1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
/**********************************************************************
*
* PostGIS - Spatial Types for PostgreSQL
* http://postgis.net
*
* PostGIS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* PostGIS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
*
**********************************************************************
*
* Copyright (C) 2009 Paul Ramsey <pramsey@cleverelephant.ca>
* Copyright (C) 2009 David Skea <David.Skea@gov.bc.ca>
*
**********************************************************************/
#include "liblwgeom_internal.h"
#include "lwgeodetic.h"
#include "lwgeom_log.h"
/* In proj4.9, GeographicLib is in special header */
#ifdef PROJ_GEODESIC
#include <geodesic.h>
#endif
/**
* Initialize spheroid object based on major and minor axis
*/
void spheroid_init(SPHEROID *s, double a, double b)
{
s->a = a;
s->b = b;
s->f = (a - b) / a;
s->e_sq = (a*a - b*b)/(a*a);
s->radius = (2.0 * a + b ) / 3.0;
}
#ifndef PROJ_GEODESIC
static double spheroid_mu2(double alpha, const SPHEROID *s)
{
double b2 = POW2(s->b);
return POW2(cos(alpha)) * (POW2(s->a) - b2) / b2;
}
static double spheroid_big_a(double u2)
{
return 1.0 + (u2 / 16384.0) * (4096.0 + u2 * (-768.0 + u2 * (320.0 - 175.0 * u2)));
}
static double spheroid_big_b(double u2)
{
return (u2 / 1024.0) * (256.0 + u2 * (-128.0 + u2 * (74.0 - 47.0 * u2)));
}
#endif /* ! PROJ_GEODESIC */
#ifdef PROJ_GEODESIC
/**
* Computes the shortest distance along the surface of the spheroid
* between two points, using the inverse geodesic problem from
* GeographicLib (Karney 2013).
*
* @param a - location of first point
* @param b - location of second point
* @param s - spheroid to calculate on
* @return spheroidal distance between a and b in spheroid units
*/
double spheroid_distance(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const SPHEROID *spheroid)
{
struct geod_geodesic gd;
/* Same point => zero distance */
if ( geographic_point_equals(a, b) )
return 0.0;
geod_init(&gd, spheroid->a, spheroid->f);
double lat1 = a->lat * 180.0 / M_PI;
double lon1 = a->lon * 180.0 / M_PI;
double lat2 = b->lat * 180.0 / M_PI;
double lon2 = b->lon * 180.0 / M_PI;
double s12 = 0.0; /* return distance */
geod_inverse(&gd, lat1, lon1, lat2, lon2, &s12, 0, 0);
return s12;
}
/**
* Computes the forward azimuth of the geodesic joining two points on
* the spheroid, using the inverse geodesic problem (Karney 2013).
*
* @param r - location of first point
* @param s - location of second point
* @return azimuth of line joining r to s (but not reverse)
*/
double spheroid_direction(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const SPHEROID *spheroid)
{
struct geod_geodesic gd;
geod_init(&gd, spheroid->a, spheroid->f);
double lat1 = a->lat * 180.0 / M_PI;
double lon1 = a->lon * 180.0 / M_PI;
double lat2 = b->lat * 180.0 / M_PI;
double lon2 = b->lon * 180.0 / M_PI;
double azi1; /* return azimuth */
geod_inverse(&gd, lat1, lon1, lat2, lon2, 0, &azi1, 0);
return azi1 * M_PI / 180.0;
}
/**
* Given a location, an azimuth and a distance, computes the location of
* the projected point. Using the direct geodesic problem from
* GeographicLib (Karney 2013).
*
* @param r - location of first point
* @param distance - distance in meters
* @param azimuth - azimuth in radians
* @return g - location of projected point
*/
int spheroid_project(const GEOGRAPHIC_POINT *r, const SPHEROID *spheroid, double distance, double azimuth, GEOGRAPHIC_POINT *g)
{
struct geod_geodesic gd;
geod_init(&gd, spheroid->a, spheroid->f);
double lat1 = r->lat * 180.0 / M_PI;
double lon1 = r->lon * 180.0 / M_PI;
double lat2, lon2; /* return projected position */
geod_direct(&gd, lat1, lon1, azimuth * 180.0 / M_PI, distance, &lat2, &lon2, 0);
g->lat = lat2 * M_PI / 180.0;
g->lon = lon2 * M_PI / 180.0;
return LW_SUCCESS;
}
static double ptarray_area_spheroid(const POINTARRAY *pa, const SPHEROID *spheroid)
{
/* Return zero on non-sensical inputs */
if ( ! pa || pa->npoints < 4 )
return 0.0;
struct geod_geodesic gd;
geod_init(&gd, spheroid->a, spheroid->f);
struct geod_polygon poly;
geod_polygon_init(&poly, 0);
uint32_t i;
double area; /* returned polygon area */
POINT2D p; /* long/lat units are degrees */
/* Pass points from point array; don't close the linearring */
for ( i = 0; i < pa->npoints - 1; i++ )
{
getPoint2d_p(pa, i, &p);
geod_polygon_addpoint(&gd, &poly, p.y, p.x);
LWDEBUGF(4, "geod_polygon_addpoint %d: %.12g %.12g", i, p.y, p.x);
}
i = geod_polygon_compute(&gd, &poly, 0, 1, &area, 0);
if ( i != pa->npoints - 1 )
{
lwerror("ptarray_area_spheroid: different number of points %d vs %d",
i, pa->npoints - 1);
}
LWDEBUGF(4, "geod_polygon_compute area: %.12g", area);
return fabs(area);
}
/* Above use Proj GeographicLib */
#else /* ! PROJ_GEODESIC */
/* Below use pre-version 2.2 geodesic functions */
/**
* Computes the shortest distance along the surface of the spheroid
* between two points. Based on Vincenty's formula for the geodetic
* inverse problem as described in "Geocentric Datum of Australia
* Technical Manual", Chapter 4. Tested against:
* http://mascot.gdbc.gov.bc.ca/mascot/util1a.html
* and
* http://www.ga.gov.au/nmd/geodesy/datums/vincenty_inverse.jsp
*
* @param a - location of first point.
* @param b - location of second point.
* @param s - spheroid to calculate on
* @return spheroidal distance between a and b in spheroid units.
*/
double spheroid_distance(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, const SPHEROID *spheroid)
{
double lambda = (b->lon - a->lon);
double f = spheroid->f;
double omf = 1 - spheroid->f;
double u1, u2;
double cos_u1, cos_u2;
double sin_u1, sin_u2;
double big_a, big_b, delta_sigma;
double alpha, sin_alpha, cos_alphasq, c;
double sigma, sin_sigma, cos_sigma, cos2_sigma_m, sqrsin_sigma, last_lambda, omega;
double cos_lambda, sin_lambda;
double distance;
int i = 0;
/* Same point => zero distance */
if ( geographic_point_equals(a, b) )
{
return 0.0;
}
u1 = atan(omf * tan(a->lat));
cos_u1 = cos(u1);
sin_u1 = sin(u1);
u2 = atan(omf * tan(b->lat));
cos_u2 = cos(u2);
sin_u2 = sin(u2);
omega = lambda;
do
{
cos_lambda = cos(lambda);
sin_lambda = sin(lambda);
sqrsin_sigma = POW2(cos_u2 * sin_lambda) +
POW2((cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos_lambda));
sin_sigma = sqrt(sqrsin_sigma);
cos_sigma = sin_u1 * sin_u2 + cos_u1 * cos_u2 * cos_lambda;
sigma = atan2(sin_sigma, cos_sigma);
sin_alpha = cos_u1 * cos_u2 * sin_lambda / sin(sigma);
/* Numerical stability issue, ensure asin is not NaN */
if ( sin_alpha > 1.0 )
alpha = M_PI_2;
else if ( sin_alpha < -1.0 )
alpha = -1.0 * M_PI_2;
else
alpha = asin(sin_alpha);
cos_alphasq = POW2(cos(alpha));
cos2_sigma_m = cos(sigma) - (2.0 * sin_u1 * sin_u2 / cos_alphasq);
/* Numerical stability issue, cos2 is in range */
if ( cos2_sigma_m > 1.0 )
cos2_sigma_m = 1.0;
if ( cos2_sigma_m < -1.0 )
cos2_sigma_m = -1.0;
c = (f / 16.0) * cos_alphasq * (4.0 + f * (4.0 - 3.0 * cos_alphasq));
last_lambda = lambda;
lambda = omega + (1.0 - c) * f * sin(alpha) * (sigma + c * sin(sigma) *
(cos2_sigma_m + c * cos(sigma) * (-1.0 + 2.0 * POW2(cos2_sigma_m))));
i++;
}
while ( (i < 999) && (lambda != 0.0) && (fabs((last_lambda - lambda)/lambda) > 1.0e-9) );
u2 = spheroid_mu2(alpha, spheroid);
big_a = spheroid_big_a(u2);
big_b = spheroid_big_b(u2);
delta_sigma = big_b * sin_sigma * (cos2_sigma_m + (big_b / 4.0) * (cos_sigma * (-1.0 + 2.0 * POW2(cos2_sigma_m)) -
(big_b / 6.0) * cos2_sigma_m * (-3.0 + 4.0 * sqrsin_sigma) * (-3.0 + 4.0 * POW2(cos2_sigma_m))));
distance = spheroid->b * big_a * (sigma - delta_sigma);
/* Algorithm failure, distance == NaN, fallback to sphere */
if ( distance != distance )
{
lwerror("spheroid_distance returned NaN: (%.20g %.20g) (%.20g %.20g) a = %.20g b = %.20g",a->lat, a->lon, b->lat, b->lon, spheroid->a, spheroid->b);
return spheroid->radius * sphere_distance(a, b);
}
return distance;
}
/**
* Computes the direction of the geodesic joining two points on
* the spheroid. Based on Vincenty's formula for the geodetic
* inverse problem as described in "Geocentric Datum of Australia
* Technical Manual", Chapter 4. Tested against:
* http://mascot.gdbc.gov.bc.ca/mascot/util1a.html
* and
* http://www.ga.gov.au/nmd/geodesy/datums/vincenty_inverse.jsp
*
* @param r - location of first point
* @param s - location of second point
* @return azimuth of line joining r and s
*/
double spheroid_direction(const GEOGRAPHIC_POINT *r, const GEOGRAPHIC_POINT *s, const SPHEROID *spheroid)
{
int i = 0;
double lambda = s->lon - r->lon;
double omf = 1 - spheroid->f;
double u1 = atan(omf * tan(r->lat));
double cos_u1 = cos(u1);
double sin_u1 = sin(u1);
double u2 = atan(omf * tan(s->lat));
double cos_u2 = cos(u2);
double sin_u2 = sin(u2);
double omega = lambda;
double alpha, sigma, sin_sigma, cos_sigma, cos2_sigma_m, sqr_sin_sigma, last_lambda;
double sin_alpha, cos_alphasq, C, alphaFD;
do
{
sqr_sin_sigma = POW2(cos_u2 * sin(lambda)) +
POW2((cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos(lambda)));
sin_sigma = sqrt(sqr_sin_sigma);
cos_sigma = sin_u1 * sin_u2 + cos_u1 * cos_u2 * cos(lambda);
sigma = atan2(sin_sigma, cos_sigma);
sin_alpha = cos_u1 * cos_u2 * sin(lambda) / sin(sigma);
/* Numerical stability issue, ensure asin is not NaN */
if ( sin_alpha > 1.0 )
alpha = M_PI_2;
else if ( sin_alpha < -1.0 )
alpha = -1.0 * M_PI_2;
else
alpha = asin(sin_alpha);
cos_alphasq = POW2(cos(alpha));
cos2_sigma_m = cos(sigma) - (2.0 * sin_u1 * sin_u2 / cos_alphasq);
/* Numerical stability issue, cos2 is in range */
if ( cos2_sigma_m > 1.0 )
cos2_sigma_m = 1.0;
if ( cos2_sigma_m < -1.0 )
cos2_sigma_m = -1.0;
C = (spheroid->f / 16.0) * cos_alphasq * (4.0 + spheroid->f * (4.0 - 3.0 * cos_alphasq));
last_lambda = lambda;
lambda = omega + (1.0 - C) * spheroid->f * sin(alpha) * (sigma + C * sin(sigma) *
(cos2_sigma_m + C * cos(sigma) * (-1.0 + 2.0 * POW2(cos2_sigma_m))));
i++;
}
while ( (i < 999) && (lambda != 0) && (fabs((last_lambda - lambda) / lambda) > 1.0e-9) );
alphaFD = atan2((cos_u2 * sin(lambda)),
(cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos(lambda)));
if (alphaFD < 0.0)
{
alphaFD = alphaFD + 2.0 * M_PI;
}
if (alphaFD > 2.0 * M_PI)
{
alphaFD = alphaFD - 2.0 * M_PI;
}
return alphaFD;
}
/**
* Given a location, an azimuth and a distance, computes the
* location of the projected point. Based on Vincenty's formula
* for the geodetic direct problem as described in "Geocentric
* Datum of Australia Technical Manual", Chapter 4. Tested against:
* http://mascot.gdbc.gov.bc.ca/mascot/util1b.html
* and
* http://www.ga.gov.au/nmd/geodesy/datums/vincenty_direct.jsp
*
* @param r - location of first point.
* @param distance - distance in meters.
* @param azimuth - azimuth in radians.
* @return s - location of projected point.
*/
int spheroid_project(const GEOGRAPHIC_POINT *r, const SPHEROID *spheroid, double distance, double azimuth, GEOGRAPHIC_POINT *g)
{
double omf = 1 - spheroid->f;
double tan_u1 = omf * tan(r->lat);
double u1 = atan(tan_u1);
double sigma, last_sigma, delta_sigma, two_sigma_m;
double sigma1, sin_alpha, alpha, cos_alphasq;
double u2, A, B;
double lat2, lambda, lambda2, C, omega;
int i = 0;
if (azimuth < 0.0)
{
azimuth = azimuth + M_PI * 2.0;
}
if (azimuth > (M_PI * 2.0))
{
azimuth = azimuth - M_PI * 2.0;
}
sigma1 = atan2(tan_u1, cos(azimuth));
sin_alpha = cos(u1) * sin(azimuth);
alpha = asin(sin_alpha);
cos_alphasq = 1.0 - POW2(sin_alpha);
u2 = spheroid_mu2(alpha, spheroid);
A = spheroid_big_a(u2);
B = spheroid_big_b(u2);
sigma = (distance / (spheroid->b * A));
do
{
two_sigma_m = 2.0 * sigma1 + sigma;
delta_sigma = B * sin(sigma) * (cos(two_sigma_m) + (B / 4.0) * (cos(sigma) * (-1.0 + 2.0 * POW2(cos(two_sigma_m)) - (B / 6.0) * cos(two_sigma_m) * (-3.0 + 4.0 * POW2(sin(sigma))) * (-3.0 + 4.0 * POW2(cos(two_sigma_m))))));
last_sigma = sigma;
sigma = (distance / (spheroid->b * A)) + delta_sigma;
i++;
}
while (i < 999 && fabs((last_sigma - sigma) / sigma) > 1.0e-9);
lat2 = atan2((sin(u1) * cos(sigma) + cos(u1) * sin(sigma) *
cos(azimuth)), (omf * sqrt(POW2(sin_alpha) +
POW2(sin(u1) * sin(sigma) - cos(u1) * cos(sigma) *
cos(azimuth)))));
lambda = atan2((sin(sigma) * sin(azimuth)), (cos(u1) * cos(sigma) -
sin(u1) * sin(sigma) * cos(azimuth)));
C = (spheroid->f / 16.0) * cos_alphasq * (4.0 + spheroid->f * (4.0 - 3.0 * cos_alphasq));
omega = lambda - (1.0 - C) * spheroid->f * sin_alpha * (sigma + C * sin(sigma) *
(cos(two_sigma_m) + C * cos(sigma) * (-1.0 + 2.0 * POW2(cos(two_sigma_m)))));
lambda2 = r->lon + omega;
g->lat = lat2;
g->lon = lambda2;
return LW_SUCCESS;
}
static inline double spheroid_prime_vertical_radius_of_curvature(double latitude, const SPHEROID *spheroid)
{
return spheroid->a / (sqrt(1.0 - spheroid->e_sq * POW2(sin(latitude))));
}
static inline double spheroid_parallel_arc_length(double latitude, double deltaLongitude, const SPHEROID *spheroid)
{
return spheroid_prime_vertical_radius_of_curvature(latitude, spheroid)
* cos(latitude)
* deltaLongitude;
}
/**
* Computes the area on the spheroid of a box bounded by meridians and
* parallels. The box is defined by two points, the South West corner
* and the North East corner. Formula based on Bagratuni 1967.
*
* @param southWestCorner - lower left corner of bounding box.
* @param northEastCorner - upper right corner of bounding box.
* @return area in square meters.
*/
static double spheroid_boundingbox_area(const GEOGRAPHIC_POINT *southWestCorner, const GEOGRAPHIC_POINT *northEastCorner, const SPHEROID *spheroid)
{
double z0 = (northEastCorner->lon - southWestCorner->lon) * POW2(spheroid->b) / 2.0;
double e = sqrt(spheroid->e_sq);
double sinPhi1 = sin(southWestCorner->lat);
double sinPhi2 = sin(northEastCorner->lat);
double t1p1 = sinPhi1 / (1.0 - spheroid->e_sq * sinPhi1 * sinPhi1);
double t1p2 = sinPhi2 / (1.0 - spheroid->e_sq * sinPhi2 * sinPhi2);
double oneOver2e = 1.0 / (2.0 * e);
double t2p1 = oneOver2e * log((1.0 + e * sinPhi1) / (1.0 - e * sinPhi1));
double t2p2 = oneOver2e * log((1.0 + e * sinPhi2) / (1.0 - e * sinPhi2));
return z0 * (t1p2 + t2p2) - z0 * (t1p1 + t2p1);
}
/**
* This function doesn't work for edges crossing the dateline or in the southern
* hemisphere. Points are pre-conditioned in ptarray_area_spheroid.
*/
static double spheroid_striparea(const GEOGRAPHIC_POINT *a, const GEOGRAPHIC_POINT *b, double latitude_min, const SPHEROID *spheroid)
{
GEOGRAPHIC_POINT A, B, mL, nR;
double deltaLng, baseArea, topArea;
double bE, tE, ratio, sign;
A = *a;
B = *b;
mL.lat = latitude_min;
mL.lon = FP_MIN(A.lon, B.lon);
nR.lat = FP_MIN(A.lat, B.lat);
nR.lon = FP_MAX(A.lon, B.lon);
LWDEBUGF(4, "mL (%.12g %.12g)", mL.lat, mL.lon);
LWDEBUGF(4, "nR (%.12g %.12g)", nR.lat, nR.lon);
baseArea = spheroid_boundingbox_area(&mL, &nR, spheroid);
LWDEBUGF(4, "baseArea %.12g", baseArea);
mL.lat = FP_MIN(A.lat, B.lat);
mL.lon = FP_MIN(A.lon, B.lon);
nR.lat = FP_MAX(A.lat, B.lat);
nR.lon = FP_MAX(A.lon, B.lon);
LWDEBUGF(4, "mL (%.12g %.12g)", mL.lat, mL.lon);
LWDEBUGF(4, "nR (%.12g %.12g)", nR.lat, nR.lon);
topArea = spheroid_boundingbox_area(&mL, &nR, spheroid);
LWDEBUGF(4, "topArea %.12g", topArea);
deltaLng = B.lon - A.lon;
LWDEBUGF(4, "deltaLng %.12g", deltaLng);
bE = spheroid_parallel_arc_length(A.lat, deltaLng, spheroid);
tE = spheroid_parallel_arc_length(B.lat, deltaLng, spheroid);
LWDEBUGF(4, "bE %.12g", bE);
LWDEBUGF(4, "tE %.12g", tE);
ratio = (bE + tE)/tE;
sign = SIGNUM(B.lon - A.lon);
return (baseArea + topArea / ratio) * sign;
}
static double ptarray_area_spheroid(const POINTARRAY *pa, const SPHEROID *spheroid)
{
GEOGRAPHIC_POINT a, b;
POINT2D p;
uint32_t i;
double area = 0.0;
GBOX gbox2d;
int in_south = LW_FALSE;
double delta_lon_tolerance;
double latitude_min;
gbox2d.flags = lwflags(0, 0, 0);
/* Return zero on non-sensical inputs */
if ( ! pa || pa->npoints < 4 )
return 0.0;
/* Get the raw min/max values for the latitudes */
ptarray_calculate_gbox_cartesian(pa, &gbox2d);
if ( SIGNUM(gbox2d.ymin) != SIGNUM(gbox2d.ymax) )
lwerror("ptarray_area_spheroid: cannot handle ptarray that crosses equator");
/* Geodetic bbox < 0.0 implies geometry is entirely in southern hemisphere */
if ( gbox2d.ymax < 0.0 )
in_south = LW_TRUE;
LWDEBUGF(4, "gbox2d.ymax %.12g", gbox2d.ymax);
/* Tolerance for strip area calculation */
if ( in_south )
{
delta_lon_tolerance = (90.0 / (fabs(gbox2d.ymin) / 8.0) - 2.0) / 10000.0;
latitude_min = deg2rad(fabs(gbox2d.ymax));
}
else
{
delta_lon_tolerance = (90.0 / (fabs(gbox2d.ymax) / 8.0) - 2.0) / 10000.0;
latitude_min = deg2rad(gbox2d.ymin);
}
/* Initialize first point */
getPoint2d_p(pa, 0, &p);
geographic_point_init(p.x, p.y, &a);
for ( i = 1; i < pa->npoints; i++ )
{
GEOGRAPHIC_POINT a1, b1;
double strip_area = 0.0;
double delta_lon = 0.0;
LWDEBUGF(4, "edge #%d", i);
getPoint2d_p(pa, i, &p);
geographic_point_init(p.x, p.y, &b);
a1 = a;
b1 = b;
/* Flip into north if in south */
if ( in_south )
{
a1.lat = -1.0 * a1.lat;
b1.lat = -1.0 * b1.lat;
}
LWDEBUGF(4, "in_south %d", in_south);
LWDEBUGF(4, "crosses_dateline(a, b) %d", crosses_dateline(&a, &b) );
if ( crosses_dateline(&a, &b) )
{
double shift;
if ( a1.lon > 0.0 )
shift = (M_PI - a1.lon) + 0.088; /* About 5deg more */
else
shift = (M_PI - b1.lon) + 0.088; /* About 5deg more */
LWDEBUGF(4, "shift: %.8g", shift);
LWDEBUGF(4, "before shift a1(%.8g %.8g) b1(%.8g %.8g)", a1.lat, a1.lon, b1.lat, b1.lon);
point_shift(&a1, shift);
point_shift(&b1, shift);
LWDEBUGF(4, "after shift a1(%.8g %.8g) b1(%.8g %.8g)", a1.lat, a1.lon, b1.lat, b1.lon);
}
delta_lon = fabs(b1.lon - a1.lon);
LWDEBUGF(4, "a1(%.18g %.18g) b1(%.18g %.18g)", a1.lat, a1.lon, b1.lat, b1.lon);
LWDEBUGF(4, "delta_lon %.18g", delta_lon);
LWDEBUGF(4, "delta_lon_tolerance %.18g", delta_lon_tolerance);
if ( delta_lon > 0.0 )
{
if ( delta_lon < delta_lon_tolerance )
{
strip_area = spheroid_striparea(&a1, &b1, latitude_min, spheroid);
LWDEBUGF(4, "strip_area %.12g", strip_area);
area += strip_area;
}
else
{
GEOGRAPHIC_POINT p, q;
double step = floor(delta_lon / delta_lon_tolerance);
double distance = spheroid_distance(&a1, &b1, spheroid);
double pDistance = 0.0;
int j = 0;
LWDEBUGF(4, "step %.18g", step);
LWDEBUGF(4, "distance %.18g", distance);
step = distance / step;
LWDEBUGF(4, "step %.18g", step);
p = a1;
while (pDistance < (distance - step * 1.01))
{
double azimuth = spheroid_direction(&p, &b1, spheroid);
j++;
LWDEBUGF(4, " iteration %d", j);
LWDEBUGF(4, " azimuth %.12g", azimuth);
pDistance = pDistance + step;
LWDEBUGF(4, " pDistance %.12g", pDistance);
spheroid_project(&p, spheroid, step, azimuth, &q);
strip_area = spheroid_striparea(&p, &q, latitude_min, spheroid);
LWDEBUGF(4, " strip_area %.12g", strip_area);
area += strip_area;
LWDEBUGF(4, " area %.12g", area);
p.lat = q.lat;
p.lon = q.lon;
}
strip_area = spheroid_striparea(&p, &b1, latitude_min, spheroid);
area += strip_area;
}
}
/* B gets incremented in the next loop, so we save the value here */
a = b;
}
return fabs(area);
}
#endif /* else ! PROJ_GEODESIC */
/**
* Calculate the area of an LWGEOM. Anything except POLYGON, MULTIPOLYGON
* and GEOMETRYCOLLECTION return zero immediately. Multi's recurse, polygons
* calculate external ring area and subtract internal ring area. A GBOX is
* required to check relationship to equator an outside point.
* WARNING: Does NOT WORK for polygons over equator or pole.
*/
double lwgeom_area_spheroid(const LWGEOM *lwgeom, const SPHEROID *spheroid)
{
int type;
assert(lwgeom);
/* No area in nothing */
if ( lwgeom_is_empty(lwgeom) )
return 0.0;
/* Read the geometry type number */
type = lwgeom->type;
/* Anything but polygons and collections returns zero */
if ( ! ( type == POLYGONTYPE || type == MULTIPOLYGONTYPE || type == COLLECTIONTYPE ) )
return 0.0;
/* Actually calculate area */
if ( type == POLYGONTYPE )
{
LWPOLY *poly = (LWPOLY*)lwgeom;
uint32_t i;
double area = 0.0;
/* Just in case there's no rings */
if ( poly->nrings < 1 )
return 0.0;
/* First, the area of the outer ring */
area += ptarray_area_spheroid(poly->rings[0], spheroid);
/* Subtract areas of inner rings */
for ( i = 1; i < poly->nrings; i++ )
{
area -= ptarray_area_spheroid(poly->rings[i], spheroid);
}
return area;
}
/* Recurse into sub-geometries to get area */
if ( type == MULTIPOLYGONTYPE || type == COLLECTIONTYPE )
{
LWCOLLECTION *col = (LWCOLLECTION*)lwgeom;
uint32_t i;
double area = 0.0;
for ( i = 0; i < col->ngeoms; i++ )
{
area += lwgeom_area_spheroid(col->geoms[i], spheroid);
}
return area;
}
/* Shouldn't get here. */
return 0.0;
}
|