in this
case, either assignment would be correct, and the border geometry will be arbitrarily asssigned to one of the available clusters.
In these cases, it is possible for a correct cluster to be generated with fewer than <varname>minpoints</varname> geometries.
When assignment of a border geometry is ambiguous, repeated calls to ST_ClusterDBSCAN will produce identical results if an ORDER BY
clause is included in the window definition, but cluster assignments may differ from other implementations of the same algorithm.
</para>
<note><para>
Input geometries that do not meet the criteria to join any other cluster will be assigned a cluster number of NULL.
</para></note>
<para>Availability: 2.3.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para>
Assigning a cluster number to each polygon within 50 meters of each other. Require at least 2 polygons per cluster
</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_clusterdbscan01.png" />
</imageobject>
<caption><para>within 50 meters at least 2 per cluster. singletons have NULL for cid</para></caption>
</mediaobject>
</informalfigure>
<programlisting>SELECT name, ST_ClusterDBSCAN(geom, eps := 50, minpoints := 2) over () AS cid
FROM boston_polys
WHERE name > '' AND building > ''
AND ST_DWithin(geom,
ST_Transform(
ST_GeomFromText('POINT(-71.04054 42.35141)', 4326), 26986),
500);</programlisting>
</para></entry>
<entry><para><screen><![CDATA[ name | bucket
-------------------------------------+--------
Manulife Tower | 0
Park Lane Seaport I | 0
Park Lane Seaport II | 0
Renaissance Boston Waterfront Hotel | 0
Seaport Boston Hotel | 0
Seaport Hotel & World Trade Center | 0
Waterside Place | 0
World Trade Center East | 0
100 Northern Avenue | 1
100 Pier 4 | 1
The Institute of Contemporary Art | 1
101 Seaport | 2
District Hall | 2
One Marina Park Drive | 2
Twenty Two Liberty | 2
Vertex | 2
Vertex | 2
Watermark Seaport | 2
Blue Hills Bank Pavilion | NULL
World Trade Center West | NULL
(20 rows)]]></screen></para>
</entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>
Combining parcels with the same cluster number into a single geometry. This uses named argument calling
</para>
<programlisting>
SELECT cid, ST_Collect(geom) AS cluster_geom, array_agg(parcel_id) AS ids_in_cluster FROM (
SELECT parcel_id, ST_ClusterDBSCAN(geom, eps := 0.5, minpoints := 5) over () AS cid, geom
FROM parcels) sq
GROUP BY cid;
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_DWithin"/>,
<xref linkend="ST_ClusterKMeans"/>,
<xref linkend="ST_ClusterIntersecting"/>,
<xref linkend="ST_ClusterWithin"/>
</para>
</refsection>
</refentry>
<refentry id="ST_ClusterIntersecting">
<refnamediv>
<refname>ST_ClusterIntersecting</refname>
<refpurpose>Aggregate function that clusters the input geometries into connected sets.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry[] <function>ST_ClusterIntersecting</function></funcdef>
<paramdef><type>geometry set</type> <parameter>g</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>ST_ClusterIntersecting is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents an interconnected set of geometries.</para>
<para>Availability: 2.2.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
WITH testdata AS
(SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
'LINESTRING (5 5, 4 4)'::geometry,
'LINESTRING (6 6, 7 7)'::geometry,
'LINESTRING (0 0, -1 -1)'::geometry,
'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)
SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;
--result
st_astext
---------
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para>
<xref linkend="ST_ClusterDBSCAN" />,
<xref linkend="ST_ClusterKMeans" />,
<xref linkend="ST_ClusterWithin" />
</para>
</refsection>
</refentry>
<refentry id="ST_ClusterKMeans">
<refnamediv>
<refname>ST_ClusterKMeans</refname>
<refpurpose>Window function that returns a cluster id for each input geometry using the K-means algorithm.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>integer <function>ST_ClusterKMeans</function></funcdef>
<paramdef><type>geometry winset </type>
<parameter>geom</parameter></paramdef>
<paramdef><type>integer </type>
<parameter>number_of_clusters</parameter></paramdef>
<paramdef><type>float </type>
<parameter>max_radius</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns <ulink url="https://en.wikipedia.org/wiki/K-means_clustering">K-means</ulink>
cluster number for each input geometry. The distance used for clustering is the
distance between the centroids for 2D geometries, and distance between bounding box centers for 3D geometries.
For POINT inputs, M coordinate will be treated as weight of input and has to be larger than 0.
</para>
<para><varname>max_radius</varname>, if set, will cause ST_ClusterKMeans to generate more clusters than
<varname>k</varname> ensuring that no cluster in output has radius larger than <varname>max_radius</varname>.
This is useful in reachability analysis. </para>
<para>Enhanced: 3.2.0 Support for <varname>max_radius</varname></para>
<para>Enhanced: 3.1.0 Support for 3D geometries and weights</para>
<para>Availability: 2.3.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Generate dummy set of parcels for examples:</para>
<programlisting>CREATE TABLE parcels AS
SELECT lpad((row_number() over())::text,3,'0') As parcel_id, geom,
('{residential, commercial}'::text[])[1 + mod(row_number()OVER(),2)] As type
FROM
ST_Subdivide(ST_Buffer('SRID=3857;LINESTRING(40 100, 98 100, 100 150, 60 90)'::geometry,
40, 'endcap=square'),12) As geom;
</programlisting>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_clusterkmeans02.png" />
</imageobject>
<caption><para>Parcels color-coded by cluster number (cid)</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_ClusterKMeans(geom, 3) OVER() AS cid, parcel_id, geom
FROM parcels;</programlisting>
<screen> cid | parcel_id | geom
-----+-----------+---------------
0 | 001 | 0103000000...
0 | 002 | 0103000000...
1 | 003 | 0103000000...
0 | 004 | 0103000000...
1 | 005 | 0103000000...
2 | 006 | 0103000000...
2 | 007 | 0103000000...
</screen>
</para>
<para>Partitioning parcel clusters by type:</para>
<programlisting>
SELECT ST_ClusterKMeans(geom, 3) over (PARTITION BY type) AS cid, parcel_id, type
FROM parcels;</programlisting>
<screen> cid | parcel_id | type
-----+-----------+-------------
1 | 005 | commercial
1 | 003 | commercial
2 | 007 | commercial
0 | 001 | commercial
1 | 004 | residential
0 | 002 | residential
2 | 006 | residential
</screen>
<para>Example: Clustering a preaggregated planetary-scale data population dataset
using 3D clusering and weighting.
Identify at least 20 regions based on
<ulink url="https://data.humdata.org/dataset/kontur-population-dataset">Kontur Population Data</ulink>
that do not span more than 3000 km from their center:</para>
<programlisting>create table kontur_population_3000km_clusters as
select
geom,
ST_ClusterKMeans(
ST_Force4D(
ST_Transform(ST_Force3D(geom), 4978), -- cluster in 3D XYZ CRS
mvalue := population -- set clustering to be weighed by population
),
20, -- aim to generate at least 20 clusters
max_radius := 3000000 -- but generate more to make each under 3000 km radius
) over () as cid
from
kontur_population;
</programlisting>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_clusterkmeans03.png" />
</imageobject>
<caption><para>World population clustered to above specs produces 46 clusters.
Clusters are centered at well-populated regions (New York, Moscow).
Greenland is one cluster.
There are island clusters that span across the antimeridian.
Cluster edges follow Earth's curvature.</para></caption>
</mediaobject>
</informalfigure>
</para>
</refsection>
<refsection>
<title>See Also</title>
<para>
<xref linkend="ST_ClusterDBSCAN"/>,
<xref linkend="ST_ClusterIntersecting" />,
<xref linkend="ST_ClusterWithin" />,
<xref linkend="ST_Subdivide" />,
<xref linkend="ST_Force_3D" />,
<xref linkend="ST_Force_4D" />,
</para>
</refsection>
</refentry>
<refentry id="ST_ClusterWithin">
<refnamediv>
<refname>ST_ClusterWithin</refname>
<refpurpose>Aggregate function that clusters the input geometries by separation distance.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry[] <function>ST_ClusterWithin</function></funcdef>
<paramdef><type>geometry set </type> <parameter>g</parameter></paramdef>
<paramdef><type>float8 </type> <parameter>distance</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>ST_ClusterWithin is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance. (Distances are Cartesian distances in the units of the SRID.)</para>
<para>Availability: 2.2.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
WITH testdata AS
(SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
'LINESTRING (5 5, 4 4)'::geometry,
'LINESTRING (6 6, 7 7)'::geometry,
'LINESTRING (0 0, -1 -1)'::geometry,
'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)
SELECT ST_AsText(unnest(ST_ClusterWithin(geom, 1.4))) FROM testdata;
--result
st_astext
---------
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para>
<xref linkend="ST_ClusterDBSCAN" />,
<xref linkend="ST_ClusterKMeans" />,
<xref linkend="ST_ClusterIntersecting" />
</para>
</refsection>
</refentry>
</sect1>
|