File: intervaltree.c

package info (click to toggle)
postgis 3.5.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 70,052 kB
  • sloc: ansic: 162,204; sql: 93,950; xml: 53,121; cpp: 12,646; perl: 5,658; sh: 5,369; makefile: 3,434; python: 1,205; yacc: 447; lex: 151; pascal: 58
file content (530 lines) | stat: -rw-r--r-- 14,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/**********************************************************************
 *
 * PostGIS - Spatial Types for PostgreSQL
 * http://postgis.net
 *
 * PostGIS is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * PostGIS is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with PostGIS.  If not, see <http://www.gnu.org/licenses/>.
 *
 **********************************************************************
 *
 * Copyright 2023 Paul Ramsey <pramsey@cleverelephant.ca>
 *
 **********************************************************************/

#include "intervaltree.h"

void
itree_free(IntervalTree *itree)
{
	if (itree->nodes) lwfree(itree->nodes);
	if (itree->ringCounts) lwfree(itree->ringCounts);
	if (itree->indexArrays)
	{
		for (uint32_t i = 0; i < itree->numIndexes; i++)
		{
			if (itree->indexArrays[i])
				ptarray_free(itree->indexArrays[i]);
		}
	}
	if (itree->indexes) lwfree(itree->indexes);
	if (itree->indexArrays) lwfree(itree->indexArrays);
	lwfree(itree);
}

static uint32_t
itree_num_nodes_pointarray(const POINTARRAY *pa)
{
	uint32_t num_nodes = 0;
	uint32_t level_nodes = 0;

	/* not a closed polygon */
	if (!pa || pa->npoints < 4) return 0;

	/* one leaf node per edge */
	level_nodes = pa->npoints - 1;

	while(level_nodes > 1)
	{
		uint32_t next_level_nodes = level_nodes / ITREE_MAX_NODES;
		next_level_nodes += ((level_nodes % ITREE_MAX_NODES) > 0);
		num_nodes += level_nodes;
		level_nodes = next_level_nodes;
	}
	/* and the root node */
	return num_nodes + 1;
}

static uint32_t
itree_num_nodes_polygon(const LWPOLY *poly)
{
	uint32_t num_nodes = 0;
	for (uint32_t i = 0; i < poly->nrings; i++)
	{
		const POINTARRAY *pa = poly->rings[i];
		num_nodes += itree_num_nodes_pointarray(pa);
	}
	return num_nodes;
}

static uint32_t
itree_num_nodes_multipolygon(const LWMPOLY *mpoly)
{
	uint32_t num_nodes = 0;
	for (uint32_t i = 0; i < mpoly->ngeoms; i++)
	{
		const LWPOLY *poly = mpoly->geoms[i];
		num_nodes += itree_num_nodes_polygon(poly);
	}
	return num_nodes;
}

static uint32_t
itree_num_rings(const LWMPOLY *mpoly)
{
	return lwgeom_count_rings((const LWGEOM*)mpoly);
}

static IntervalTreeNode *
itree_new_node(IntervalTree *itree)
{
	IntervalTreeNode *node = NULL;
	if (itree->numNodes >= itree->maxNodes)
		lwerror("%s ran out of node space", __func__);

	node = &(itree->nodes[itree->numNodes++]);
	node->min = FLT_MAX;
	node->max = FLT_MIN;
	node->edgeIndex = UINT32_MAX;
	node->numChildren = 0;
	memset(node->children, 0, sizeof(node->children));
	return node;
}


static uint32_t // nodes_remaining for after latest merge, stop at 1
itree_merge_nodes(IntervalTree *itree, uint32_t nodes_remaining)
 {
	/*
	 * store the starting state of the tree which gives
	 * us the array of nodes we are going to have to merge
	 */
	uint32_t end_node = itree->numNodes;
	uint32_t start_node = end_node - nodes_remaining;

	/*
	 * one parent for every ITREE_MAX_NODES children
	 * plus one for the remainder
	 */
	uint32_t num_parents = nodes_remaining / ITREE_MAX_NODES;
	num_parents += ((nodes_remaining % ITREE_MAX_NODES) > 0);

	/*
	 * each parent is composed by merging four adjacent children
	 * this generates a useful index structure in O(n) time
	 * because the edges are from a ring, and thus are
	 * spatially autocorrelated, so the pre-sorting step of
	 * building a packed index is already done for us before we even start
	 */
	for (uint32_t i = 0; i < num_parents; i++)
	{
		uint32_t children_start = start_node + i * ITREE_MAX_NODES;
		uint32_t children_end = start_node + (i+1) * ITREE_MAX_NODES;
		children_end = children_end > end_node ? end_node : children_end;

		/*
		 * put pointers to the children we are merging onto
		 * the new parent node
		 */
		IntervalTreeNode *parent_node = itree_new_node(itree);
		for (uint32_t j = children_start; j < children_end; j++)
		{
			IntervalTreeNode *child_node = &(itree->nodes[j]);
			parent_node->min = FP_MIN(child_node->min, parent_node->min);
			parent_node->max = FP_MAX(child_node->max, parent_node->max);
			parent_node->edgeIndex = FP_MIN(child_node->edgeIndex, parent_node->edgeIndex);
			parent_node->children[parent_node->numChildren++] = child_node;
		}
	}

	/*
	 * keep going until num_parents gets down to one and
	 * we are at the root of the tree
	 */
	return num_parents;
}

static int
itree_edge_invalid(const POINT2D *pt1, const POINT2D *pt2)
{
	/* zero length */
	if (pt1->x == pt2->x && pt1->y == pt2->y)
		return 1;

	/* nan/inf coordinates */
	if (isfinite(pt1->x) &&
	    isfinite(pt1->y) &&
	    isfinite(pt2->x) &&
	    isfinite(pt2->y))
		return 0;

	return 1;
}

static void
itree_add_pointarray(IntervalTree *itree, const POINTARRAY *pa)
{
	uint32_t nodes_remaining = 0;
	uint32_t leaf_nodes = 0;
	IntervalTreeNode *root = NULL;

	/* EMPTY/unusable ring */
	if (!pa || pa->npoints < 4)
		lwerror("%s called with unusable ring", __func__);

	/* fill in the leaf nodes */
	for (uint32_t i = 0; i < pa->npoints-1; i++)
	{
		const POINT2D *pt1 = getPoint2d_cp(pa, i);
		const POINT2D *pt2 = getPoint2d_cp(pa, i+1);

		/* Do not add nodes for zero length segments */
		if (itree_edge_invalid(pt1, pt2))
			continue;

		/* get a fresh node for each segment of the ring */
		IntervalTreeNode *node = itree_new_node(itree);
		node->min = FP_MIN(pt1->y, pt2->y);
		node->max = FP_MAX(pt1->y, pt2->y);
		node->edgeIndex = i;
		leaf_nodes++;
	}

	/* merge leaf nodes up to parents */
	nodes_remaining = leaf_nodes;
	while (nodes_remaining > 1)
		nodes_remaining = itree_merge_nodes(itree, nodes_remaining);

	/* final parent is the root */
	if (leaf_nodes > 0)
		root = &(itree->nodes[itree->numNodes - 1]);
	else
		root = NULL;

	/*
	 * take a copy of the point array we built this
	 * tree on top of so we can reference it to get
	 * segment information later
	 */
	itree->indexes[itree->numIndexes] = root;
	itree->indexArrays[itree->numIndexes] = ptarray_clone(pa);
	itree->numIndexes += 1;

	return;
}


static void
itree_add_polygon(IntervalTree *itree, const LWPOLY *poly)
{
	if (poly->nrings == 0) return;

	itree->maxNodes = itree_num_nodes_polygon(poly);
	itree->nodes = lwalloc0(itree->maxNodes * sizeof(IntervalTreeNode));
	itree->numNodes = 0;

	itree->ringCounts = lwalloc0(sizeof(uint32_t));
	itree->indexes = lwalloc0(poly->nrings * sizeof(IntervalTreeNode*));
	itree->indexArrays = lwalloc0(poly->nrings * sizeof(POINTARRAY*));

	for (uint32_t j = 0; j < poly->nrings; j++)
	{
		const POINTARRAY *pa = poly->rings[j];

		/* skip empty/unclosed/invalid rings */
		if (!pa || pa->npoints < 4)
			continue;

		itree_add_pointarray(itree, pa);

		itree->ringCounts[itree->numPolys] += 1;
	}
	itree->numPolys = 1;
	return;
}


static void
itree_add_multipolygon(IntervalTree *itree, const LWMPOLY *mpoly)
{
	if (mpoly->ngeoms == 0) return;

	itree->maxNodes = itree_num_nodes_multipolygon(mpoly);
	itree->nodes = lwalloc0(itree->maxNodes * sizeof(IntervalTreeNode));
	itree->numNodes = 0;

	itree->ringCounts = lwalloc0(mpoly->ngeoms * sizeof(uint32_t));
	itree->indexes = lwalloc0(itree_num_rings(mpoly) * sizeof(IntervalTreeNode*));
	itree->indexArrays = lwalloc0(itree_num_rings(mpoly) * sizeof(POINTARRAY*));

	for (uint32_t i = 0; i < mpoly->ngeoms; i++)
	{
		const LWPOLY *poly = mpoly->geoms[i];

		/* skip empty polygons */
		if (! poly || lwpoly_is_empty(poly))
			continue;

		for (uint32_t j = 0; j < poly->nrings; j++)
		{
			const POINTARRAY *pa = poly->rings[j];

			/* skip empty/unclosed/invalid rings */
			if (!pa || pa->npoints < 4)
				continue;

			itree_add_pointarray(itree, pa);

			itree->ringCounts[itree->numPolys] += 1;
		}

		itree->numPolys += 1;
	}
	return;
}


IntervalTree *
itree_from_lwgeom(const LWGEOM *geom)
{
	if (!geom) lwerror("%s called with null geometry", __func__);
	if (lwgeom_get_type(geom) == MULTIPOLYGONTYPE)
	{
		IntervalTree *itree = lwalloc0(sizeof(IntervalTree));
		itree_add_multipolygon(itree, lwgeom_as_lwmpoly(geom));
		return itree;
	}
	else if (lwgeom_get_type(geom) == POLYGONTYPE)
	{
		IntervalTree *itree = lwalloc0(sizeof(IntervalTree));
		itree_add_polygon(itree, lwgeom_as_lwpoly(geom));
		return itree;
	}
	else
	{
		lwerror("%s got asked to build index on non-polygon", __func__);
		return NULL;
	}
}


/*******************************************************************************
 * The following is based on the "Fast Winding Number Inclusion of a Point
 * in a Polygon" algorithm by Dan Sunday.
 * http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm#Winding%20Number
 *
 * returns: >0 for a point to the left of the segment,
 *          <0 for a point to the right of the segment,
 *          0 for a point on the segment
 */
static inline double
itree_segment_side(const POINT2D *seg1, const POINT2D *seg2, const POINT2D *point)
{
	return ((seg2->x - seg1->x) * (point->y - seg1->y) -
		    (point->x - seg1->x) * (seg2->y - seg1->y));
}

/*
 * This function doesn't test that the point falls on the line defined by
 * the two points.  It assumes that that has already been determined
 * by having itree_segment_side return within the tolerance.  It simply checks
 * that if the point is on the line, it is within the endpoints.
 *
 * returns: 1 if the point is inside the segment bounds
 *          0 if the point is outside the segment bounds
 */
static int
itree_point_on_segment(const POINT2D *seg1, const POINT2D *seg2, const POINT2D *point)
{
	double maxX = FP_MAX(seg1->x, seg2->x);
	double maxY = FP_MAX(seg1->y, seg2->y);
	double minX = FP_MIN(seg1->x, seg2->x);
	double minY = FP_MIN(seg1->y, seg2->y);

	return point->x >= minX && point->x <= maxX &&
	       point->y >= minY && point->y <= maxY;
}


static IntervalTreeResult
itree_point_in_ring_recursive(
	const IntervalTreeNode *node,
	const POINTARRAY *pa,
	const POINT2D *pt,
	int *winding_number)
{
	if (!node) return ITREE_OUTSIDE;
	/*
	 * If Y value is not within range of node, we can
	 * learn nothing from this node or its children, so
	 * we exit early.
	 */
	uint8_t node_contains_value = FP_CONTAINS_INCL(node->min, pt->y, node->max) ? 1 : 0;
	if (!node_contains_value)
		return ITREE_OK;

	/* This is a leaf node, so evaluate winding number */
	if (node->numChildren == 0)
	{
		const POINT2D *seg1 = getPoint2d_cp(pa, node->edgeIndex);
		const POINT2D *seg2 = getPoint2d_cp(pa, node->edgeIndex + 1);
		double side = itree_segment_side(seg1, seg2, pt);

		/* Zero length segments are ignored. */
		// xxxx need a unit test, what about really really short segments?
		// if (distance2d_sqr_pt_pt(seg1, seg2) < FP_EPS*FP_EPS)
		// 	return ITREE_OK;

		/* A point on the boundary of a ring is not contained. */
		/* WAS: if (fabs(side) < 1e-12), see ticket #852 */
		if (side == 0.0 && itree_point_on_segment(seg1, seg2, pt) == 1)
			return ITREE_BOUNDARY;

		/*
		 * If the point is to the left of the line, and it's rising,
		 * then the line is to the right of the point and
		 * circling counter-clockwise, so increment.
		 */
		if ((seg1->y <= pt->y) && (pt->y < seg2->y) && (side > 0))
		{
			*winding_number = *winding_number + 1;
		}

		/*
		 * If the point is to the right of the line, and it's falling,
		 * then the line is to the right of the point and circling
		 * clockwise, so decrement.
		 */
		else if ((seg2->y <= pt->y) && (pt->y < seg1->y) && (side < 0))
		{
			*winding_number = *winding_number - 1;
		}

		return ITREE_OK;
	}
	/* This is an interior node, so recurse downwards */
	else
	{
		for (uint32_t i = 0; i < node->numChildren; i++)
		{
			IntervalTreeResult rslt = itree_point_in_ring_recursive(node->children[i], pa, pt, winding_number);
			/* Short circuit and send back boundary result */
			if (rslt == ITREE_BOUNDARY)
				return rslt;
		}
	}
	return ITREE_OK;
}

static IntervalTreeResult
itree_point_in_ring(const IntervalTree *itree, uint32_t ringNumber, const POINT2D *pt)
{
	int winding_number = 0;
	const IntervalTreeNode *node = itree->indexes[ringNumber];
	const POINTARRAY *pa = itree->indexArrays[ringNumber];
	IntervalTreeResult rslt = itree_point_in_ring_recursive(node, pa, pt, &winding_number);

	/* Boundary case is separate from winding number */
	if (rslt == ITREE_BOUNDARY) return rslt;

	/* Not boundary, so evaluate winding number */
	if (winding_number == 0)
		return ITREE_OUTSIDE;
	else
		return ITREE_INSIDE;
}


/*
 * Test if the given point falls within the given multipolygon.
 * Assume bbox short-circuit has already been attempted.
 * First check if point is within any of the outer rings.
 * If not, it is outside. If so, check if the point is
 * within the relevant inner rings. If not, it is inside.
 */
IntervalTreeResult
itree_point_in_multipolygon(const IntervalTree *itree, const LWPOINT *point)
{
	uint32_t i = 0;
	const POINT2D *pt;
	IntervalTreeResult result = ITREE_OUTSIDE;

	/* Empty is not within anything */
	if (lwpoint_is_empty(point))
		return ITREE_OUTSIDE;

	/* Non-finite point is within anything */
	pt = getPoint2d_cp(point->point, 0);
	if (!pt || !(isfinite(pt->x) && isfinite(pt->y)))
		return ITREE_OUTSIDE;

	/* Is the point inside any of the exterior rings of the sub-polygons? */
	for (uint32_t p = 0; p < itree->numPolys; p++)
	{
		uint32_t ringCount = itree->ringCounts[p];

		/* Skip empty polygons */
		if (ringCount == 0) continue;

		/* Check result against exterior ring. */
		result = itree_point_in_ring(itree, i, pt);

		/* Boundary condition is a hard stop */
		if (result == ITREE_BOUNDARY)
			return ITREE_BOUNDARY;

		/* We are inside an exterior ring! Are we outside all the holes? */
		if (result == ITREE_INSIDE)
		{
			for(uint32_t r = 1; r < itree->ringCounts[p]; r++)
			{
				result = itree_point_in_ring(itree, i+r, pt);

				/* Boundary condition is a hard stop */
				if (result == ITREE_BOUNDARY)
					return ITREE_BOUNDARY;

				/*
				 * Inside a hole => Outside the polygon!
				 * But there might be other polygons lurking
				 * inside this hole so we have to continue
				 * and check all the exterior rings.
				 */
				if (result == ITREE_INSIDE)
					goto holes_done;
			}
			return ITREE_INSIDE;
		}

		holes_done:
			/* Move to first ring of next polygon */
			i += ringCount;
	}

	/* Not in any rings */
	return ITREE_OUTSIDE;
}