File: reference_overlay.xml

package info (click to toggle)
postgis 3.5.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 70,052 kB
  • sloc: ansic: 162,204; sql: 93,950; xml: 53,121; cpp: 12,646; perl: 5,658; sh: 5,369; makefile: 3,434; python: 1,205; yacc: 447; lex: 151; pascal: 58
file content (1133 lines) | stat: -rw-r--r-- 47,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
<!-- Converted by db4-upgrade version 1.1 -->
<section xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://docbook.org/ns/docbook" version="5.0" xml:id="Overlay_Functions">
    <title>Overlay Functions</title><info>
    <abstract>
    <para>These functions compute results arising from the overlay of two geometries.
    These are also known as point-set theoretic boolean operations.
    Some related functions are also provided.
    </para>
    </abstract>
    </info>



    <refentry xml:id="ST_ClipByBox2D">
      <refnamediv>
        <refname>ST_ClipByBox2D</refname>
        <refpurpose>Computes the portion of a geometry falling within a rectangle.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
            <funcprototype>
                <funcdef>geometry <function>ST_ClipByBox2D</function></funcdef>
                <paramdef><type>geometry</type> <parameter>geom</parameter></paramdef>
                <paramdef><type>box2d</type> <parameter>box</parameter></paramdef>
            </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>
        Clips a geometry by a 2D box in a fast and tolerant but possibly invalid way.
        Topologically invalid input geometries do not result in exceptions being thrown.
        The output geometry is not guaranteed to be valid
        (in particular, self-intersections for a polygon may be introduced).
        </para>

        <para>Performed by the GEOS module.</para>

        <para role="availability" conformance="2.2.0">Availability: 2.2.0</para>

      </refsection>

      <refsection>
        <title>Examples</title>
            <programlisting>
-- Rely on implicit cast from geometry to box2d for the second parameter
SELECT ST_ClipByBox2D(geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;
      </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
<xref linkend="ST_Intersection"/>,
<xref linkend="ST_MakeBox2D"/>,
<xref linkend="ST_MakeEnvelope"/>
    </para>
      </refsection>
    </refentry>

    <refentry xml:id="ST_Difference">
      <refnamediv>
        <refname>ST_Difference</refname>

        <refpurpose>Computes a geometry representing the part of geometry A
            that does not intersect geometry B.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry <function>ST_Difference</function></funcdef>
            <paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
            <paramdef><type>geometry </type> <parameter>geomB</parameter></paramdef>
            <paramdef choice="opt"><type>float8 </type> <parameter>gridSize = -1</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>Returns a geometry representing the part of geometry A
            that does not intersect geometry B.
            This is equivalent to <code>A - ST_Intersection(A,B)</code>.
            If A is completely contained in B
            then an empty atomic geometry of appropriate type is returned.</para>
        <note><para>This is the only overlay function where input order matters.
            ST_Difference(A, B) always returns a portion of A.</para></note>

            <para>
If the optional <code>gridSize</code> argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)
            </para>

        <para>Performed by the GEOS module</para>
        <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter.</para>
        <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter.</para>

        <para>&sfs_compliant; s2.1.1.3</para>
        <para>&sqlmm_compliant; SQL-MM 3: 5.1.20</para>
        <para>&Z_support; However, the result is computed using XY only.
            The result Z values are copied, averaged or interpolated.</para>
      </refsection>

      <refsection>
        <title>Examples</title>
            <informaltable>
              <tgroup cols="2">
                <tbody>
                  <row>
                    <entry>
                        <para>
                            <informalfigure>
                                <mediaobject>
                                  <imageobject>
                                    <imagedata fileref="images/st_symdifference01.png"/>
                                  </imageobject>
                                  <caption><para>The input linestrings </para></caption>
                                </mediaobject>
                            </informalfigure>
                        </para>
                    </entry>

                    <entry>
                        <para><informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_difference01.png"/>
                              </imageobject>
                              <caption><para>The difference of the two linestrings</para></caption>
                            </mediaobject>
                          </informalfigure>
                    </para>
                </entry>
                  </row>
        </tbody>
    </tgroup>
</informaltable>
<para>The difference of 2D linestrings.</para>
<programlisting>SELECT ST_AsText(
    ST_Difference(
            'LINESTRING(50 100, 50 200)'::geometry,
            'LINESTRING(50 50, 50 150)'::geometry
        )
    );

st_astext
---------
LINESTRING(50 150,50 200)
</programlisting>

<para>The difference of 3D points.</para>
<programlisting>SELECT ST_AsEWKT( ST_Difference(
                   'MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)' :: geometry,
                   'POINT(-118.614 38.281 5)' :: geometry
                  ) );

st_asewkt
---------
MULTIPOINT(-118.6 38.329 6,-118.58 38.38 5)
</programlisting>
      </refsection>

      <refsection>
        <title>See Also</title>

        <para><xref linkend="ST_SymDifference"/>, <xref linkend="ST_Intersection"/>, <xref linkend="ST_Union"/></para>
      </refsection>
    </refentry>

    <refentry xml:id="ST_Intersection">
        <refnamediv>
            <refname>ST_Intersection</refname>

            <refpurpose>
Computes a geometry representing the shared portion of geometries A and B.
            </refpurpose>
        </refnamediv>
        <refsynopsisdiv>
            <funcsynopsis>
                <funcprototype>
                    <funcdef>geometry <function>ST_Intersection</function></funcdef>
                    <paramdef>
                        <type>geometry</type>
                        <parameter>geomA</parameter>
                    </paramdef>
                    <paramdef>
                        <type>geometry</type>
                        <parameter>geomB</parameter>
                    </paramdef>
                    <paramdef choice="opt">
                        <type>float8</type>
                        <parameter>gridSize = -1</parameter>
                    </paramdef>
                </funcprototype>
                <funcprototype>
                    <funcdef>geography <function>ST_Intersection</function></funcdef>
                    <paramdef>
                        <type>geography</type>
                        <parameter>geogA</parameter>
                    </paramdef>
                    <paramdef>
                        <type>geography</type>
                        <parameter>geogB</parameter>
                    </paramdef>
                </funcprototype>
            </funcsynopsis>
        </refsynopsisdiv>
        <refsection>
            <title>Description</title>
            <para>Returns a geometry representing the point-set
                intersection of two geometries.
                In other words, that portion of geometry A and geometry B
                that is shared between the two geometries.</para>

            <para>If the geometries have no points in common (i.e. are disjoint)
            then an empty atomic geometry of appropriate type is returned.</para>

            <para>
If the optional <code>gridSize</code> argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid.  (Requires GEOS-3.9.0 or higher)
            </para>

            <para>ST_Intersection in conjunction with <xref linkend="ST_Intersects"/> is useful for clipping geometries such as in bounding box, buffer, or region
                queries where you only require the portion of a geometry that is inside a country or region of interest.</para>

            <note><para>&geography_transform; It first determines the best SRID that
                    fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario)  and then intersection in that best fit planar spatial ref and retransforms back to WGS84 geography.</para></note>

        <warning><para>This function will drop the M coordinate values if present.</para></warning>

          <warning><para>If working with 3D geometries, you may want to use SFGCAL based <xref linkend="ST_3DIntersection"/> which does a proper 3D intersection for 3D geometries.  Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.</para></warning>

        <para>Performed by the GEOS module</para>

        <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter</para>
        <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter</para>
        <para role="changed" conformance="3.0.0">Changed: 3.0.0 does not depend on SFCGAL.</para>
        <para role="availability" conformance="1.5">Availability: 1.5 support for geography data type was introduced.</para>

        <para>&sfs_compliant; s2.1.1.3</para>
        <para>&sqlmm_compliant; SQL-MM 3: 5.1.18</para>
        <para>&Z_support; However, the result is computed using XY only.
            The result Z values are copied, averaged or interpolated.</para>
        </refsection>
        <refsection>
        <title>Examples</title>
<programlisting>SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry));
 st_astext
---------------
GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry));
 st_astext
---------------
POINT(0 0)</programlisting>
<para>
Clip all lines (trails) by country. Here we assume country geom are POLYGON or MULTIPOLYGONS.
NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING because we don't
care about trails that just share a point. The dump is needed to expand a geometry collection into individual single MULT* parts.
The below is fairly generic and will work for polys, etc. by just changing the where clause.</para>
<programlisting>select clipped.gid, clipped.f_name, clipped_geom
from (
         select trails.gid, trails.f_name,
             (ST_Dump(ST_Intersection(country.geom, trails.geom))).geom clipped_geom
         from country
              inner join trails on ST_Intersects(country.geom, trails.geom)
     ) as clipped
where ST_Dimension(clipped.clipped_geom) = 1;</programlisting>
<para>For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon results in an empty geometry collection.
(So a geometry collection containing polys, lines and points buffered by 0.0 would only leave the polygons and dissolve the collection shell.)</para>
<programlisting>select poly.gid,
    ST_Multi(
        ST_Buffer(
            ST_Intersection(country.geom, poly.geom),
            0.0
        )
    ) clipped_geom
from country
     inner join poly on ST_Intersects(country.geom, poly.geom)
where not ST_IsEmpty(ST_Buffer(ST_Intersection(country.geom, poly.geom), 0.0));</programlisting>
        </refsection>

        <refsection>
        <title>Examples: 2.5Dish</title>
        <para>Note this is not a true intersection, compare to the same example using <xref linkend="ST_3DIntersection"/>.</para>
        <programlisting>
select ST_AsText(ST_Intersection(linestring, polygon)) As wkt
from  ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

               st_astext
---------------------------------------
 LINESTRING Z (1 1 8,0.5 0.5 8,0 0 10)
        </programlisting>
      </refsection>
        <refsection>
            <title>See Also</title>
            <para><xref linkend="ST_3DIntersection"/>, <xref linkend="ST_Difference"/>, <xref linkend="ST_Union"/>, <xref linkend="ST_Dimension"/>, <xref linkend="ST_Dump"/>, <xref linkend="ST_Force2D"/>, <xref linkend="ST_SymDifference"/>, <xref linkend="ST_Intersects"/>, <xref linkend="ST_Multi"/></para>
        </refsection>
    </refentry>


    <refentry xml:id="ST_MemUnion">
      <refnamediv>
        <refname>ST_MemUnion</refname>

        <refpurpose>Aggregate function which unions geometries in a memory-efficent but slower way</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry <function>ST_MemUnion</function></funcdef>
            <paramdef><type>geometry set</type> <parameter>geomfield</parameter></paramdef>
          </funcprototype>

        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

    <para>An aggregate function that unions the input geometries, merging them to produce a result geometry
        with no overlaps.
        The output may be a single geometry, a MultiGeometry, or a Geometry Collection.
        </para>

        <note>
          <para>Produces the same result as <xref linkend="ST_Union"/>, but uses less memory
            and more processor time.
            This aggregate function works by unioning the geometries incrementally, as opposed to
            the ST_Union aggregate which first accumulates an array and then unions the contents
            using a fast algorithm.</para>
        </note>

        <para>&Z_support; However, the result is computed using XY only.
            The result Z values are copied, averaged or interpolated.</para>
      </refsection>


      <refsection>
        <title>Examples</title>

            <programlisting>
SELECT id,
       ST_MemUnion(geom) as singlegeom
FROM sometable f
GROUP BY id;
</programlisting>
      </refsection>

      <!-- Optionally add a "See Also" section -->
      <refsection>
        <title>See Also</title>

        <para><xref linkend="ST_Union"/></para>
      </refsection>
    </refentry>

    <refentry xml:id="ST_Node">
      <refnamediv>
        <refname>ST_Node</refname>

        <refpurpose>
Nodes a collection of lines.
        </refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry <function>ST_Node</function></funcdef>
            <paramdef><type>geometry </type> <parameter>geom</parameter></paramdef>
          </funcprototype>

        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>
Returns a (Multi)LineString representing the fully noded version of a collection of linestrings.
The noding preserves all of the input nodes,
and introduces the least possible number of new nodes.
The resulting linework is dissolved (duplicate lines are removed).
        </para>

        <para>This is a good way to create fully-noded linework suitable for use as input to <xref linkend="ST_Polygonize"/>.</para>

        <para><xref linkend="ST_UnaryUnion"/> can also be used to node and dissolve linework.
        It provides an option to specify a gridSize, which can provide simpler and more robust output.
        See also <xref linkend="ST_Union"/> for an aggregate variant.
        </para>

        <para>&Z_support;</para>
        <para>Performed by the GEOS module.</para>
        <para role="availability" conformance="2.0.0">Availability: 2.0.0</para>

        <para role="changed" conformance="2.4.0">
Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion.
This may cause the resulting linestrings to have a different order and direction compared to PostGIS &lt; 2.4.
        </para>
      </refsection>
      <refsection>
        <title>Examples</title>
        <para>Noding a 3D LineString which self-intersects</para>
        <programlisting>
SELECT ST_AsText(
        ST_Node('LINESTRINGZ(0 0 0, 10 10 10, 0 10 5, 10 0 3)'::geometry)
    ) As  output;
output
-----------
MULTILINESTRING Z ((0 0 0,5 5 4.5),(5 5 4.5,10 10 10,0 10 5,5 5 4.5),(5 5 4.5,10 0 3))
        </programlisting>

        <para>Noding two LineStrings which share common linework.
        Note that the result linework is dissolved.</para>
        <programlisting>
SELECT ST_AsText(
        ST_Node('MULTILINESTRING ((2 5, 2 1, 7 1), (6 1, 4 1, 2 3, 2 5))'::geometry)
    ) As  output;
output
-----------
MULTILINESTRING((2 5,2 3),(2 3,2 1,4 1),(4 1,2 3),(4 1,6 1),(6 1,7 1))
        </programlisting>

      </refsection>

      <!-- Optionally add a "See Also" section -->
      <refsection>
        <title>See Also</title>

        <para>
            <xref linkend="ST_UnaryUnion"/>, <xref linkend="ST_Union"/>
        </para>
      </refsection>
    </refentry>

    <refentry xml:id="ST_Split">
        <refnamediv>
            <refname>ST_Split</refname>
            <refpurpose>Returns a collection of geometries created by splitting a geometry by another geometry.</refpurpose>
        </refnamediv>

        <refsynopsisdiv>
            <funcsynopsis>
              <funcprototype>
                <funcdef>geometry <function>ST_Split</function></funcdef>
                <paramdef><type>geometry</type> <parameter>input</parameter></paramdef>
                <paramdef><type>geometry</type> <parameter>blade</parameter></paramdef>
              </funcprototype>
            </funcsynopsis>
        </refsynopsisdiv>

        <refsection>
            <title>Description</title>
            <para>
            The function supports splitting a LineString by a (Multi)Point, (Multi)LineString or (Multi)Polygon boundary,
            or a (Multi)Polygon by a LineString.
            When a (Multi)Polygon is used as as the blade, its linear components
            (the boundary) are used for splitting the input.
            The result geometry is always a collection.
            </para>

            <para>
            This function is in a sense the opposite of <xref linkend="ST_Union"/>.
            Applying ST_Union to the returned collection should theoretically yield the original geometry
            (although due to numerical rounding this may not be exactly the case).
            </para>

            <note><para>
            If the the input and blade do not intersect due to numerical precision issues,
            the input may not be split as expected.
            To avoid this situation it may be necessary
            to snap the input to the blade first, using <xref linkend="ST_Snap"/> with a small tolerance.
            </para></note>

            <para role="availability" conformance="2.0.0">Availability: 2.0.0 requires GEOS</para>
            <para role="enhanced" conformance="2.2.0">Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.</para>
            <para role="enhanced" conformance="2.5.0">Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced.</para>

        </refsection>
        <refsection>
            <title>Examples</title>
            <para>Split a Polygon by a Line.</para>
            <informaltable>
                <tgroup cols="2">
                    <tbody>
                      <row>
                        <entry>
                                               <para>
                            <informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_split01.png"/>
                              </imageobject>
                              <caption><para>Before Split</para></caption>
                            </mediaobject>
                            </informalfigure>
                                               </para>
                        </entry>
                        <entry>
                                               <para>
                            <informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_split02.png"/>
                              </imageobject>
                              <caption><para>After split</para></caption>
                            </mediaobject>
                            </informalfigure>
                                              </para>
                        </entry>
                    </row>
                    </tbody>
                </tgroup>
            </informaltable>
            <programlisting>
SELECT ST_AsText( ST_Split(
                ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50), -- circle
                ST_MakeLine(ST_Point(10, 10),ST_Point(190, 190)) -- line
    ));

-- result --
 GEOMETRYCOLLECTION(
            POLYGON((150 90,149.039264020162 80.2454838991936,146.193976625564 70.8658283817455,..),
            POLYGON(..))
)
            </programlisting>
            <para>Split a MultiLineString by a Point, where the point lies exactly on both LineStrings elements.</para>
            <informaltable>
                <tgroup cols="2">
                    <tbody>
                      <row>
                        <entry>
                                               <para>
                            <informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_split03.png"/>
                              </imageobject>
                              <caption><para>Before Split</para></caption>
                            </mediaobject>
                            </informalfigure>
                                               </para>
                        </entry>
                        <entry>
                                               <para>
                            <informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_split04.png"/>
                              </imageobject>
                              <caption><para>After split</para></caption>
                            </mediaobject>
                            </informalfigure>
                                               </para>
                        </entry>
                    </row>
                    </tbody>
                </tgroup>
            </informaltable>
            <programlisting>
SELECT ST_AsText(ST_Split(
    'MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))',
    ST_Point(30,30))) As split;

split
------
GEOMETRYCOLLECTION(
    LINESTRING(10 10,30 30),
    LINESTRING(30 30,190 190),
    LINESTRING(15 15,30 30),
    LINESTRING(30 30,100 90)
)
            </programlisting>

        <para>Split a LineString by a Point, where the point does not lie exactly on the line.
        Shows using <xref linkend="ST_Snap"/> to snap the line to the point to allow it to be split.
        </para>
        <programlisting>
WITH data AS (SELECT
  'LINESTRING(0 0, 100 100)'::geometry AS line,
  'POINT(51 50)':: geometry AS point
)
SELECT ST_AsText( ST_Split( ST_Snap(line, point, 1), point)) AS snapped_split,
       ST_AsText( ST_Split(line, point)) AS not_snapped_not_split
       FROM data;

                            snapped_split                            |            not_snapped_not_split
---------------------------------------------------------------------+---------------------------------------------
 GEOMETRYCOLLECTION(LINESTRING(0 0,51 50),LINESTRING(51 50,100 100)) | GEOMETRYCOLLECTION(LINESTRING(0 0,100 100))
</programlisting>
        </refsection>
        <refsection>
        <title>See Also</title>
        <para>
            <xref linkend="ST_Snap"/>, <xref linkend="ST_Union"/>
        </para>
        </refsection>
    </refentry>

   <refentry xml:id="ST_Subdivide">
      <refnamediv>
        <refname>ST_Subdivide</refname>
        <refpurpose>Computes a rectilinear subdivision of a geometry.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
            <funcprototype>
                <funcdef>setof geometry <function>ST_Subdivide</function></funcdef>
                <paramdef><type>geometry</type> <parameter>geom</parameter></paramdef>
                <paramdef><type>integer</type> <parameter>max_vertices=256</parameter></paramdef>
                <paramdef choice="opt"><type>float8</type> <parameter>gridSize = -1</parameter></paramdef>
            </funcprototype>
        </funcsynopsis>
    </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>
            Returns a set of geometries that are the result of dividing <varname>geom</varname>
            into parts using rectilinear lines,
            with each part containing no more than <code>max_vertices</code>.
        </para>
        <para>
            <code>max_vertices</code> must be 5 or more, as 5 points are needed to represent a closed box.
            <code>gridSize</code> can be specified to have clipping work in fixed-precision space (requires GEOS-3.9.0+).
        </para>
        <para>
            Point-in-polygon and other spatial operations are normally faster for indexed subdivided datasets.
            Since the bounding boxes for the parts usually cover a smaller area than the original geometry bbox,
            index queries produce fewer "hit" cases.
            The "hit" cases are faster because the spatial operations
            executed by the index recheck process fewer points.
        </para>
        <note><para>
            This is a <link xlink:href="https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-TABLEFUNCTIONS">set-returning function</link>
            (SRF) that return a set of rows containing single geometry values.
            It can be used in a SELECT list or a FROM clause
            to produce a result set with one record for each result geometry.
        </para></note>

        <para>Performed by the GEOS module.</para>
        <para role="availability" conformance="2.2.0">Availability: 2.2.0</para>
        <para role="enhanced" conformance="2.5.0">Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5.</para>
        <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter.</para>
        <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter</para>
      </refsection>

      <refsection>
        <title>Examples</title>

        <para><emphasis role="bold">Example:</emphasis>
        Subdivide a polygon into parts with no more than 10 vertices,
        and assign each part a unique id.
        </para>

        <informalfigure>
            <mediaobject>
                <imageobject>
                <imagedata fileref="images/st_subdivide01.png"/>
                </imageobject>
                <caption><para>Subdivided to maximum 10 vertices</para></caption>
            </mediaobject>
            </informalfigure>
<programlisting>
SELECT row_number() OVER() As rn, ST_AsText(geom) As wkt
    FROM (SELECT ST_SubDivide(
        'POLYGON((132 10,119 23,85 35,68 29,66 28,49 42,32 56,22 64,32 110,40 119,36 150,
        57 158,75 171,92 182,114 184,132 186,146 178,176 184,179 162,184 141,190 122,
        190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))'::geometry,10))  AS f(geom);
</programlisting>
<screen> rn │                                                      wkt
────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────
  1 │ POLYGON((119 23,85 35,68 29,66 28,32 56,22 64,29.8260869565217 100,119 100,119 23))
  2 │ POLYGON((132 10,119 23,119 56,186 56,186 52,178 34,168 18,147 13,132 10))
  3 │ POLYGON((119 56,119 100,190 100,185 79,186 56,119 56))
  4 │ POLYGON((29.8260869565217 100,32 110,40 119,36 150,57 158,75 171,92 182,114 184,114 100,29.8260869565217 100))
  5 │ POLYGON((114 184,132 186,146 178,176 184,179 162,184 141,190 122,190 100,114 100,114 184))
  </screen>

        <para><emphasis role="bold">Example:</emphasis>
        Densify a long geography line using ST_Segmentize(geography, distance),
        and use ST_Subdivide to split the resulting line into sublines of 8 vertices.
        </para>
        <informalfigure>
            <mediaobject>
                <imageobject>
                <imagedata fileref="images/st_subdivide02.png"/>
                </imageobject>
                <caption><para>The densified and split lines.</para></caption>
            </mediaobject>
            </informalfigure>
<programlisting>
SELECT ST_AsText( ST_Subdivide(
            ST_Segmentize('LINESTRING(0 0, 85 85)'::geography,
                          1200000)::geometry,    8));
</programlisting>
<screen>
LINESTRING(0 0,0.487578359029357 5.57659056746196,0.984542144675897 11.1527721155093,1.50101059639722 16.7281035483571,1.94532113630331 21.25)
LINESTRING(1.94532113630331 21.25,2.04869538062779 22.3020741387339,2.64204641967673 27.8740533545155,3.29994062412787 33.443216802941,4.04836719489742 39.0084282520239,4.59890468420694 42.5)
LINESTRING(4.59890468420694 42.5,4.92498503922732 44.5680389206321,5.98737409390639 50.1195229244701,7.3290919767674 55.6587646879025,8.79638749938413 60.1969505994924)
LINESTRING(8.79638749938413 60.1969505994924,9.11375579533779 61.1785363177625,11.6558166691368 66.6648504160202,15.642041247655 72.0867690601745,22.8716627200212 77.3609628116894,24.6991785131552 77.8939011989848)
LINESTRING(24.6991785131552 77.8939011989848,39.4046096622744 82.1822848017636,44.7994523421035 82.5156766227011)
LINESTRING(44.7994523421035 82.5156766227011,85 85)
</screen>

        <para><emphasis role="bold">Example:</emphasis>
        Subdivide the complex geometries of a table in-place.
        The original geometry records are deleted from the source table,
        and new records for each subdivided result geometry are inserted.
        </para>

<programlisting><![CDATA[

WITH complex_areas_to_subdivide AS (
    DELETE from polygons_table
    WHERE ST_NPoints(geom) > 255
    RETURNING id, column1, column2, column3, geom
)
INSERT INTO polygons_table (fid, column1, column2, column3, geom)
    SELECT fid, column1, column2, column3,
           ST_Subdivide(geom, 255) as geom
    FROM complex_areas_to_subdivide;

]]></programlisting>

        <para><emphasis role="bold">Example:</emphasis>
        Create a new table containing subdivided geometries,
        retaining the key of the original geometry so that the new table
        can be joined to the source table.
        Since ST_Subdivide is a set-returning (table) function
        that returns a set of single-value rows,
        this syntax automatically produces a table with one row for each result part.
        </para>

<programlisting>
CREATE TABLE subdivided_geoms AS
    SELECT pkey, ST_Subdivide(geom) AS geom
    FROM original_geoms;
</programlisting>

      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
<xref linkend="ST_ClipByBox2D"/>,
<xref linkend="ST_Segmentize"/>,
<xref linkend="ST_Split"/>,
<xref linkend="ST_NPoints"/>
    </para>
      </refsection>
    </refentry>

    <refentry xml:id="ST_SymDifference">
      <refnamediv>
        <refname>ST_SymDifference</refname>

        <refpurpose>Computes a geometry representing the portions of geometries A and B
            that do not intersect.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry <function>ST_SymDifference</function></funcdef>
            <paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
            <paramdef><type>geometry </type> <parameter>geomB</parameter></paramdef>
            <paramdef choice="opt"><type>float8 </type> <parameter>gridSize = -1</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>Returns a geometry representing the portions of geonetries A and B
            that do not intersect.
            This is equivalent to <code>ST_Union(A,B) - ST_Intersection(A,B)</code>.
            It is called a symmetric difference because <code>ST_SymDifference(A,B) = ST_SymDifference(B,A)</code>.
            </para>

            <para>
If the optional <code>gridSize</code> argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)
            </para>

        <para>Performed by the GEOS module</para>

        <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter.</para>
        <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter</para>

        <para>&sfs_compliant; s2.1.1.3</para>
        <para>&sqlmm_compliant; SQL-MM 3: 5.1.21</para>
        <para>&Z_support; However, the result is computed using XY only.
            The result Z values are copied, averaged or interpolated.</para>
      </refsection>


      <refsection>
        <title>Examples</title>

        <informaltable>
              <tgroup cols="2">
                <tbody>
                  <row>
                    <entry>
                        <para>
                            <informalfigure>
                                <mediaobject>
                                  <imageobject>
                                    <imagedata fileref="images/st_symdifference01.png"/>
                                  </imageobject>
                                  <caption><para>The original linestrings shown together</para></caption>
                                </mediaobject>
                            </informalfigure>
                        </para>
                    </entry>

                    <entry>
                        <para><informalfigure>
                            <mediaobject>
                              <imageobject>
                                <imagedata fileref="images/st_symdifference02.png"/>
                              </imageobject>
                              <caption><para>The symmetric difference of the two linestrings</para></caption>
                            </mediaobject>
                          </informalfigure>
                    </para>
                </entry>
                  </row>
        </tbody>
    </tgroup>
</informaltable>
<programlisting>
--Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText(
    ST_SymDifference(
        ST_GeomFromText('LINESTRING(50 100, 50 200)'),
        ST_GeomFromText('LINESTRING(50 50, 50 150)')
    )
);

st_astext
---------
MULTILINESTRING((50 150,50 200),(50 50,50 100))
</programlisting>

<programlisting>

--When used in 3d doesn't quite do the right thing
SELECT ST_AsEWKT(ST_SymDifference(ST_GeomFromEWKT('LINESTRING(1 2 1, 1 4 2)'),
    ST_GeomFromEWKT('LINESTRING(1 1 3, 1 3 4)')))

st_astext
------------
MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))
        </programlisting>
      </refsection>

      <!-- Optionally add a "See Also" section -->
      <refsection>
        <title>See Also</title>

        <para><xref linkend="ST_Difference"/>, <xref linkend="ST_Intersection"/>, <xref linkend="ST_Union"/></para>
      </refsection>
</refentry>

    <refentry xml:id="ST_UnaryUnion">
      <refnamediv>
        <refname>ST_UnaryUnion</refname>

        <refpurpose>Computes the union of the components of a single geometry.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry <function>ST_UnaryUnion</function></funcdef>
            <paramdef><type>geometry </type> <parameter>geom</parameter></paramdef>
            <paramdef choice="opt"><type>float8 </type> <parameter>gridSize = -1</parameter></paramdef>
          </funcprototype>

        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>
        A single-input variant of <xref linkend="ST_Union"/>.
        The input may be a single geometry, a MultiGeometry, or a GeometryCollection.
        The union is applied to the individual elements of the input.
        </para>
        <para>
        This function can be used to fix MultiPolygons which  are
        invalid due to overlapping components.
        However, the input components must each be valid.
        An invalid input component such as a bow-tie polygon may cause an error.
        For this reason it may be better to use <xref linkend="ST_MakeValid"/>.
        </para>

        <para>
        Another use of this function is to node and dissolve a collection of
        linestrings which cross or overlap
        to make them <link linkend="Simple_Geometry">simple</link>.
        (<xref linkend="ST_Node"/> also does this,
        but it does not provide the <code>gridSize</code> option.)
        </para>

        <para>
        It is possible to combine ST_UnaryUnion with <xref linkend="ST_Collect"/> to fine-tune
        how many geometries are be unioned at once.
        This allows trading off between memory usage and compute time,
        striking a balance between ST_Union and <xref linkend="ST_MemUnion"/>.
        </para>

        <para>
        If the optional <code>gridSize</code> argument is provided, the inputs are
        snapped to a grid of the given size, and the result vertices are computed
        on that same grid. (Requires GEOS-3.9.0 or higher)
        </para>

        <para>&Z_support; However, the result is computed using XY only.
            The result Z values are copied, averaged or interpolated.</para>
        <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter.</para>
        <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter</para>
        <para role="availability" conformance="2.0.0">Availability: 2.0.0</para>

      </refsection>


      <!-- Optionally add a "See Also" section -->
      <refsection>
        <title>See Also</title>

        <para>
            <xref linkend="ST_Union"/>,
            <xref linkend="ST_MemUnion"/>,
            <xref linkend="ST_MakeValid"/>,
            <xref linkend="ST_Collect"/>,
            <xref linkend="ST_Node"/>
        </para>
      </refsection>
    </refentry>

<refentry xml:id="ST_Union">
  <refnamediv>
    <refname>ST_Union</refname>
    <refpurpose>Computes a geometry representing the point-set union of
        the input geometries.</refpurpose>
  </refnamediv>

  <refsynopsisdiv>
    <funcsynopsis>
      <funcprototype>
        <funcdef>geometry <function>ST_Union</function></funcdef>
        <paramdef><type>geometry</type> <parameter>g1</parameter></paramdef>
        <paramdef><type>geometry</type> <parameter>g2</parameter></paramdef>
      </funcprototype>
      <funcprototype>
        <funcdef>geometry <function>ST_Union</function></funcdef>
        <paramdef><type>geometry</type> <parameter>g1</parameter></paramdef>
        <paramdef><type>geometry</type> <parameter>g2</parameter></paramdef>
        <paramdef><type>float8</type> <parameter>gridSize</parameter></paramdef>
      </funcprototype>
      <funcprototype>
        <funcdef>geometry <function>ST_Union</function></funcdef>
        <paramdef><type>geometry[]</type> <parameter>g1_array</parameter></paramdef>
      </funcprototype>
      <funcprototype>
        <funcdef>geometry <function>ST_Union</function></funcdef>
        <paramdef><type>geometry set</type> <parameter>g1field</parameter></paramdef>
      </funcprototype>
      <funcprototype>
        <funcdef>geometry <function>ST_Union</function></funcdef>
        <paramdef><type>geometry set</type> <parameter>g1field</parameter></paramdef>
        <paramdef><type>float8</type> <parameter>gridSize</parameter></paramdef>
      </funcprototype>
    </funcsynopsis>
  </refsynopsisdiv>

  <refsection>
    <title>Description</title>
    <para>Unions the input geometries, merging geometry to produce a result geometry
        with no overlaps.
        The output may be an atomic geometry, a MultiGeometry, or a Geometry Collection.
        Comes in several variants:</para>

    <para><emphasis role="bold">Two-input variant:</emphasis>
        returns a geometry that is the union of two input geometries.
        If either input is NULL, then NULL is returned.
        </para>

    <para><emphasis role="bold">Array variant:</emphasis>
        returns a geometry that is the union of an array of geometries.
    </para>

    <para><emphasis role="bold">Aggregate variant:</emphasis>
        returns a geometry that is the union of a rowset of geometries.
        The ST_Union() function is an "aggregate"
        function in the terminology of PostgreSQL. That means that it
        operates on rows of data, in the same way the SUM() and AVG()
        functions do and like most aggregates, it also ignores NULL geometries.</para>

    <para>See <xref linkend="ST_UnaryUnion"/> for a non-aggregate, single-input variant.</para>

    <para>The ST_Union array and set variants use the fast Cascaded Union algorithm described in <link xlink:href="http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html">http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html</link>
    </para>

    <para>A <code>gridSize</code> can be specified to work in fixed-precision space.
        The inputs are snapped to a grid of the given size, and the result vertices are computed
        on that same grid.
        (Requires GEOS-3.9.0 or higher)
    </para>

    <note><para><xref linkend="ST_Collect"/> may sometimes be used in place of ST_Union,
        if the result is not required to be non-overlapping.
        ST_Collect is usually faster than ST_Union because it performs no processing
        on the collected geometries.
        </para></note>

    <para>Performed by the GEOS module.</para>
    <para>ST_Union creates MultiLineString and does not sew LineStrings into a single LineString.
        Use <xref linkend="ST_LineMerge"/> to sew LineStrings.</para>

    <para>NOTE: this function was formerly called GeomUnion(), which
        was renamed from "Union" because UNION is an SQL reserved
        word.</para>

    <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 accept a gridSize parameter.</para>
    <para role="geos_requirement" conformance="3.9.0">Requires GEOS &gt;= 3.9.0 to use the gridSize parameter</para>
    <para role="changed" conformance="3.0.0">Changed: 3.0.0 does not depend on SFCGAL.</para>
    <para role="availability" conformance="1.4.0">Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.</para>

    <para>&sfs_compliant; s2.1.1.3</para>
    <note><para>Aggregate version is not explicitly defined in OGC SPEC.</para></note>
    <para>&sqlmm_compliant; SQL-MM 3: 5.1.19
        the z-index (elevation) when polygons are involved.</para>
    <para>&Z_support; However, the result is computed using XY only.
        The result Z values are copied, averaged or interpolated.</para>
      </refsection>

      <refsection>
        <title>Examples</title>
        <para>Aggregate example</para>
            <programlisting>
SELECT id,
       ST_Union(geom) as singlegeom
FROM sometable f
GROUP BY id;
              </programlisting>
        <para>Non-Aggregate example</para>
            <programlisting>
select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext
----------
MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext
----------
POINT(1 2)</programlisting>
<para>3D example - sort of supports 3D (and with mixed dimensions!)</para>
<programlisting>select ST_AsEWKT(ST_Union(geom))
from (
         select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
         union all
         select 'POINT(5 5 5)'::geometry geom
         union all
         select 'POINT(-2 3 1)'::geometry geom
         union all
         select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
     ) as foo;

st_asewkt
---------
GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));
</programlisting>
<para>3d example not mixing dimensions</para>
<programlisting>select ST_AsEWKT(ST_Union(geom))
from (
         select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
         union all
         select 'POINT(5 5 5)'::geometry geom
         union all
         select 'POINT(-2 3 1)'::geometry geom
         union all
         select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
     ) as foo;

st_asewkt
---------
GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
            ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

              </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
            <xref linkend="ST_Collect"/>,
            <xref linkend="ST_UnaryUnion"/>,
            <xref linkend="ST_MemUnion"/>,
            <xref linkend="ST_Intersection"/>,
            <xref linkend="ST_Difference"/>,
            <xref linkend="ST_SymDifference"/>
        </para>
      </refsection>
    </refentry>

</section>