File: using_postgis_dataman.xml

package info (click to toggle)
postgis 3.5.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 70,052 kB
  • sloc: ansic: 162,204; sql: 93,950; xml: 53,121; cpp: 12,646; perl: 5,658; sh: 5,369; makefile: 3,434; python: 1,205; yacc: 447; lex: 151; pascal: 58
file content (2696 lines) | stat: -rw-r--r-- 112,826 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
<!-- Converted by db4-upgrade version 1.1 -->
<chapter xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://docbook.org/ns/docbook" version="5.0" xml:id="using_postgis_dbmanagement">
  <title>Data Management</title>

  <section xml:id="RefObject">
	<title>Spatial Data Model</title>

	<section xml:id="OGC_Geometry">
	  <title>OGC Geometry</title>

    <para>The Open Geospatial Consortium (OGC) developed the
    <link xlink:href="https://www.ogc.org/standards/sfa"><emphasis>Simple Features Access</emphasis></link>
    standard (SFA) to provide a model for geospatial data.
    It defines the fundamental spatial type of <emphasis role="bold">Geometry</emphasis>,
    along with operations which manipulate and transform geometry values
    to perform spatial analysis tasks.
    PostGIS implements the OGC Geometry model as the PostgreSQL data types
    <link linkend="PostGIS_Geometry">geometry</link> and
    <link linkend="PostGIS_Geography">geography</link>.
    </para>
    <para>
    Geometry is an <emphasis>abstract</emphasis> type.
    Geometry values belong to one of its <emphasis>concrete</emphasis> subtypes
    which represent various kinds and dimensions of geometric shapes.
    These include the <emphasis role="bold">atomic</emphasis> types
    <link linkend="Point">Point</link>,
    <link linkend="LineString">LineString</link>,
    <link linkend="LinearRing">LinearRing</link> and
    <link linkend="Polygon">Polygon</link>,
    and the <emphasis role="bold">collection</emphasis> types
    <link linkend="MultiPoint">MultiPoint</link>,
    <link linkend="MultiLineString">MultiLineString</link>,
    <link linkend="MultiPolygon">MultiPolygon</link> and
    <link linkend="GeometryCollection">GeometryCollection</link>.
    The <link xlink:href="https://portal.ogc.org/files/?artifact_id=25355"><emphasis>Simple Features Access - Part 1: Common architecture v1.2.1</emphasis></link>
    adds subtypes for the structures
    <link linkend="PolyhedralSurface">PolyhedralSurface</link>,
    <link linkend="Triangle">Triangle</link> and
    <link linkend="TIN">TIN</link>.
    </para>

    <para>Geometry models shapes in the 2-dimensional Cartesian plane.
    The PolyhedralSurface, Triangle, and TIN types can also represent shapes in 3-dimensional space.
    The size and location of shapes are specified by their <emphasis role="bold">coordinates</emphasis>.
    Each coordinate has a X and Y <emphasis role="bold">ordinate</emphasis> value determining its location in the plane.
    Shapes are constructed from points or line segments, with points specified by a single coordinate,
    and line segments by two coordinates.
    </para>

    <para>Coordinates may contain optional Z and M ordinate values.
    The Z ordinate is often used to represent elevation.
    The M ordinate contains a measure value, which may represent time or distance.
    If Z or M values are present in a geometry value, they must be defined for each point in the geometry.
    If a geometry has Z or M ordinates the <emphasis role="bold">coordinate dimension</emphasis> is 3D;
    if it has both Z and M the coordinate dimension is 4D.
    </para>

    <para>Geometry values are associated with a
    <emphasis role="bold">spatial reference system</emphasis>
    indicating the coordinate system in which it is embedded.
    The spatial reference system is identified by the geometry SRID number.
    The units of the X and Y axes are determined by the spatial reference system.
    In <emphasis role="bold">planar</emphasis> reference systems the X and Y coordinates typically
    represent easting and northing,
    while in <emphasis role="bold">geodetic</emphasis> systems
    they represent longitude and latitude.
    SRID 0 represents an infinite Cartesian plane with no units assigned to its axes.
    See <xref linkend="spatial_ref_sys"/>.
    </para>

    <para>The geometry <emphasis role="bold">dimension</emphasis> is a property of geometry types.
    Point types have dimension 0, linear types have dimension 1,
    and polygonal types have dimension 2.
    Collections have the dimension of the maximum element dimension.
    </para>

    <para>A geometry value may be <emphasis role="bold">empty</emphasis>.
    Empty values contain no vertices (for atomic geometry types)
    or no elements (for collections).
    </para>

    <para>An important property of geometry values is their spatial
    <emphasis role="bold">extent</emphasis> or <emphasis role="bold">bounding box</emphasis>,
    which the OGC model calls <emphasis role="bold">envelope</emphasis>.
    This is the 2 or 3-dimensional box which encloses the coordinates of a geometry.
    It is an efficient way to represent a geometry's
    extent in coordinate space and to check whether two geometries interact.
   </para>

    <para>The geometry model allows evaluating topological spatial relationships as
    described in  <xref linkend="DE-9IM"/>.
    To support this the concepts of
    <emphasis role="bold">interior</emphasis>,
    <emphasis role="bold">boundary</emphasis> and
    <emphasis role="bold">exterior</emphasis>
    are defined for each geometry type.
    Geometries are topologically closed, so they always contain their boundary.
    The boundary is a geometry of dimension one less than that of the geometry itself.
    </para>

    <para>The OGC geometry model defines validity rules for each geometry type.
    These rules ensure that geometry values represents realistic
    situations (e.g. it is possible to specify a polygon
    with a hole lying outside the shell, but this makes no sense geometrically
    and is thus invalid).
    PostGIS also allows storing and manipulating invalid geometry values.
    This allows detecting and fixing them if needed.
    See <xref linkend="OGC_Validity"/>
    </para>

    <section xml:id="Point">
        <title>Point</title>
        <para>A Point is a 0-dimensional geometry that represents a single location in coordinate space.</para>
<programlisting>POINT (1 2)
POINT Z (1 2 3)
POINT ZM (1 2 3 4)
</programlisting>
    </section>

    <section xml:id="LineString">
        <title>LineString</title>
        <para>A LineString is a 1-dimensional line formed by a contiguous sequence of line segments.
        Each line segment is defined by two points, with the end point of one segment
        forming the start point of the next segment.
        An OGC-valid LineString has either zero or two or more points,
        but PostGIS also allows single-point LineStrings.
        LineStrings may cross themselves (self-intersect).
        A LineString is <emphasis role="bold">closed</emphasis> if the start and end points are the same.
        A LineString is <emphasis role="bold">simple</emphasis> if it does not self-intersect.
        </para>
        <programlisting>LINESTRING (1 2, 3 4, 5 6)</programlisting>
    </section>

    <section xml:id="LinearRing">
        <title>LinearRing</title>
        <para>A LinearRing is a LineString which is both closed and simple.
        The first and last points must be equal, and the line must not self-intersect.</para>
        <programlisting>LINEARRING (0 0 0, 4 0 0, 4 4 0, 0 4 0, 0 0 0)</programlisting>
    </section>

    <section xml:id="Polygon">
        <title>Polygon</title>
        <para>A Polygon is a 2-dimensional planar region,
        delimited by an exterior boundary (the shell)
        and zero or more interior boundaries (holes).
        Each boundary is a <link linkend="LinearRing">LinearRing</link>.
        </para>
        <programlisting>POLYGON ((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))</programlisting>
    </section>

    <section xml:id="MultiPoint">
        <title>MultiPoint</title>
        <para>A MultiPoint is a collection of Points.</para>
        <programlisting>MULTIPOINT ( (0 0), (1 2) )</programlisting>
    </section>

    <section xml:id="MultiLineString">
        <title>MultiLineString</title>
        <para>A MultiLineString is a collection of LineStrings.
        A MultiLineString is closed if each of its elements is closed.
        </para>
        <programlisting>MULTILINESTRING ( (0 0,1 1,1 2), (2 3,3 2,5 4) )</programlisting>
    </section>

    <section xml:id="MultiPolygon">
        <title>MultiPolygon</title>
        <para>A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons.
        Polygons in the collection may touch only at a finite number of points.
        </para>
        <programlisting>MULTIPOLYGON (((1 5, 5 5, 5 1, 1 1, 1 5)), ((6 5, 9 1, 6 1, 6 5)))</programlisting>
    </section>

    <section xml:id="GeometryCollection">
        <title>GeometryCollection</title>
        <para>A GeometryCollection is a heterogeneous (mixed) collection of geometries.</para>
        <programlisting>GEOMETRYCOLLECTION ( POINT(2 3), LINESTRING(2 3, 3 4))</programlisting>
    </section>

    <section xml:id="PolyhedralSurface">
        <title>PolyhedralSurface</title>
        <para>A PolyhedralSurface is a contiguous collection of patches or facets which share some edges.
        Each patch is a planar Polygon.
        If the Polygon coordinates have Z ordinates then the surface is 3-dimensional.</para>
        <programlisting>POLYHEDRALSURFACE Z (
  ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
  ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
  ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
  ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
  ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
  ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )</programlisting>
    </section>

    <section xml:id="Triangle">
        <title>Triangle</title>
        <para>A Triangle is a polygon defined by three distinct non-collinear vertices.
            Because a Triangle is a polygon it is specified by four coordinates,
            with the first and fourth being equal.
        </para>
        <programlisting>TRIANGLE ((0 0, 0 9, 9 0, 0 0))</programlisting>
    </section>

    <section xml:id="TIN">
        <title>TIN</title>
        <para>A TIN is a collection of non-overlapping
            <link linkend="Triangle">Triangle</link>s representing a
            <link xlink:href="https://en.wikipedia.org/wiki/Triangulated_irregular_network">Triangulated Irregular Network</link>.
        </para>
        <programlisting>TIN Z ( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )</programlisting>
    </section>


</section>

	<section xml:id="SQL_MM_Part3">
	  <title>SQL/MM Part 3 - Curves</title>

	  <para>The
      <link xlink:href="https://www.iso.org/obp/ui/#iso:std:iso-iec:13249:-3:ed-5:v1:en"><emphasis>ISO/IEC 13249-3 SQL Multimedia - Spatial</emphasis></link>
      standard (SQL/MM) extends the
	  OGC SFA to define Geometry subtypes containing curves with circular arcs.
      The SQL/MM types support 3DM, 3DZ and 4D coordinates.
	  </para>
	  <note>
		<para>All floating point comparisons within the SQL-MM implementation
		are performed to a specified tolerance, currently 1E-8.</para>
	  </note>

    <section xml:id="CircularString">
        <title>CircularString</title>

        <para>CircularString is the basic curve type, similar to a
        LineString in the linear world.  A single arc segment is specified by three
        points: the start and end points (first and third) and some other
        point on the arc.
        To specify a closed circle the start and end points are the same
        and the middle point is the opposite point on the circle diameter
        (which is the center of the arc).
        In a sequence of arcs the end point of the previous
        arc is the start point of the next arc, just like the segments of a LineString.
        This means that a CircularString must have an
        odd number of points greater than 1.</para>

		<programlisting>CIRCULARSTRING(0 0, 1 1, 1 0)

CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)</programlisting>
    </section>
    <section xml:id="CompoundCurve">
        <title>CompoundCurve</title>
        <para>A CompoundCurve is a single continuous curve that may contain both
        circular arc segments and linear segments.  That means that
        in addition to having well-formed components, the end point of
        every component (except the last) must be coincident with the
        start point of the following component.</para>

		<programlisting>COMPOUNDCURVE( CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))</programlisting>
    </section>
    <section xml:id="CurvePolygon">
        <title>CurvePolygon</title>
        <para>A CurvePolygon is like a polygon, with an outer ring
        and zero or more inner rings.  The difference is that a ring can be a
        CircularString or CompoundCurve as well as a LineString.
        </para>
        <para>As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.</para>

		<programlisting>CURVEPOLYGON(
  CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),
  (1 1, 3 3, 3 1, 1 1) )</programlisting>

        <para>Example: A CurvePolygon with the shell defined by a CompoundCurve
        containing a CircularString and a LineString,
        and a hole defined by a CircularString</para>
		  <programlisting>CURVEPOLYGON(
  COMPOUNDCURVE( CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),
                 (4 3, 4 5, 1 4, 0 0)),
  CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1) )</programlisting>

    </section>
    <section xml:id="MultiCurve">
        <title>MultiCurve</title>
        <para>A MultiCurve is a collection of curves which can include
        LineStrings, CircularStrings or CompoundCurves.</para>

        <programlisting>MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))</programlisting>
    </section>
    <section xml:id="MultiSurface">
        <title>MultiSurface</title>
        <para>A MultiSurface is a collection of surfaces, which can be (linear)
        Polygons or CurvePolygons.</para>

        <programlisting>MULTISURFACE(
  CURVEPOLYGON(
    CIRCULARSTRING( 0 0, 4 0, 4 4, 0 4, 0 0),
    (1 1, 3 3, 3 1, 1 1)),
  ((10 10, 14 12, 11 10, 10 10), (11 11, 11.5 11, 11 11.5, 11 11)))</programlisting>

    </section>

	</section>

	<section xml:id="OpenGISWKBWKT">
	  <title>WKT and WKB</title>

	  <para>The OGC SFA specification defines two formats for representing
	  geometry values for external use: Well-Known Text (WKT) and Well-Known
	  Binary (WKB). Both WKT and WKB include information about the type
	  of the object and the coordinates which define it.</para>

	  <para>Well-Known Text (WKT) provides a standard textual representation of spatial data.
      Examples of WKT representations of spatial objects are:</para>

	  <itemizedlist>
		<listitem>
		  <para>POINT(0 0)</para>
		</listitem>

		<listitem>
		  <para>POINT Z (0 0 0)</para>
		</listitem>

		<listitem>
		  <para>POINT ZM (0 0 0 0)</para>
		</listitem>

		<listitem>
		  <para>POINT EMPTY</para>
		</listitem>

		<listitem>
		  <para>LINESTRING(0 0,1 1,1 2)</para>
		</listitem>

		<listitem>
		  <para>LINESTRING EMPTY</para>
		</listitem>

		<listitem>
		  <para>POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))</para>
		</listitem>

		<listitem>
		  <para>MULTIPOINT((0 0),(1 2))</para>
		</listitem>

		<listitem>
		  <para>MULTIPOINT Z ((0 0 0),(1 2 3))</para>
		</listitem>

		<listitem>
		  <para>MULTIPOINT EMPTY</para>
		</listitem>

		<listitem>
		  <para>MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))</para>
		</listitem>

		<listitem>
		  <para>MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
		  ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))</para>
		</listitem>

		<listitem>
		  <para>GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))</para>
		</listitem>

		<listitem>
		  <para>GEOMETRYCOLLECTION EMPTY</para>
		</listitem>
	  </itemizedlist>

	  <para>Input and output of WKT is provided by the functions
      <xref linkend="ST_AsText"/> and <xref linkend="ST_GeomFromText"/>:</para>

	  <programlisting>text WKT = ST_AsText(geometry);
geometry = ST_GeomFromText(text WKT, SRID);</programlisting>

	  <para>For example, a statement to create and insert a spatial object from WKT and a SRID is:</para>

	  <programlisting>INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');</programlisting>

    <para>Well-Known Binary (WKB) provides a portable, full-precision representation
      of spatial data as binary data (arrays of bytes).
      Examples of the WKB representations of spatial objects are:</para>

    <itemizedlist>
    <listitem>
        <para>WKT: POINT(1 1)</para>
        <para>WKB: 0101000000000000000000F03F000000000000F03</para>
    </listitem>

    <listitem>
        <para>WKT: LINESTRING (2 2, 9 9)</para>
        <para>WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240</para>
    </listitem>
    </itemizedlist>

	<para>Input and output of WKB is provided by the functions
    <xref linkend="ST_AsBinary"/> and <xref linkend="ST_GeomFromWKB"/>:</para>

	  <programlisting>
bytea WKB = ST_AsBinary(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);
</programlisting>

	  <para>For example, a statement to create and insert a
	  spatial object from WKB is:</para>

	  <programlisting>INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromWKB('\x0101000000000000000000f03f000000000000f03f', 312), 'A Place');</programlisting>
	</section>

  </section>

  <section xml:id="PostGIS_Geometry">
	  <title>Geometry Data Type</title>

	<para>PostGIS implements the OGC Simple Features model
    by defining a PostgreSQL data type called <varname>geometry</varname>.
    It represents all of the geometry subtypes by using an internal type code
    (see <xref linkend="GeometryType"/> and <xref linkend="ST_GeometryType"/>).
    This allows modelling spatial features as rows of tables defined
    with a column of type <varname>geometry</varname>.
    </para>

    <para>The <varname>geometry</varname> data type is <emphasis>opaque</emphasis>,
    which means that all access is done via invoking functions on geometry values.
    Functions allow creating geometry objects,
    accessing or updating all internal fields,
    and compute new geometry values.
    PostGIS supports all the functions specified in the OGC
	<link xlink:href="https://portal.ogc.org/files/?artifact_id=25354"><emphasis>Simple feature access - Part 2: SQL option</emphasis></link>
    (SFS) specification, as well many others.
    See <xref linkend="reference"/> for the full list of functions.</para>

    <note>
        <para>PostGIS follows the SFA standard by prefixing spatial functions with "ST_".
        This was intended to stand for "Spatial and Temporal",
        but the temporal part of the standard was never developed.
        Instead it can be interpreted as "Spatial Type".
        </para>
    </note>

    <para>The SFA standard specifies that spatial objects include a Spatial Reference System
    identifier (SRID). The SRID is required when creating spatial objects
    for insertion into the database (it may be defaulted to 0).
    See <xref linkend="ST_SRID"/> and <xref linkend="spatial_ref_sys"/></para>

    <para>To make querying geometry efficient PostGIS defines
    various kinds of spatial indexes, and spatial operators to use them.
    See <xref linkend="build-indexes"/> and <xref linkend="using-query-indexes"/> for details.
    </para>

	<section xml:id="EWKB_EWKT">
	  <title>PostGIS EWKB and EWKT</title>

		<para>OGC SFA specifications initially supported only 2D geometries,
		and the geometry SRID is not included in the input/output representations.
        The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard)
        adds support for 3D (ZYZ) and measured (XYM and XYZM) coordinates,
		but still does not include the SRID value.</para>

		<para>Because of these limitations PostGIS defined extended EWKB and EWKT formats.
        They provide 3D (XYZ and XYM) and 4D (XYZM) coordinate support and include SRID information.
        Including all geometry information allows PostGIS to use EWKB as the format of record
        (e.g. in DUMP files).
        </para>

	    <para>EWKB and EWKT are used for the "canonical forms" of PostGIS data objects.
        For input, the canonical form for binary data is EWKB,
        and for text data either EWKB or EWKT is accepted.
        This allows geometry values to be created by casting
        a text value in either HEXEWKB or EWKT to a geometry value using <varname>::geometry</varname>.
        For output, the canonical form for binary is EWKB, and for text
        it is HEXEWKB (hex-encoded EWKB).
        </para>

        <para>For example this statement creates a geometry by casting from an EWKT text value,
        and outputs it using the canonical form of HEXEWKB:</para>

	  <programlisting>SELECT 'SRID=4;POINT(0 0)'::geometry;
  geometry
  ----------------------------------------------------
  01010000200400000000000000000000000000000000000000
</programlisting>

        <para>PostGIS EWKT output has a few differences to OGC WKT:</para>

		<itemizedlist>
			<listitem>
				<para>For 3DZ geometries the Z qualifier is omitted:</para>
				<para>OGC: POINT Z (1 2 3)</para>
				<para>EWKT: POINT (1 2 3)</para>
			</listitem>
			<listitem>
				<para>For 3DM geometries the M qualifier is included:</para>
				<para>OGC: POINT M (1 2 3)</para>
				<para>EWKT: POINTM (1 2 3)</para>
			</listitem>
			<listitem>
				<para>For 4D geometries the ZM qualifier is omitted:</para>
				<para>OGC: POINT ZM (1 2 3 4)</para>
				<para>EWKT: POINT (1 2 3 4)</para>
			</listitem>
		</itemizedlist>

		<para>EWKT avoids over-specifying dimensionality
        and the inconsistencies that can occur with the OGC/ISO format, such as:
        </para>

		<itemizedlist>
			<listitem>
				<para>POINT ZM (1 1)</para>
			</listitem>
			<listitem>
				<para>POINT ZM (1 1 1)</para>
			</listitem>
			<listitem>
				<para>POINT (1 1 1 1)</para>
			</listitem>
		</itemizedlist>

		<caution>
			<para>PostGIS extended formats are currently a superset of the OGC ones,
            so that every valid OGC WKB/WKT is also valid EWKB/EWKT.
			However, this might vary in the future,
            if the OGC extends a format in a way that conflicts with the PosGIS definition.
            Thus you SHOULD NOT rely on this compatibility!</para>
		</caution>

	  <para>Examples of the EWKT text representation of spatial objects are:</para>

	  <itemizedlist>
		<listitem>
		  <para>POINT(0 0 0) -- XYZ</para>
		</listitem>

		<listitem>
		  <para>SRID=32632;POINT(0 0) -- XY with SRID</para>
		</listitem>

		<listitem>
		  <para>POINTM(0 0 0) -- XYM</para>
		</listitem>

		<listitem>
		  <para>POINT(0 0 0 0) -- XYZM</para>
		</listitem>

		<listitem>
		  <para>SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID</para>
		</listitem>

		<listitem>
		  <para>MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4
		  1))</para>
		</listitem>

		<listitem>
		  <para>POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2
		  0,1 1 0))</para>
		</listitem>

		<listitem>
		  <para>MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2
		  0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))</para>
		</listitem>

		<listitem>
		  <para>GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )</para>
		</listitem>

		<listitem>
		    <para>MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )</para>
		</listitem>

		<listitem>
		  <para>POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),  ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),  ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )</para>
		</listitem>

		<listitem>
		  <para>TRIANGLE ((0 0, 0 10, 10 0, 0 0))</para>
		</listitem>

		<listitem>
		  <para>TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)),
		  ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )</para>
		</listitem>
	  </itemizedlist>

	  <para>Input and output using these formats is available using the following functions:</para>

	  <programlisting>bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);</programlisting>

	  <para>For example, a statement to create and insert a PostGIS spatial object using EWKT is:</para>

	  <programlisting>INSERT INTO geotable ( geom, name )
  VALUES ( ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place' )</programlisting>

	</section>

  </section>

  <section xml:id="PostGIS_Geography">
	  <title>Geography Data Type</title>

	  <para>The PostGIS <varname>geography</varname> data type provides native support for spatial features represented on "geographic" coordinates (sometimes called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units (degrees). </para>

	  <para>The basis for the PostGIS geometry data type is a plane.
      The shortest path between two points on the plane is a straight line.
      That means functions on geometries (areas, distances, lengths, intersections, etc)
      are calculated using straight line vectors and cartesian mathematics.
      This makes them simpler to implement and faster to execute,
      but also makes them inaccurate for data on the spheroidal surface of the earth.
      </para>

	  <para>The PostGIS geography data type is based on a spherical model.
      The shortest path between two points on the sphere is a great circle arc.
      Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere.
      By taking the spheroidal shape of the world into account, the functions provide more accurate results.</para>

	  <para>Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the geometry type.
      Over time, as new algorithms are added the capabilities of the geography type will expand.
      As a workaround one can convert back and forth between geometry and geography types.</para>

	  <para>Like the geometry data type, geography data is associated
      with a spatial reference system via a spatial reference system identifier (SRID).
        Any geodetic (long/lat based) spatial reference system defined in the <varname>spatial_ref_sys</varname> table can be used.
        (Prior to PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)).
		You can add your own custom geodetic spatial reference system as described in <xref linkend="user-spatial-ref-sys"/>.</para>

	  <para>For all spatial reference systems the units returned by measurement functions
      (e.g. <xref linkend="ST_Distance"/>, <xref linkend="ST_Length"/>, <xref linkend="ST_Perimeter"/>, <xref linkend="ST_Area"/>)
      and for the distance argument of <xref linkend="ST_DWithin"/> are in meters.</para>

	<section xml:id="Create_Geography_Tables">
		<title>Creating Geography Tables</title>

		<para>You can create a table to store geography data using the
        <link xlink:href="https://www.postgresql.org/docs/current/sql-createtable.html">CREATE TABLE</link>
        SQL statement with a column of type <varname>geography</varname>.
        The following example creates a table with a geography column storing 2D LineStrings
        in the WGS84 geodetic coordinate system (SRID 4326):</para>

<programlisting>CREATE TABLE global_points (
    id SERIAL PRIMARY KEY,
    name VARCHAR(64),
    location geography(POINT,4326)
  );</programlisting>

		<para>The geography type supports two optional type modifiers:</para>

        <itemizedlist>
		<listitem>
        <para>the spatial type modifier restricts the kind of shapes and dimensions allowed in the column.
		Values allowed for the spatial type are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION.
        The geography type does not support curves, TINS, or POLYHEDRALSURFACEs.
        The modifier supports coordinate dimensionality restrictions by adding suffixes: Z, M and ZM.
        For example, a modifier of 'LINESTRINGM' only allows linestrings with three dimensions, and treats the third dimension as a measure.
		Similarly, 'POINTZM' requires four dimensional (XYZM) data.
        </para>
		</listitem>
		<listitem>
        <para>the SRID modifier restricts the spatial reference system SRID to a particular number.
        If omitted, the SRID defaults to 4326 (WGS84 geodetic), and all calculations are performed using WGS84.
        </para>
		</listitem>
		</itemizedlist>

		<para/>

        <para>Examples of creating tables with geography columns:</para>
		<itemizedlist>
		<listitem>
		  <para>Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):</para>
		  <para><programlisting>CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );</programlisting></para>
		</listitem>
		<listitem>
		  <para>Create a table with 2D POINT geography in NAD83 longlat:</para>
		  <para><programlisting>CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );</programlisting></para>
		</listitem>
		<listitem>
		  <para>Create a table with 3D (XYZ) POINTs and an explicit SRID of 4326:</para>
		  <para><programlisting>CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );</programlisting></para>
		</listitem>
		<listitem>
			<para>Create a table with 2D LINESTRING geography with the default SRID 4326:</para>
			<para><programlisting>CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );</programlisting></para>
		</listitem>
		<listitem>
			<para>Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):</para>
			<para><programlisting>CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );</programlisting></para>
		</listitem>
		<!-- TODO: Add other examples -->
        <!--
		<listitem>
			<para>MULTIPOINT</para>
		</listitem>
		<listitem>
			<para>MULTILINESTRING</para>
		</listitem>
		<listitem>
			<para>MULTIPOLYGON</para>
		</listitem>
		<listitem>
			<para>GEOMETRYCOLLECTION</para>
		</listitem>
        -->
		</itemizedlist>
		<para>Geography fields are registered in the <varname>geography_columns</varname> system view.
		You can query the <varname>geography_columns</varname> view and see that the table is listed:</para>

<programlisting>
SELECT * FROM geography_columns;</programlisting>

<para>Creating a spatial index works the same as for geometry columns.
	PostGIS will note that the column type is GEOGRAPHY and create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.</para>

<programlisting>-- Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST ( location );</programlisting>

	</section>

<section xml:id="Use_Geography_Tables">
	<title>Using Geography Tables</title>

<para>You can insert data into geography tables in the same way as geometry.
Geometry data will autocast to the geography type if it has SRID 4326.
The <link linkend="EWKB_EWKT">EWKT and EWKB</link> formats can also be used
to specify geography values.</para>

<programlisting>-- Add some data into the test table
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');
</programlisting>

<para>Any geodetic (long/lat) spatial reference system listed in
<varname>spatial_ref_sys</varname> table may be specified as a geography SRID.
Non-geodetic coordinate systems raise an error if used.
</para>

<programlisting>-- NAD 83 lon/lat
SELECT 'SRID=4269;POINT(-123 34)'::geography;
                    geography
----------------------------------------------------
 0101000020AD1000000000000000C05EC00000000000004140
</programlisting>

<programlisting>-- NAD27 lon/lat
SELECT 'SRID=4267;POINT(-123 34)'::geography;
                    geography
----------------------------------------------------
 0101000020AB1000000000000000C05EC00000000000004140
</programlisting>

<programlisting>-- NAD83 UTM zone meters - gives an error since it is a meter-based planar projection
SELECT 'SRID=26910;POINT(-123 34)'::geography;

ERROR:  Only lon/lat coordinate systems are supported in geography.
</programlisting>

<para>Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values should be expected in meters (or square meters for areas).</para>

<programlisting>-- A distance query using a 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);</programlisting>


<para>You can see the power of geography in action by calculating how close a plane flying
a great circle route from Seattle to London (LINESTRING(-122.33 47.606, 0.0 51.5))
comes to Reykjavik (POINT(-21.96 64.15))
(<link xlink:href="http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR">map the route</link>).
</para>

<para>The geography type calculates the true shortest distance of 122.235 km over the sphere
between Reykjavik and the great circle flight path between Seattle and London.</para>

<programlisting>-- Distance calculation using GEOGRAPHY
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)'::geography);
   st_distance
-----------------
 122235.23815667</programlisting>

<para>
The geometry type calculates a meaningless cartesian distance between Reykjavik
and the straight line path from Seattle to London plotted on a flat map of the world.
The nominal units of the result is "degrees",
but the result doesn't correspond to any true angular difference between the points,
so even calling them "degrees" is inaccurate.</para>

<programlisting>-- Distance calculation using GEOMETRY
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)'::geometry);
      st_distance
--------------------
 13.342271221453624
</programlisting>

	</section>

	<section xml:id="PostGIS_GeographyVSGeometry">
	  <title>When to use the Geography data type</title>
	  <para>The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.</para>
	  <para>The data type you choose should be determined by the expected working area of the application you are building. Will your data span the globe or a large continental area, or is it local to a state, county or municipality? </para>
	  <itemizedlist>
		<listitem><para>If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the best solution, in terms of performance and functionality available.</para></listitem>
		<listitem><para>If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without having to worry about projection details.
				You store your data in longitude/latitude, and use the functions that have been defined on GEOGRAPHY.</para></listitem>
		<listitem><para>If you don't understand projections, and you don't want to learn about them, and you're prepared to accept the limitations in functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY.
		Simply load your data up as longitude/latitude and go from there.</para></listitem>
	</itemizedlist>
	<para>Refer to <xref linkend="PostGIS_TypeFunctionMatrix"/> for compare between
		what is supported for Geography vs. Geometry.  For a brief listing and description of Geography functions, refer to
		<xref linkend="PostGIS_GeographyFunctions"/>
		</para>
	</section>
	<section xml:id="PostGIS_Geography_AdvancedFAQ">
			<title>Geography Advanced FAQ</title>
			<qandaset>
				<qandaentry>
				  <question>
					<para>Do you calculate on the sphere or the spheroid?</para>
				  </question>

				  <answer>
					<para> By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in local areas match up will with local planar results in good local projections.
					Over larger areas, the spheroidal calculations will be more accurate than any calculation done on a projected plane.
					</para>
					<para>All the geography functions have the option of using a sphere calculation, by setting a final boolean parameter to 'FALSE'. This will somewhat speed up calculations, particularly for cases where the geometries are very simple.</para>
				  </answer>
				</qandaentry>

				<qandaentry>
				  <question>
					<para>What about the date-line and the poles?</para>
				  </question>

				  <answer>
					<para> All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude)
					so a shape that crosses the dateline is, from a calculation point of view, no different from any other shape.
					</para>
				  </answer>
				</qandaentry>

				<qandaentry>
				  <question>
					<para>What is the longest arc you can process?</para>
				  </question>

				  <answer>
					<para>We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined by the *shorter* of the two paths along the great circle.
					As a consequence, shapes that have arcs of more than 180 degrees will not be correctly modelled.</para>
				  </answer>
				</qandaentry>

				<qandaentry>
				  <question>
					<para>Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?</para>
				  </question>

				  <answer>
					<para>Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge,
						so the index tends to pull the feature no matter what query you run; the number of vertices is huge,
						and tests (distance, containment) have to traverse the vertex list at least once and sometimes N times
						(with N being the number of vertices in the other candidate feature).
					</para>
					<para>As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you "denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and so queries don't have to pull out the whole object every time. Please consult <xref linkend="ST_Subdivide"/> function documentation.
					Just because you *can* store all of Europe in one polygon doesn't mean you *should*.</para>
				  </answer>
				</qandaentry>
			</qandaset>
	</section>
</section>
<!-- ==============================================================  -->
<section xml:id="OGC_Validity">
	  <title>Geometry Validation</title>

	  <para>PostGIS is compliant with the Open Geospatial Consortium’s (OGC)
	  Simple Features specification.
      That standard defines the concepts of geometry being
      <emphasis>simple</emphasis> and <emphasis>valid</emphasis>.
      These definitions allow the Simple Features geometry model
      to represent spatial objects in a consistent and unambiguous way
      that supports efficient computation.
      (Note: the OGC SF and SQL/MM have the same definitions for simple and valid.)
        </para>

	<section xml:id="Simple_Geometry">
	  <title>Simple Geometry</title>

	  <para>A <emphasis>simple</emphasis>
	  geometry is one that has no anomalous geometric points, such as self
	  intersection or self tangency.
	  </para>

	  <para>A <varname>POINT</varname> is inherently <emphasis>simple</emphasis>
	  as a 0-dimensional geometry object.</para>

	  <para><varname>MULTIPOINT</varname>s are <emphasis>simple</emphasis> if
	  no two coordinates (<varname>POINT</varname>s) are equal (have identical
	  coordinate values).</para>

	  <para>A <varname>LINESTRING</varname> is <emphasis>simple</emphasis> if
	  it does not pass through the same point twice, except for the endpoints.
      If the endpoints of a simple LineString are identical it is called <emphasis>closed</emphasis>
      and referred to as a Linear Ring.</para>

	  <informaltable frame="none">
		<tgroup cols="1">
		  <tbody>
			<row>
				<entry><para><emphasis>
                <emphasis role="bold">(a)</emphasis> and
				<emphasis role="bold">(c)</emphasis> are simple	<varname>LINESTRING</varname>s.
                <emphasis role="bold">(b)</emphasis> and <emphasis role="bold">(d)</emphasis> are not simple.
                <emphasis role="bold">(c)</emphasis> is a closed Linear Ring.
                </emphasis></para></entry>
			</row>
		  </tbody>
		</tgroup>
		<tgroup cols="2" align="center">
		  <tbody>
			<row>
			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple01.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(a)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple02.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(b)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>

			<row>
			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple03.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(c)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple04.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(d)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>
		  </tbody>
		</tgroup>

	  </informaltable>

	  <para>A <varname>MULTILINESTRING</varname> is <emphasis>simple</emphasis>
	  only if all of its elements are simple and the only intersection between
	  any two elements occurs at points that are on the
	  boundaries of both elements.  </para>

	  <informaltable frame="none">
		<tgroup cols="1">
		  <tbody>
			<row>
				<entry><para><emphasis>
                <emphasis role="bold">(e)</emphasis> and
				<emphasis role="bold">(f)</emphasis> are simple
				<varname>MULTILINESTRING</varname>s.
                <emphasis role="bold">(g)</emphasis> is not simple.
                </emphasis></para></entry>
			</row>
		  </tbody>
		</tgroup>
		<tgroup cols="3" align="center">
		  <tbody>
			<row>
			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple05.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(e)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple06.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(f)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_issimple07.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(g)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>
		  </tbody>
		</tgroup>
	  </informaltable>

    <para><varname>POLYGON</varname>s are formed from linear rings, so
    valid polygonal geometry is always <emphasis>simple</emphasis>.</para>

    <para>To test if a geometry is simple
	use the <xref linkend="ST_IsSimple"/> function:</para>

	  <programlisting>
SELECT
   ST_IsSimple('LINESTRING(0 0, 100 100)') AS straight,
   ST_IsSimple('LINESTRING(0 0, 100 100, 100 0, 0 100)') AS crossing;

 straight | crossing
----------+----------
 t        | f
</programlisting>

    <para>Generally, PostGIS functions do not require geometric arguments to be simple.
	Simplicity is primarily used as a basis for defining geometric validity.
    It is also a requirement for some kinds of spatial data models
    (for example, linear networks often disallow lines that cross).
    Multipoint and linear geometry can be made simple using <xref linkend="ST_UnaryUnion"/>.
    </para>
    </section>

	<section xml:id="Valid_Geometry">
	  <title>Valid Geometry</title>

        <para>Geometry validity primarily applies to 2-dimensional
        geometries (<varname>POLYGON</varname>s and <varname>MULTIPOLYGON</varname>s) .
        Validity is defined by rules that allow polygonal geometry
        to model planar areas unambiguously.
        </para>

      <para>A <varname>POLYGON</varname> is <emphasis>valid</emphasis> if:
      </para>

        <orderedlist>
	    <listitem><para>
        the polygon boundary rings (the exterior shell ring and interior hole rings)
        are <emphasis>simple</emphasis> (do not cross or self-touch).
        Because of this a polygon cannot have cut lines, spikes or loops.
        This implies that polygon holes must be represented as interior rings,
        rather than by the exterior ring self-touching (a so-called "inverted hole").
        </para></listitem>
	    <listitem><para>
        boundary rings do not cross
        </para></listitem>
	    <listitem><para>
        boundary rings may touch at points but only as a tangent (i.e. not in a line)
        </para></listitem>
	    <listitem><para>
        interior rings are contained in the exterior ring
        </para></listitem>
	    <listitem><para>
        the polygon interior is simply connected
        (i.e. the rings must not touch in a way that splits the polygon into more than one part)
        </para></listitem>
        </orderedlist>

	  <informaltable frame="none">
		<tgroup cols="1">
		  <tbody>
			<row>
				<entry><para><emphasis>
                <emphasis role="bold">(h)</emphasis> and
				<emphasis role="bold">(i)</emphasis> are valid <varname>POLYGON</varname>s.
                <emphasis role="bold">(j-m)</emphasis> are invalid.
				<emphasis role="bold">(j)</emphasis>
				can be represented as a valid <varname>MULTIPOLYGON</varname>.
				</emphasis></para></entry>
			</row>
		  </tbody>
		</tgroup>
		<tgroup cols="3" align="center">
		  <tbody>
			<row>
			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid01.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(h)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid02.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(i)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid03.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(j)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>
			<row>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid04.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(k)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid05.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(l)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid06.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(m)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>
		  </tbody>
		</tgroup>
	  </informaltable>

	  <para>A <varname>MULTIPOLYGON</varname> is <emphasis>valid</emphasis> if:
	  </para>

        <orderedlist>
        <listitem><para>
        its element <varname>POLYGON</varname>s are valid
        </para></listitem>
        <listitem><para>
        elements do not overlap (i.e. their interiors must not intersect)
        </para></listitem>
        <listitem><para>
        elements touch only at points (i.e. not along a line)
        </para></listitem>
        </orderedlist>

	  <informaltable frame="none">
		<tgroup cols="1">
		  <tbody>
			<row>
				<entry><para><emphasis>
                <emphasis role="bold">(n)</emphasis> is a valid <varname>MULTIPOLYGON</varname>.
				<emphasis role="bold">(o)</emphasis> and <emphasis role="bold">(p)</emphasis> are invalid.
                </emphasis></para></entry>
			</row>
		  </tbody>
		</tgroup>
		<tgroup cols="3" align="center">
		  <tbody>
			<row>
			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid09.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(n)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid07.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(o)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>

			  <entry><para><informalfigure>
				  <mediaobject>
					<imageobject>
					  <imagedata fileref="images/st_isvalid08.png"/>
					</imageobject>

					<caption><para><emphasis role="bold">(p)</emphasis></para></caption>
				  </mediaobject>
				</informalfigure></para></entry>
			</row>
		  </tbody>
		</tgroup>
	  </informaltable>

	  <para>These rules mean that valid polygonal geometry is also <emphasis>simple</emphasis>.
       </para>

	<para>For linear geometry the only validity rule is that <varname>LINESTRING</varname>s must
    have at least two points and have non-zero length
    (or equivalently, have at least two distinct points.)
    Note that non-simple (self-intersecting) lines are valid.
    </para>

<programlisting>
SELECT
   ST_IsValid('LINESTRING(0 0, 1 1)') AS len_nonzero,
   ST_IsValid('LINESTRING(0 0, 0 0, 0 0)') AS len_zero,
   ST_IsValid('LINESTRING(10 10, 150 150, 180 50, 20 130)') AS self_int;

 len_nonzero | len_zero | self_int
-------------+----------+----------
 t           | f        | t
</programlisting>

    <para><varname>POINT</varname> and <varname>MULTIPOINT</varname> geometries
    have no validity rules.
    </para>
    </section>

    <section xml:id="Managing_Validity">
	  <title>Managing Validity</title>

        <para>PostGIS allows creating and storing both valid and invalid Geometry.
        This allows invalid geometry to be detected and flagged or fixed.
        There are also situations where the OGC validity rules are stricter than desired
        (examples of this are zero-length linestrings and polygons with inverted holes.)
        </para>

	  <para>Many of the functions provided by PostGIS rely on the
	  assumption that geometry arguments are valid.
      For example, it does not make sense to calculate the area of
	  a polygon that has a hole defined outside of the polygon, or to construct
	  a polygon from a non-simple boundary line.
      Assuming valid geometric inputs allows functions to operate more efficiently,
      since they do not need to check for topological correctness.
      (Notable exceptions are that zero-length lines
      and polygons with inversions are generally handled correctly.)
      Also, most PostGIS functions produce valid geometry output if the inputs are valid.
      This allows PostGIS functions to be chained together safely.
      </para>

	  <para>If you encounter unexpected error messages when calling PostGIS functions
      (such as "GEOS Intersection() threw an error!"),
      you should first confirm that the function arguments are valid.
      If they are not, then consider using one of the techniques below to ensure
      the data you are processing is valid.
        </para>

      <note><para>
      If a function reports an error with valid inputs,
      then you may have found an error in either PostGIS or one of
		the libraries it uses, and you should report this to the PostGIS project.
		The same is true if a PostGIS function returns an invalid geometry for
		valid input.</para></note>

	  <para>To test if a geometry is valid use the
	  <xref linkend="ST_IsValid"/> function:
      </para>
<programlisting>
SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))');
-----------------
 t
</programlisting>
	  <para>Information about the nature and location of an geometry invalidity are provided by
	  the <xref linkend="ST_IsValidDetail"/> function:
      </para>
<programlisting>
SELECT valid, reason, ST_AsText(location) AS location
    FROM ST_IsValidDetail('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t;

 valid |      reason       |                  location
-------+-------------------+---------------------------------------------
 f     | Self-intersection | POINT(91.51162790697674 141.56976744186045)
</programlisting>

	  <para>In some situations it is desirable to correct invalid geometry automatically.
	  Use the <xref linkend="ST_MakeValid"/> function to do this.
      (<code>ST_MakeValid</code> is a case of a spatial function that <emphasis>does</emphasis> allow invalid input!)
      </para>

      <para>By default, PostGIS does not check for validity when loading geometry,
	  because validity testing can take a lot of CPU time for complex
	  geometries. If you do not trust your data sources,
	  you can enforce a validity check on your tables by adding a check
	  constraint:</para>

	  <programlisting>ALTER TABLE mytable
  ADD CONSTRAINT geometry_valid_check
	CHECK (ST_IsValid(geom));</programlisting>

    </section>
</section>
<!-- ==============================================================  -->
<section xml:id="spatial_ref_sys">
	<title>Spatial Reference Systems</title>

	<para>A <link xlink:href="https://en.wikipedia.org/wiki/Spatial_reference_system">Spatial Reference System</link> (SRS)
    (also called a Coordinate Reference System (CRS))
    defines how geometry is referenced to locations on the Earth's surface.
    There are three types of SRS:
     </para>
	<itemizedlist>
		<listitem><para>A <emphasis role="bold">geodetic</emphasis> SRS uses angular coordinates
            (longitude and latitude) which map directly to the surface of the earth.
            </para></listitem>
		<listitem><para>A <emphasis role="bold">projected</emphasis> SRS
            uses a mathematical projection transformation
            to "flatten" the surface of the spheroidal earth onto a plane.
            It assigns location coordinates in a way that allows direct measurement
            of quantities such as distance, area, and angle.
            The coordinate system is Cartesian, which means it has a defined origin point
            and two perpendicular axes (usually oriented North and East).
            Each projected SRS uses a stated length unit (usually metres or feet).
            A projected SRS may be limited in its area of applicability to avoid distortion
            and fit within the defined coordinate bounds.
            </para></listitem>
		<listitem><para>A <emphasis role="bold">local</emphasis> SRS
            is a Cartesian coordinate system which is not referenced to the earth's surface.
            In PostGIS this is specified by a SRID value of 0.
            </para></listitem>
	</itemizedlist>
    <para>
    There are many different spatial reference systems in use.
    Common SRSes are standardized in the
    European Petroleum Survey Group
    <link xlink:href="http://www.epsg.org/">EPSG database</link>.
    For convenience PostGIS (and many other spatial systems) refers to SRS
    definitions using an integer identifier called a SRID.
    </para>

    <para>A geometry is associated with a Spatial Reference System by its SRID value,
    which is accessed by <xref linkend="ST_SRID"/>.
    The SRID for a geometry can be assigned using <xref linkend="ST_SetSRID"/>.
    Some geometry constructor functions allow supplying a SRID
    (such as <xref linkend="ST_Point"/>  and <xref linkend="ST_MakeEnvelope"/>).
    The <link linkend="EWKB_EWKT">EWKT</link> format supports SRIDs with the <code>SRID=n;</code> prefix.
    </para>

    <para>
    Spatial functions processing pairs of geometries
    (such as <link linkend="Overlay_Functions">overlay</link> and
    <link linkend="Spatial_Relationships">relationship</link> functions)
    require that the input geometries are in the same spatial reference system (have the same SRID).
    Geometry data can be transformed into a different spatial reference system using
    <xref linkend="ST_Transform"/> and <xref linkend="ST_TransformPipeline"/>.
    Geometry returned from functions has the same SRS as the input geometries.
    </para>

	<section xml:id="spatial_ref_sys_table">
	  <title>SPATIAL_REF_SYS Table</title>

	<para>The <varname>SPATIAL_REF_SYS</varname> table used by PostGIS
    is an OGC-compliant database table that defines the available
	spatial reference systems.
	It holds the numeric SRIDs and textual descriptions of the coordinate systems.
    </para>

	  <para>The <varname>spatial_ref_sys</varname> table definition is:</para>

	  <programlisting>CREATE TABLE spatial_ref_sys (
  srid       INTEGER NOT NULL PRIMARY KEY,
  auth_name  VARCHAR(256),
  auth_srid  INTEGER,
  srtext     VARCHAR(2048),
  proj4text  VARCHAR(2048)
)</programlisting>

	  <para>The columns are:</para>

	  <variablelist>
		<varlistentry>
		  <term><varname>srid</varname></term>

		  <listitem>
			<para>An integer code that uniquely identifies the <link xlink:href="http://en.wikipedia.org/wiki/SRID">Spatial
			Reference System</link> (SRS) within the database.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>auth_name</varname></term>

		  <listitem>
			<para>The name of the standard or standards body that is being
			cited for this reference system. For example, "EPSG" is a
			valid <varname>auth_name</varname>.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>auth_srid</varname></term>

		  <listitem>
			<para>The ID of the Spatial Reference System as defined by the
			Authority cited in the <varname>auth_name</varname>. In the case
			of EPSG, this is the EPSG code.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>srtext</varname></term>

		  <listitem>
			<para>The Well-Known Text representation of the Spatial Reference
			System. An example of a WKT SRS representation is:</para>

			<programlisting>PROJCS["NAD83 / UTM Zone 10N",
  GEOGCS["NAD83",
	DATUM["North_American_Datum_1983",
	  SPHEROID["GRS 1980",6378137,298.257222101]
	],
	PRIMEM["Greenwich",0],
	UNIT["degree",0.0174532925199433]
  ],
  PROJECTION["Transverse_Mercator"],
  PARAMETER["latitude_of_origin",0],
  PARAMETER["central_meridian",-123],
  PARAMETER["scale_factor",0.9996],
  PARAMETER["false_easting",500000],
  PARAMETER["false_northing",0],
  UNIT["metre",1]
]</programlisting>

			<para>For a discussion of SRS WKT, see the OGC standard <link xlink:href="http://docs.opengeospatial.org/is/12-063r5/12-063r5.html">Well-known text representation of coordinate reference systems</link>.
            </para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>proj4text</varname></term>

		  <listitem>
			<para>PostGIS uses the PROJ library to provide coordinate
			transformation capabilities. The <varname>proj4text</varname>
			column contains the PROJ coordinate definition string for a
			particular SRID. For example:</para>

			<programlisting>+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m</programlisting>

			<para>For more information see the
            <link xlink:href="https://proj.org/">PROJ web site</link>.
			The <filename>spatial_ref_sys.sql</filename> file contains both
			<varname>srtext</varname> and <varname>proj4text</varname>
			definitions for all EPSG projections.</para>
		  </listitem>
		</varlistentry>
	  </variablelist>

    <para>When retrieving spatial reference system definitions for use in transformations,
    PostGIS uses fhe following strategy:
    </para>
	<itemizedlist>
		<listitem><para>If <varname>auth_name</varname> and <varname>auth_srid</varname>
            are present (non-NULL)
            use the PROJ SRS based on those entries (if one exists).
            </para></listitem>
		<listitem><para>If <varname>srtext</varname> is present
            create a SRS using it, if possible.
            </para></listitem>
		<listitem><para>If <varname>proj4text</varname> is present
            create a SRS using it, if possible.
            </para></listitem>
	</itemizedlist>
    </section>
    <section xml:id="user-spatial-ref-sys">
    <title>User-Defined Spatial Reference Systems</title>

    <para>The PostGIS <varname>spatial_ref_sys</varname> table contains over 3000 of
    the most common spatial reference system definitions that are handled by the
    <link xlink:href="https://proj.org">PROJ</link> projection library.
    But there are many coordinate systems that it does not contain.
    You can add SRS definitions to the table if you have
    the required information about the spatial reference system.
    Or, you can define your own custom spatial reference system if you are familiar with PROJ constructs.
    Keep in mind that most spatial reference systems are regional
    and have no meaning when used outside of the bounds they were intended for.</para>

    <para>A resource for finding spatial reference systems not defined in the core set is <link xlink:href="http://spatialreference.org/">http://spatialreference.org/</link></para>

	<para>Some commonly used spatial reference systems are:
            <link xlink:href="http://spatialreference.org/ref/epsg/4326/">4326 - WGS 84 Long Lat</link>,
			<link xlink:href="http://spatialreference.org/ref/epsg/4269/">4269 - NAD 83 Long Lat</link>,
			<link xlink:href="http://spatialreference.org/ref/epsg/3395/">3395 - WGS 84 World Mercator</link>,
			<link xlink:href="http://spatialreference.org/ref/epsg/2163/">2163 - US National Atlas Equal Area</link>,
        and the 60 WGS84 UTM zones.
		UTM zones are one of the most ideal for measurement, but only cover 6-degree regions.
        (To determine which UTM zone to use for your area of interest, see the <link xlink:href="http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance">utmzone PostGIS plpgsql helper function</link>.)
	</para>
	<para>
		US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state.
        Most of the meter-based ones are in the core set, but many of the
		feet-based ones or ESRI-created ones will need to be copied from <link xlink:href="http://spatialreference.org">spatialreference.org</link>.
	</para>

	<para>You can even define non-Earth-based coordinate systems,
    such as <link xlink:href="http://spatialreference.org/ref/iau2000/mars-2000/">Mars 2000</link>
    This Mars coordinate system is non-planar (it's in degrees spheroidal),
    but you can use it with the <varname>geography</varname> type
    to obtain length and proximity measurements in meters instead of degrees.</para>

    <para>Here is an example of loading a custom coordinate system using
    an unassigned SRID and the PROJ definition for a US-centric Lambert Conformal projection:</para>

<programlisting>
INSERT INTO spatial_ref_sys (srid, proj4text)
VALUES ( 990000,
  '+proj=lcc  +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
);
</programlisting>

	</section>

</section>
<!-- ==============================================================  -->
<section>
	<title>Spatial Tables</title>

	<section xml:id="Create_Spatial_Table">
	  <title>Creating a Spatial Table</title>

		<para>You can create a table to store geometry data using the
        <link xlink:href="https://www.postgresql.org/docs/current/sql-createtable.html">CREATE TABLE</link>
        SQL statement with a column of type <varname>geometry</varname>.
        The following example creates a table with a geometry column storing 2D (XY) LineStrings
        in the BC-Albers coordinate system (SRID 3005):</para>

<programlisting>CREATE TABLE roads (
    id SERIAL PRIMARY KEY,
    name VARCHAR(64),
    geom geometry(LINESTRING,3005)
  );</programlisting>

		<para>The <varname>geometry</varname> type supports two optional <emphasis role="bold">type modifiers</emphasis>:</para>

        <itemizedlist>
		<listitem>
        <para>the <emphasis role="bold">spatial type modifier</emphasis>
        restricts the kind of shapes and dimensions allowed in the column.
		The value can be any of the supported
        <link linkend="RefObject">geometry subtypes</link>
        (e.g. POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION, etc).
        The modifier supports coordinate dimensionality restrictions by adding suffixes: Z, M and ZM.
        For example, a modifier of 'LINESTRINGM' allows only linestrings with three dimensions, and treats the third dimension as a measure.
		Similarly, 'POINTZM' requires four dimensional (XYZM) data.
        </para>
		</listitem>
		<listitem>
        <para>the <emphasis role="bold">SRID modifier</emphasis> restricts the
        <link linkend="spatial_ref_sys">spatial reference system</link> SRID to a particular number.
        If omitted, the SRID defaults to 0.
        </para>
		</listitem>
		</itemizedlist>

		<para/>

        <para>Examples of creating tables with geometry columns:</para>
		<itemizedlist>
		<listitem>
		  <para>Create a table holding any kind of geometry with the default SRID:</para>
		  <para><programlisting>CREATE TABLE geoms(gid serial PRIMARY KEY, geom geometry );</programlisting></para>
		</listitem>
		<listitem>
		  <para>Create a table with 2D POINT geometry with the default SRID:</para>
		  <para><programlisting>CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry(POINT) );</programlisting></para>
		</listitem>
		<listitem>
		  <para>Create a table with 3D (XYZ) POINTs and an explicit SRID of 3005:</para>
		  <para><programlisting>CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry(POINTZ,3005) );</programlisting></para>
		</listitem>
		<listitem>
			<para>Create a table with 4D (XYZM) LINESTRING geometry with the default SRID:</para>
			<para><programlisting>CREATE TABLE lines(gid serial PRIMARY KEY, geom geometry(LINESTRINGZM) );</programlisting></para>
		</listitem>
		<listitem>
			<para>Create a table with 2D POLYGON geometry with the SRID 4267 (NAD 1927 long lat):</para>
			<para><programlisting>CREATE TABLE polys(gid serial PRIMARY KEY, geom geometry(POLYGON,4267) );</programlisting></para>
		</listitem>
		</itemizedlist>

	  <para>It is possible to have more than one geometry column in a table.
        This can be specified when the table is created, or a column can be added using the
        <link xlink:href="https://www.postgresql.org/docs/current/sql-altertable.html">ALTER TABLE</link>
        SQL statement.
        This example adds a column that can hold 3D LineStrings:</para>

	  <programlisting>ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);</programlisting>
	</section>

	<section xml:id="geometry_columns">
	  <title>GEOMETRY_COLUMNS View</title>

      <para>The OGC <emphasis>Simple Features Specification for SQL</emphasis> defines
      the <varname>GEOMETRY_COLUMNS</varname> metadata table to describe geometry table structure.
      In PostGIS <varname>geometry_columns</varname> is a view reading from database system catalog tables.
      This ensures that the spatial metadata information is always consistent with the currently defined tables and views.
	  The view structure is:</para>

	  <programlisting>\d geometry_columns</programlisting>
<screen>             View "public.geometry_columns"
      Column       |          Type          | Modifiers
-------------------+------------------------+-----------
 f_table_catalog   | character varying(256) |
 f_table_schema    | character varying(256) |
 f_table_name      | character varying(256) |
 f_geometry_column | character varying(256) |
 coord_dimension   | integer                |
 srid              | integer                |
 type              | character varying(30)  |</screen>

	  <para>The columns are:</para>

	  <variablelist>
		<varlistentry>
		  <term><varname>f_table_catalog, f_table_schema, f_table_name</varname></term>

		  <listitem>
			<para>The fully qualified name of the feature table containing the
			geometry column. There is no PostgreSQL analogue of "catalog" so that
			column is left blank. For "schema" the PostgreSQL schema name is
			used (<varname>public</varname> is the default).</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>f_geometry_column</varname></term>

		  <listitem>
			<para>The name of the geometry column in the feature table.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>coord_dimension</varname></term>

		  <listitem>
			<para>The coordinate dimension (2, 3 or 4) of the column.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>srid</varname></term>

		  <listitem>
			<para>The ID of the spatial reference system used for the
			coordinate geometry in this table. It is a foreign key reference
			to the <varname>spatial_ref_sys</varname> table
            (see <xref linkend="spatial_ref_sys_table"/>).</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><varname>type</varname></term>

		  <listitem>
			<para>The type of the spatial object. To restrict the spatial
			column to a single type, use one of: POINT, LINESTRING, POLYGON,
			MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or
			corresponding XYM versions POINTM, LINESTRINGM, POLYGONM,
			MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM, GEOMETRYCOLLECTIONM.
			For heterogeneous (mixed-type) collections, you can use "GEOMETRY"
			as the type.</para>
		  </listitem>
		</varlistentry>
	  </variablelist>
	</section>

	  <section xml:id="Manual_Register_Spatial_Column">
		<title>Manually Registering Geometry Columns</title>

		<para>Two of the cases where you may need this are the case of SQL Views and bulk inserts.  For bulk insert case, you can correct the registration in the geometry_columns table
		by constraining the column or doing an alter table.  For views, you could expose using a CAST operation.
		Note, if your column is typmod based, the creation process would register it correctly, so no need to do anything.
		Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry column.</para>

		<programlisting>-- Lets say you have a view created like this
CREATE VIEW public.vwmytablemercator AS
	SELECT gid, ST_Transform(geom, 3395) As geom, f_name
	FROM public.mytable;

-- For it to register correctly
-- You need to cast the geometry
--
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
	SELECT gid, ST_Transform(geom, 3395)::geometry(Geometry, 3395) As geom, f_name
	FROM public.mytable;

-- If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW  public.vwmytablemercator AS
	SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name
	FROM public.mytable;</programlisting>
		<programlisting>--Lets say you created a derivative table by doing a bulk insert
SELECT poi.gid, poi.geom, citybounds.city_name
INTO myschema.my_special_pois
FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom);

-- Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
  ON myschema.my_special_pois USING gist(geom);

-- If your points are 3D points or 3M points,
-- then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd
	ON my_special_pois USING gist(geom gist_geometry_ops_nd);

-- To manually register this new table's geometry column in geometry_columns.
-- Note it will also change the underlying structure of the table to
-- to make the column typmod based.
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass);

-- If you are using PostGIS 2.0 and for whatever reason, you
-- you need the constraint based definition behavior
-- (such as case of inherited tables where all children do not have the same type and srid)
-- set optional use_typmod argument to false
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false); </programlisting>

<para>Although the old-constraint based method is still supported, a constraint-based geometry column used directly
in a view, will not register correctly in geometry_columns, as will a typmod one.
In this example we define a column using typmod and another using constraints.</para>
<programlisting>CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT,4326));
SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);</programlisting>
<para>If we run in psql</para>
<programlisting>\d pois_ny;</programlisting>
<para>We observe they are defined differently -- one is typmod, one is constraint</para>
<screen>                                  Table "public.pois_ny"
  Column   |         Type          |                       Modifiers

-----------+-----------------------+------------------------------------------------------
 gid       | integer               | not null default nextval('pois_ny_gid_seq'::regclass)
 poi_name  | text                  |
 cat       | character varying(20) |
 geom      | geometry(Point,4326)  |
 geom_2160 | geometry              |
Indexes:
    "pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:
    "enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2)
    "enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text
        OR geom_2160 IS NULL)
    "enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)</screen>
<para>In geometry_columns, they both register correctly</para>
<programlisting>SELECT f_table_name, f_geometry_column, srid, type
	FROM geometry_columns
	WHERE f_table_name = 'pois_ny';</programlisting>
<screen>f_table_name | f_geometry_column | srid | type
-------------+-------------------+------+-------
pois_ny      | geom              | 4326 | POINT
pois_ny      | geom_2160         | 2160 | POINT</screen>
<para>However -- if we were to create a view like this</para>
<programlisting>CREATE VIEW vw_pois_ny_parks AS
SELECT *
  FROM pois_ny
  WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type
	FROM geometry_columns
	WHERE f_table_name = 'vw_pois_ny_parks';</programlisting>
<para>The typmod based geom view column registers correctly,
but the constraint based one does not.</para>
<screen>   f_table_name   | f_geometry_column | srid |   type
------------------+-------------------+------+----------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         |    0 | GEOMETRY</screen>

<para>This may change in future versions of PostGIS, but for now
to force the constraint-based view column to register correctly, you need to do this:</para>
<programlisting>DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
  geom,
  geom_2160::geometry(POINT,2160) As geom_2160
  FROM pois_ny
  WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type
	FROM geometry_columns
	WHERE f_table_name = 'vw_pois_ny_parks';</programlisting>
<screen>   f_table_name   | f_geometry_column | srid | type
------------------+-------------------+------+-------
 vw_pois_ny_parks | geom              | 4326 | POINT
 vw_pois_ny_parks | geom_2160         | 2160 | POINT</screen>
    </section>
</section>

<!-- ==============================================================  -->

  <section xml:id="loading-data">
	<title>Loading Spatial Data</title>

	<para>Once you have created a spatial table, you are ready to upload spatial
	data to the database. There are two built-in ways to get spatial data into a
	PostGIS/PostgreSQL database: using formatted SQL statements or using the
	Shapefile loader.</para>

	<section xml:id="load-data-sql">
	  <title>Using SQL to Load Data</title>

	  <para>If spatial data can be converted to a text representation (as either WKT or WKB), then using
	  SQL might be the easiest way to get data into PostGIS.
      Data can be bulk-loaded into PostGIS/PostgreSQL by loading a
	  text file of SQL <code>INSERT</code> statements using the <code>psql</code> SQL utility.</para>

	  <para>A SQL load file (<filename>roads.sql</filename> for example)
	  might look like this:</para>

	  <programlisting>BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
  VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;</programlisting>

	  <para>The SQL file can be loaded into PostgreSQL using <code>psql</code>:</para>

	  <programlisting>psql -d [database] -f roads.sql</programlisting>
	</section>

<section xml:id="shp2pgsql_usage">
  <title>Using the Shapefile Loader</title>

  <para>
    The <filename>shp2pgsql</filename> data loader converts Shapefiles into SQL suitable for
    insertion into a PostGIS/PostgreSQL database either in geometry or geography format.
    The loader has several operating modes selected by command line flags.
  </para>
  <para>There is also a <filename>shp2pgsql-gui</filename> graphical interface with most
	of the options as the command-line loader.
    This may be easier to use for one-off non-scripted loading or if you are new to PostGIS.
	It can also be configured as a plugin to PgAdminIII.
	</para>

  <variablelist>
    <varlistentry>
      <term>(c|a|d|p) These are mutually exclusive options:</term>
      <listitem>
        <para>
          <variablelist>
            <varlistentry>
              <term><option>-c</option></term>
              <listitem>
                <para>
                  Creates a new table and populates it from the Shapefile. <emphasis>This is the
                  default mode.</emphasis>
                </para>
              </listitem>
            </varlistentry>

            <varlistentry>
              <term><option>-a</option></term>
              <listitem>
                <para>
                  Appends data from the Shapefile into the database table. Note that to use this
                  option to load multiple files, the files must have the same attributes and same
                  data types.
                </para>
              </listitem>
            </varlistentry>

            <varlistentry>
              <term><option>-d</option></term>
              <listitem>
                <para>
                  Drops the database table before creating a new table with the data in the Shapefile.
                </para>
              </listitem>
            </varlistentry>

            <varlistentry>
              <term><option>-p</option></term>
              <listitem>
                <para>
                  Only produces the table creation SQL code, without adding any actual data. This
                  can be used if you need to completely separate the table creation and data loading
                  steps.
                </para>
              </listitem>
            </varlistentry>
          </variablelist>
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-?</option></term>
      <listitem>
        <para>
          Display help screen.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-D</option></term>
      <listitem>
        <para>
          Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and
          -d. It is much faster to load than the default "insert" SQL format. Use this for very
          large data sets.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-s [&lt;FROM_SRID&gt;:]&lt;SRID&gt;</option></term>
      <listitem>
        <para>
          Creates and populates the geometry tables with the specified SRID.
          Optionally specifies that the input shapefile uses the given
          FROM_SRID, in which case the geometries will be reprojected to the
          target SRID.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-k</option></term>
      <listitem>
        <para>
          Keep identifiers' case (column, schema and attributes). Note that attributes in Shapefile
          are all UPPERCASE.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-i</option></term>
      <listitem>
        <para>
          Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the
          DBF header signature appears to warrant it.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-I</option></term>
      <listitem>
        <para>
          Create a GiST index on the geometry column.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-m</option></term>
      <listitem>
        <para>
          -m <filename>a_file_name</filename>  Specify a file containing a set of mappings of (long) column
     names to 10 character DBF column names. The content of the file is one or
     more lines of two names separated by white space and no trailing or
     leading space. For example:
         <programlisting>COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2</programlisting>
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-S</option></term>
      <listitem>
        <para>
          Generate simple geometries instead of MULTI geometries.  Will only succeed if
          all the geometries are actually single (I.E. a MULTIPOLYGON with a single shell, or
          or a MULTIPOINT with a single vertex).
        </para>
      </listitem>
    </varlistentry>

     <varlistentry>
      <term><option>-t &lt;dimensionality&gt;</option></term>
      <listitem>
        <para>
          Force the output geometry to have the specified dimensionality. Use the following
          strings to indicate the dimensionality: 2D, 3DZ, 3DM, 4D.
        </para>
        <para>
	        If the input has fewer dimensions that specified, the output will have those dimensions filled
	        in with zeroes. If the input has more dimensions that specified, the unwanted dimensions will
	        be stripped.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-w</option></term>
      <listitem>
        <para>
          Output WKT format, instead of WKB.  Note that this can
          introduce coordinate drifts due to loss of precision.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-e</option></term>
      <listitem>
        <para>
          Execute each statement on its own, without using a transaction.
          This allows loading of the majority of good data when there are some bad
          geometries that generate errors.  Note that this cannot be used with the
          -D flag as the "dump" format always uses a transaction.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-W &lt;encoding&gt;</option></term>
      <listitem>
        <para>
          Specify encoding of the input data (dbf file). When used, all attributes of the dbf are
          converted from the specified encoding to UTF8. The resulting SQL output will contain a
          <code>SET CLIENT_ENCODING to UTF8</code> command, so that the backend will be able to
          reconvert from UTF8 to whatever encoding the database is configured to use internally.
        </para>
      </listitem>
    </varlistentry>

    <varlistentry>
      <term><option>-N &lt;policy&gt;</option></term>
      <listitem>
        <para>
           NULL geometries handling policy (insert*,skip,abort)
        </para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term><option>-n</option></term>
      <listitem>
        <para>
          -n  Only import DBF file.  If your data has no corresponding shapefile, it will automatically switch to this mode
	and load just the dbf.  So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no geometry.
        </para>
      </listitem>
    </varlistentry>

	<varlistentry>
	  <term><option>-G</option></term>
	  <listitem>
		<para>
			Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)
		</para>
	  </listitem>
	</varlistentry>
    <varlistentry>
      <term><option>-T &lt;tablespace&gt;</option></term>
      <listitem>
        <para>
          Specify the tablespace for the new table.  Indexes will still use the
          default tablespace unless the -X parameter is also used.  The PostgreSQL
          documentation has a good description on when to use custom tablespaces.
        </para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term><option>-X &lt;tablespace&gt;</option></term>
      <listitem>
        <para>
          Specify the tablespace for the new table's indexes.  This applies to
          the primary key index, and the GIST spatial index if -I is also used.
        </para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term><option>-Z</option></term>
      <listitem>
        <para>
          When used, this flag will prevent the generation of <code>ANALYZE</code> statements.
          Without the -Z flag (default behavior), the <code>ANALYZE</code> statements will
          be generated.
        </para>
      </listitem>
    </varlistentry>
  </variablelist>

  <para>
    An example session using the loader to create an input file and loading it might look like
    this:
  </para>

  <programlisting><![CDATA[
# shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
# psql -d roadsdb -f roads.sql
]]></programlisting>

  <para>
    A conversion and load can be done in one step using UNIX pipes:
  </para>

  <programlisting># shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb</programlisting>
</section>
  </section>

  <section xml:id="extracting-data">
	<title>Extracting Spatial Data</title>

	<para>Spatial data can be extracted from the database using either SQL or the
	Shapefile dumper. The section on SQL presents some of
	the functions available to do comparisons and queries on spatial tables.
    </para>

	<section xml:id="extract-data-sql">
	  <title>Using SQL to Extract Data</title>

	  <para>The most straightforward way of extracting spatial data out of the
        database is to use a SQL <code>SELECT</code> query
        to define the data set to be extracted
        and dump the resulting columns into a parsable text file:</para>

	  <programlisting>db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom                                    | road_name
--------+-----------------------------------------+-----------
	  1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
	  2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
	  3 | LINESTRING(192783 228138,192612 229814) | Paul St
	  4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
	  5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
	  6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
	  7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)</programlisting>

	  <para>There will be times when some kind of restriction is
	  necessary to cut down the number of records returned. In the case of
	  attribute-based restrictions, use the same SQL syntax as used
	  with a non-spatial table. In the case of spatial restrictions, the
	  following functions are useful:</para>

	  <variablelist>
		<varlistentry>
		  <term><function>ST_Intersects</function></term>

		  <listitem>
			<para>This function tells whether two geometries share any space.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><code>=</code></term>

		  <listitem>
			<para>This tests whether two geometries are
			geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0
			0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).
			</para>
		  </listitem>
		</varlistentry>
	  </variablelist>

	  <para>Next, you can use these operators in queries. Note that when
	  specifying geometries and boxes on the SQL command line, you must
	  explicitly turn the string representations into geometries function.
		The 312 is a fictitious spatial reference system that matches our data.
	  So, for example:</para>

	  <programlisting>SELECT road_id, road_name
  FROM roads
  WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;</programlisting>

	  <para>The above query would return the single record from the
	  "ROADS_GEOM" table in which the geometry was equal to that value.</para>

	  <para>To check whether some of the roads passes in the area defined by a polygon:</para>

	  <programlisting>SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');</programlisting>



	  <para>The most common spatial query will probably be a "frame-based"
	  query, used by client software, like data browsers and web mappers, to
	  grab a "map frame" worth of data for display. </para>
		<para>When using the "&amp;&amp;" operator, you can specify either a
	  BOX3D as the comparison feature or a GEOMETRY. When you specify a
	  GEOMETRY, however, its bounding box will be used for the
	  comparison.</para>
		<para>Using a "BOX3D" object for the frame, such a query looks like this:</para>

	  <programlisting><![CDATA[
SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
  roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
]]></programlisting>

	  <para>Note the use of the SRID 312, to specify the projection of the envelope.</para>


	</section>

	<section xml:id="pgsql2shp-usage">
	  <title>Using the Shapefile Dumper</title>

	  <para>The <filename>pgsql2shp</filename> table dumper connects
	  to the database and converts a table (possibly defined by a query) into
	  a shape file. The basic syntax is:</para>

	  <programlisting><![CDATA[
pgsql2shp [<options>] <database> [<schema>.]<table>
]]></programlisting>

	  <programlisting><![CDATA[
pgsql2shp [<options>] <database> <query>
]]></programlisting>

	  <para>The commandline options are:</para>

	  <variablelist>
		<varlistentry>
		  <term><option>-f &lt;filename&gt;</option></term>

		  <listitem>
			<para>Write the output to a particular filename.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-h &lt;host&gt;</option></term>

		  <listitem>
			<para>The database host to connect to.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-p &lt;port&gt;</option></term>

		  <listitem>
			<para>The port to connect to on the database host.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-P &lt;password&gt;</option></term>

		  <listitem>
			<para>The password to use when connecting to the database.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-u &lt;user&gt;</option></term>

		  <listitem>
			<para>The username to use when connecting to the database.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-g &lt;geometry column&gt;</option></term>

		  <listitem>
			<para>In the case of tables with multiple geometry columns, the
			geometry column to use when writing the shape file.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-b</option></term>

		  <listitem>
			<para>Use a binary cursor. This will make the operation faster,
			but will not work if any NON-geometry attribute in the table lacks
			a cast to text.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-r</option></term>

		  <listitem>
			<para>Raw mode. Do not drop the <varname>gid</varname> field, or
			escape column names.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term><option>-m filename</option></term>
		  <listitem>
			<para> Remap identifiers to ten character names.
			The content of the file is lines of two symbols separated by
			a single white space and no trailing or leading space:
			VERYLONGSYMBOL SHORTONE
			ANOTHERVERYLONGSYMBOL SHORTER
			etc.</para>
		  </listitem>
		</varlistentry>
	  </variablelist>
	</section>
  </section>

  <section xml:id="build-indexes">
	<title>Spatial Indexes</title>

	<para>Spatial indexes make using a spatial database for large data sets
	possible. Without indexing, a search for features requires a
	sequential scan of every record in the database. Indexing speeds up
	searching by organizing the data into a structure which can be quickly
	traversed to find matching records.
    </para>
    <para>The B-tree index method commonly used for attribute data
    is not very useful for spatial data, since it only supports storing and querying
    data in a single dimension.
    Data such as geometry (which has 2 or more dimensions)
    requires an index method that supports range query across all the data dimensions.
    One of the key advantages of PostgreSQL for spatial data handling is that it offers several kinds of
	index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.</para>

	<itemizedlist>
	  <listitem>
		<para><emphasis role="bold">GiST (Generalized Search Tree)</emphasis> indexes break up data into
		"things to one side", "things which overlap", "things which are
		inside" and can be used on a wide range of data-types, including GIS
		data. PostGIS uses an R-Tree index implemented on top of GiST to index
		spatial data. GiST is the most commonly-used and versatile spatial index method,
        and offers very good query performance.
        </para>
	  </listitem>

	  <listitem>
		<para><emphasis role="bold">BRIN (Block Range Index)</emphasis> indexes operate by summarizing
        the spatial extent of ranges of table records.
        Search is done via a scan of the ranges.
        BRIN is only appropriate for use for some kinds of data
        (spatially sorted, with infrequent or no update).
        But it provides much faster index create time, and much smaller index size.
        </para>
	  </listitem>

	  <listitem>
		<para><emphasis role="bold">SP-GiST (Space-Partitioned Generalized Search Tree)</emphasis>
        is a generic index method that supports partitioned search trees
        such as quad-trees, k-d trees, and radix trees (tries).
        </para>
	  </listitem>
	</itemizedlist>

    <para>Spatial indexes store only the bounding box of geometries.
    Spatial queries use the index as a <emphasis role="bold">primary filter</emphasis>
    to quickly determine a set of geometries potentially matching the query condition.
    Most spatial queries require a <emphasis role="bold">secondary filter</emphasis>
    that uses a spatial predicate function to test a more specific spatial condition.
    For more information on queying with spatial predicates see <xref linkend="using-query-indexes"/>.
    </para>

    <para>See also the
    <link xlink:href="https://postgis.net/workshops/postgis-intro/indexing.html">PostGIS Workshop section on spatial indexes</link>,
    and the <link xlink:href="https://www.postgresql.org/docs/current/indexes.html">PostgreSQL manual</link>.
    </para>

	<section xml:id="gist_indexes">
	  <title>GiST Indexes</title>

	  <para>GiST stands for "Generalized Search Tree" and is a generic form of
	  indexing for multi-dimensional data.
      PostGIS uses an R-Tree index implemented on top of GiST to index spatial data.
      GiST is the most commonly-used and versatile spatial index method, and offers very good query performance.
      Other implementations of GiST are used to speed up searches
	  on all kinds of irregular data structures (integer arrays, spectral
	  data, etc) which are not amenable to normal B-Tree indexing.
      For more information see the <link xlink:href="https://www.postgresql.org/docs/current/gist.html">PostgreSQL manual</link>.
      </para>

	  <para>Once a spatial data table exceeds a few thousand rows, you will want
	  to build an index to speed up spatial searches of the data (unless all
	  your searches are based on attributes, in which case you'll want to
	  build a normal index on the attribute fields).</para>

	  <para>The syntax for building a GiST index on a "geometry" column is as
	  follows:</para>

	  <para><programlisting>CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] ); </programlisting></para>

	  <para>The above syntax will always build a 2D-index.  To get the an n-dimensional index for the geometry type, you can create one using this syntax:</para>
	  <programlisting>CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);</programlisting>

	  <para>Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates, so on a production system you may want to do in in a slower CONCURRENTLY-aware way:</para>
		<para><programlisting>CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] ); </programlisting></para>

		<para>After building an index, it is sometimes helpful to force PostgreSQL to collect
		table statistics, which are used to optimize query plans:</para>

	  <para><programlisting>VACUUM ANALYZE [table_name] [(column_name)];</programlisting></para>

	</section>

	<section xml:id="brin_indexes">
	<title>BRIN Indexes</title>

    <para>BRIN stands for "Block Range Index". It is a general-purpose
    index method introduced in PostgreSQL 9.5.
    BRIN is a <emphasis>lossy</emphasis>
    index method, meaning that a secondary check is required to confirm
    that a record matches a given search condition
    (which is the case for all provided spatial indexes).
    It provides much faster index creation and much smaller index size,
    with reasonable read performance.
    Its primary purpose is to support indexing very large tables
    on columns which have a correlation with their
    physical location within the table. In addition to spatial indexing,
    BRIN can speed up searches on various kinds of attribute data
    structures (integer, arrays etc).
    For more information see the <link xlink:href="https://www.postgresql.org/docs/current/brin.html">PostgreSQL manual</link>.
    </para>

    <para>Once a spatial table exceeds a few thousand rows, you will want
    to build an index to speed up spatial searches of the data.
    GiST indexes are very performant as long as their size doesn't exceed the amount of RAM
    available for the database, and as long as you can afford the index storage
    size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
    considered as an alternative.</para>

    <para>A BRIN index stores the bounding box enclosing
    all the geometries contained in the rows in a contiguous set of table blocks,
    called a <emphasis>block range</emphasis>.
    When executing a query using the index the block ranges are scanned to
    find the ones that intersect the query extent.
    This is efficient only if the data is physically ordered so that the bounding
    boxes for block ranges have minimal overlap (and ideally are mutually exclusive).
    The resulting index is very small in size,
    but is typically less performant for read than a GiST index over the same data.</para>

    <para>Building a BRIN index is much less CPU-intensive than building a GiST index.
    It's common to find that a BRIN index is ten times faster to build
    than a GiST index over the same data. And because a BRIN index stores only one
    bounding box for each range of table blocks, it's common to use
    up to a thousand times less disk space than a GiST index.</para>

    <para>You can choose the number of blocks to summarize in a range. If you
    decrease this number, the index will be bigger but will probably provide
    better performance.</para>

    <para>For BRIN to be effective, the table data should be stored in
    a physical order which minimizes the amount of block extent overlap.
    It may be that the data is already sorted appropriately
    (for instance, if it is loaded from another dataset that is already sorted in spatial order).
    Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key.
    One way to do this is to create a new table sorted by the geometry values
    (which in recent PostGIS versions uses an efficient Hilbert curve ordering):
    </para>

    <para><programlisting>
CREATE TABLE table_sorted AS
   SELECT * FROM table  ORDER BY geom;
</programlisting></para>

    <para>Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index,
    and clustering on that index:
    </para>

    <para><programlisting>
CREATE INDEX idx_temp_geohash ON table
    USING btree (ST_GeoHash( ST_Transform( geom, 4326 ), 20));
CLUSTER table USING idx_temp_geohash;
</programlisting></para>


    <para>The syntax for building a BRIN index on a <code>geometry</code> column is:</para>

    <para><programlisting>CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geome_col] ); </programlisting></para>

    <para>The above syntax builds a 2D index.  To build a 3D-dimensional index, use this syntax:</para>

    <programlisting>
CREATE INDEX [indexname] ON [tablename]
    USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);</programlisting>

    <para>You can also get a 4D-dimensional index using the 4D operator class:</para>

    <programlisting>
CREATE INDEX [indexname] ON [tablename]
    USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);</programlisting>

    <para>The above commands use the default number of blocks in a range, which is 128.
    To specify the number of blocks to summarise in a range, use this syntax</para>

    <para><programlisting>
CREATE INDEX [indexname] ON [tablename]
    USING BRIN ( [geome_col] ) WITH (pages_per_range = [number]); </programlisting></para>

    <para>Keep in mind that a BRIN index only stores one index
    entry for a large number of rows.  If your table stores geometries with
    a mixed number of dimensions, it's likely that the resulting index will
    have poor performance.  You can avoid this performance penalty by
    choosing the operator class with the least number of dimensions of the
    stored geometries
    </para>

    <para>The <code>geography</code> datatype is supported for BRIN indexing. The
    syntax for building a BRIN index on a geography column is:</para>

    <para><programlisting>CREATE INDEX [indexname] ON [tablename] USING BRIN ( [geog_col] ); </programlisting></para>

    <para>The above syntax builds a 2D-index for geospatial objects on the spheroid. </para>

    <para>Currently, only "inclusion support" is provided, meaning
    that just the <varname>&amp;&amp;</varname>, <varname>~</varname> and
    <varname>@</varname> operators can be used for the 2D cases (for both
    <code>geometry</code> and <code>geography</code>), and just the <varname>&amp;&amp;&amp;</varname>
    operator for 3D geometries.
    There is currently no support for kNN searches.</para>

    <para>An important difference between BRIN and other index types is that the database does not
    maintain the index dynamically.  Changes to spatial data in the table
    are simply appended to the end of the index.  This will cause index search performance to
    degrade over time.  The index can be updated by performing a <code>VACUUM</code>,
    or by using a special function <code>brin_summarize_new_values(regclass)</code>.
    For this reason BRIN may be most appropriate for use with data that is read-only,
    or only rarely changing. For more information refer to the
    <link xlink:href="https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION">manual</link>.
    </para>

    <para>To summarize using BRIN for spatial data:
    </para>

    <itemizedlist>
    <listitem><para>Index build time is very fast, and index size is very small.</para></listitem>
    <listitem><para>Index query time is slower than GiST, but can still be very acceptable.</para></listitem>
    <listitem><para>Requires table data to be sorted in a spatial ordering.</para></listitem>
    <listitem><para>Requires manual index maintenance.</para></listitem>
    <listitem><para>Most appropriate for very large tables,
    with low or no overlap (e.g. points),
    which are static or change infrequently.</para></listitem>
    <listitem><para>More effective for queries which return relatively large numbers of data records.</para></listitem>
   </itemizedlist>

	</section>

	<section xml:id="spgist_indexes">
	 	<title>SP-GiST Indexes</title>

		<para>SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is
		a generic form of indexing for multi-dimensional data types
        that supports partitioned search trees, such as
		quad-trees, k-d trees, and radix trees (tries).
        The common feature of these
		data structures is that they repeatedly divide the search space into
		partitions that need not be of equal size. In addition to spatial indexing,
		SP-GiST is used to speed up searches on many kinds of data, such as phone
		routing, ip routing, substring search, etc.
        For more information see the <link xlink:href="https://www.postgresql.org/docs/current/spgist.html">PostgreSQL manual</link>.
        </para>

    <para>As it is the case for GiST indexes, SP-GiST indexes are lossy, in the
		sense that they store the bounding box enclosing spatial objects.
		SP-GiST indexes can be considered as an alternative to GiST indexes.</para>

		<para>Once a GIS data table exceeds a few thousand rows, an SP-GiST index
		may be used to speed up spatial searches of the data. The syntax for
		building an SP-GiST index on a "geometry" column is as follows:</para>

		<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); </programlisting></para>

		<para>The above syntax will build a 2-dimensional index. A 3-dimensional
		index for the geometry type can be created using the 3D operator class:</para>

		<para><programlisting>CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);</programlisting></para>

		<para>Building a spatial index is a computationally intensive operation.
		It also blocks write access to your table for the time it creates, so on a
		production system you may want to do in in a slower CONCURRENTLY-aware way:</para>

	  <para><programlisting>CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] ); </programlisting></para>

		<para>After building an index, it is sometimes helpful to force PostgreSQL to
		collect table statistics, which are used to optimize query plans:</para>

		<para><programlisting>VACUUM ANALYZE [table_name] [(column_name)];</programlisting></para>

		<para>An SP-GiST index can accelerate queries involving the following operators:</para>
		<itemizedlist>
			<listitem><para>&lt;&lt;, &amp;&lt;, &amp;&gt;, &gt;&gt;, &lt;&lt;|, &amp;&lt;|, |&amp;&gt;, |&gt;&gt;, &amp;&amp;, @&gt;, &lt;@, and ~=, for 2-dimensional indexes,</para></listitem>
			<listitem><para> &amp;/&amp;, ~==, @&gt;&gt;, and &lt;&lt;@, for 3-dimensional indexes.</para></listitem>
		</itemizedlist>
		<para>There is no support for kNN searches at the moment.</para>
	</section>
	<section xml:id="tuning-index-usage">
	  <title>Tuning Index Usage</title>

	  <para>Ordinarily, indexes invisibly speed up data access: once an index
	  is built, the PostgreSQL query planner automatically decides when to use it
      to improve query performance. But there are some situations
	  where the planner does not choose to use existing indexes,
      so queries end up using slow sequential scans instead of a spatial index.</para>

	  <para>If you find your spatial indexes are not being used,
      there are a few things you can do:</para>

	  <itemizedlist>
		<listitem>
		  <para>Examine the query plan and check your query actually computes the
			thing you need. An erroneous JOIN, either forgotten or to the wrong table,
			can unexpectedly retrieve table records multiple times.
            To get the query plan, execute with <code>EXPLAIN</code> in front of the query.</para>
		</listitem>

		<listitem>
		  <para>Make sure statistics are gathered about the number
		  and distributions of values in a table, to provide the query planner
		  with better information to make decisions around index usage.
			<command>VACUUM ANALYZE</command> will compute both.</para>

			<para>You should regularly vacuum your databases anyways.  Many PostgreSQL DBAs run
			<command>VACUUM</command> as an off-peak cron job on a regular basis.</para>
		</listitem>

		<listitem>
		    <para>If vacuuming does not help, you can temporarily force the planner to use
		    the index information by using the command <command>SET ENABLE_SEQSCAN TO OFF;</command>.
		    This way you can check whether the planner is at all able to generate
			an index-accelerated query plan for your query.
			You should only use this command for debugging; generally
		    speaking, the planner knows better than you do about when to use
		    indexes. Once you have run your query, do not forget to run
			<command>SET ENABLE_SEQSCAN TO ON;</command> so that the planner
            will operate normally for other queries.</para>
		</listitem>

		<listitem>
		    <para>If <command>SET ENABLE_SEQSCAN TO OFF;</command> helps your query to run faster,
		    your Postgres is likely not tuned for your hardware.
			If you find the planner wrong about the cost of sequential versus
		    index scans try reducing the value of <varname>RANDOM_PAGE_COST</varname> in
		    <code>postgresql.conf</code>, or use <command>SET RANDOM_PAGE_COST TO 1.1;</command>.
            The default value for <varname>RANDOM_PAGE_COST</varname> is 4.0.
            Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks).
		    Decreasing the value makes the planner more likely to use index scans.</para>
		</listitem>

		<listitem>
		  <para>If <command>SET ENABLE_SEQSCAN TO OFF;</command> does not help your query,
			the query may be using a SQL construct that the Postgres planner is not yet able to optimize.
            It may be possible to rewrite the query in a way that the planner is able to handle.
			For example, a subquery with an inline SELECT may not produce an efficient plan,
            but could possibly be rewritten using a LATERAL JOIN.</para>
		</listitem>

	  </itemizedlist>

        <para>
        For more information see the Postgres manual section on
        <link xlink:href="https://www.postgresql.org/docs/current/runtime-config-query.html">Query Planning</link>.
        </para>

	</section>
  </section>

</chapter>