1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
|
/**********************************************************************
*
* PostGIS - Spatial Types for PostgreSQL
* http://postgis.net
*
* PostGIS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* PostGIS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PostGIS. If not, see <http://www.gnu.org/licenses/>.
*
**********************************************************************
*
* Copyright (C) 2001-2006 Refractions Research Inc.
* Copyright (C) 2017 Sandro Santilli <strk@kbt.io>
* Copyright (C) 2018 Daniel Baston <dbaston@gmail.com>
*
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "../postgis_config.h"
/*#define POSTGIS_DEBUG_LEVEL 3*/
#include "lwgeom_log.h"
#include "liblwgeom_internal.h"
LWGEOM *pta_unstroke(const POINTARRAY *points, int32_t srid);
LWGEOM* lwline_unstroke(const LWLINE *line);
LWGEOM* lwpolygon_unstroke(const LWPOLY *poly);
LWGEOM* lwmline_unstroke(const LWMLINE *mline);
LWGEOM* lwmpolygon_unstroke(const LWMPOLY *mpoly);
LWGEOM* lwcollection_unstroke(const LWCOLLECTION *c);
LWGEOM* lwgeom_unstroke(const LWGEOM *geom);
/*
* Determines (recursively in the case of collections) whether the geometry
* contains at least on arc geometry or segment.
*/
int
lwgeom_has_arc(const LWGEOM *geom)
{
LWCOLLECTION *col;
uint32_t i;
LWDEBUG(2, "lwgeom_has_arc called.");
switch (geom->type)
{
case POINTTYPE:
case LINETYPE:
case POLYGONTYPE:
case TRIANGLETYPE:
case MULTIPOINTTYPE:
case MULTILINETYPE:
case MULTIPOLYGONTYPE:
case POLYHEDRALSURFACETYPE:
case TINTYPE:
return LW_FALSE;
case CIRCSTRINGTYPE:
return LW_TRUE;
/* It's a collection that MAY contain an arc */
default:
col = (LWCOLLECTION *)geom;
for (i=0; i<col->ngeoms; i++)
{
if (lwgeom_has_arc(col->geoms[i]) == LW_TRUE)
return LW_TRUE;
}
return LW_FALSE;
}
}
int
lwgeom_type_arc(const LWGEOM *geom)
{
switch (geom->type)
{
case COMPOUNDTYPE:
case CIRCSTRINGTYPE:
case CURVEPOLYTYPE:
case MULTISURFACETYPE:
case MULTICURVETYPE:
return LW_TRUE;
default:
return LW_FALSE;
}
}
/*******************************************************************************
* Begin curve segmentize functions
******************************************************************************/
static double interpolate_arc(double angle, double a1, double a2, double a3, double zm1, double zm2, double zm3)
{
LWDEBUGF(4,"angle %.05g a1 %.05g a2 %.05g a3 %.05g zm1 %.05g zm2 %.05g zm3 %.05g",angle,a1,a2,a3,zm1,zm2,zm3);
/* Counter-clockwise sweep */
if ( a1 < a2 )
{
if ( angle <= a2 )
return zm1 + (zm2-zm1) * (angle-a1) / (a2-a1);
else
return zm2 + (zm3-zm2) * (angle-a2) / (a3-a2);
}
/* Clockwise sweep */
else
{
if ( angle >= a2 )
return zm1 + (zm2-zm1) * (a1-angle) / (a1-a2);
else
return zm2 + (zm3-zm2) * (a2-angle) / (a2-a3);
}
}
/* Compute the angle covered by a single segment such that
* a given number of segments per quadrant is achieved. */
static double angle_increment_using_segments_per_quad(double tol)
{
double increment;
int perQuad = rint(tol);
// error out if tol != perQuad ? (not-round)
if ( perQuad != tol )
{
lwerror("lwarc_linearize: segments per quadrant must be an integer value, got %.15g", tol);
return -1;
}
if ( perQuad < 1 )
{
lwerror("lwarc_linearize: segments per quadrant must be at least 1, got %d", perQuad);
return -1;
}
increment = fabs(M_PI_2 / perQuad);
LWDEBUGF(2, "lwarc_linearize: perQuad:%d, increment:%g (%g degrees)", perQuad, increment, increment*180/M_PI);
return increment;
}
/* Compute the angle covered by a single quadrant such that
* the segment deviates from the arc by no more than a given
* amount. */
static double angle_increment_using_max_deviation(double max_deviation, double radius)
{
double increment, halfAngle, maxErr;
if ( max_deviation <= 0 )
{
lwerror("lwarc_linearize: max deviation must be bigger than 0, got %.15g", max_deviation);
return -1;
}
/*
* Ref: https://en.wikipedia.org/wiki/Sagitta_(geometry)
*
* An arc "sagitta" (distance between middle point of arc and
* middle point of corresponding chord) is defined as:
*
* sagitta = radius * ( 1 - cos( angle ) );
*
* We want our sagitta to be at most "tolerance" long,
* and we want to find out angle, so we use the inverse
* formula:
*
* tol = radius * ( 1 - cos( angle ) );
* 1 - cos( angle ) = tol/radius
* - cos( angle ) = tol/radius - 1
* cos( angle ) = - tol/radius + 1
* angle = acos( 1 - tol/radius )
*
* Constraints: 1.0 - tol/radius must be between -1 and 1
* which means tol must be between 0 and 2 times
* the radius, which makes sense as you cannot have a
* sagitta bigger than twice the radius!
*
*/
maxErr = max_deviation;
if ( maxErr > radius * 2 )
{
maxErr = radius * 2;
LWDEBUGF(2,
"lwarc_linearize: tolerance %g is too big, "
"using arc-max 2 * radius == %g",
max_deviation,
maxErr);
}
do {
halfAngle = acos( 1.0 - maxErr / radius );
/* TODO: avoid a loop here, going rather straight to
* a minimum angle value */
if ( halfAngle != 0 ) break;
LWDEBUGF(2, "lwarc_linearize: tolerance %g is too small for this arc"
" to compute approximation angle, doubling it", maxErr);
maxErr *= 2;
} while(1);
increment = 2 * halfAngle;
LWDEBUGF(2,
"lwarc_linearize: maxDiff:%g, radius:%g, halfAngle:%g, increment:%g (%g degrees)",
max_deviation,
radius,
halfAngle,
increment,
increment * 180 / M_PI);
return increment;
}
/* Check that a given angle is positive and, if so, take
* it to be the angle covered by a single segment. */
static double angle_increment_using_max_angle(double tol)
{
if ( tol <= 0 )
{
lwerror("lwarc_linearize: max angle must be bigger than 0, got %.15g", tol);
return -1;
}
return tol;
}
/**
* Segmentize an arc
*
* Does not add the final vertex
*
* @param to POINTARRAY to append segmentized vertices to
* @param p1 first point defining the arc
* @param p2 second point defining the arc
* @param p3 third point defining the arc
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags LW_LINEARIZE_FLAGS
*
* @return number of points appended (0 if collinear),
* or -1 on error (lwerror would be called).
*
*/
static int
lwarc_linearize(POINTARRAY *to,
const POINT4D *p1, const POINT4D *p2, const POINT4D *p3,
double tol, LW_LINEARIZE_TOLERANCE_TYPE tolerance_type,
int flags)
{
POINT2D center;
POINT2D *t1 = (POINT2D*)p1;
POINT2D *t2 = (POINT2D*)p2;
POINT2D *t3 = (POINT2D*)p3;
POINT4D pt;
int p2_side = 0;
int clockwise = LW_TRUE;
double radius; /* Arc radius */
double increment; /* Angle per segment */
double angle_shift = 0;
double a1, a2, a3;
POINTARRAY *pa;
int is_circle = LW_FALSE;
int points_added = 0;
int reverse = 0;
int segments = 0;
LWDEBUG(2, "lwarc_linearize called.");
LWDEBUGF(2, " curve is CIRCULARSTRING(%.15g %.15f, %.15f %.15f, %.15f %15f)",
t1->x, t1->y, t2->x, t2->y, t3->x, t3->y);
p2_side = lw_segment_side(t1, t3, t2);
LWDEBUGF(2, " p2 side is %d", p2_side);
/* Force counterclockwise scan if SYMMETRIC operation is requested */
if ( p2_side == -1 && flags & LW_LINEARIZE_FLAG_SYMMETRIC )
{
/* swap p1-p3 */
t1 = (POINT2D*)p3;
t3 = (POINT2D*)p1;
p1 = (POINT4D*)t1;
p3 = (POINT4D*)t3;
p2_side = 1;
reverse = 1;
}
radius = lw_arc_center(t1, t2, t3, ¢er);
LWDEBUGF(2, " center is POINT(%.15g %.15g) - radius:%g", center.x, center.y, radius);
/* Matched start/end points imply circle */
if ( p1->x == p3->x && p1->y == p3->y )
is_circle = LW_TRUE;
/* Negative radius signals straight line, p1/p2/p3 are collinear */
if ( (radius < 0.0 || p2_side == 0) && ! is_circle )
return 0;
/* The side of the p1/p3 line that p2 falls on dictates the sweep
direction from p1 to p3. */
if ( p2_side == -1 )
clockwise = LW_TRUE;
else
clockwise = LW_FALSE;
/* Compute the increment (angle per segment) depending on
* our tolerance type. */
switch(tolerance_type)
{
case LW_LINEARIZE_TOLERANCE_TYPE_SEGS_PER_QUAD:
increment = angle_increment_using_segments_per_quad(tol);
break;
case LW_LINEARIZE_TOLERANCE_TYPE_MAX_DEVIATION:
increment = angle_increment_using_max_deviation(tol, radius);
break;
case LW_LINEARIZE_TOLERANCE_TYPE_MAX_ANGLE:
increment = angle_increment_using_max_angle(tol);
break;
default:
lwerror("lwarc_linearize: unsupported tolerance type %d", tolerance_type);
return -1;
}
if (increment < 0)
{
/* Error occurred in increment calculation somewhere
* (lwerror already called)
*/
return -1;
}
/* Angles of each point that defines the arc section */
a1 = atan2(p1->y - center.y, p1->x - center.x);
a2 = atan2(p2->y - center.y, p2->x - center.x);
a3 = atan2(p3->y - center.y, p3->x - center.x);
LWDEBUGF(2, "lwarc_linearize A1:%g (%g) A2:%g (%g) A3:%g (%g)",
a1, a1*180/M_PI, a2, a2*180/M_PI, a3, a3*180/M_PI);
/* Calculate total arc angle, in radians */
double total_angle = clockwise ? a1 - a3 : a3 - a1;
if ( total_angle <= 0 ) total_angle += M_PI * 2;
/* At extreme tolerance values (very low or very high, depending on
* the semantic) we may cause our arc to collapse. In this case,
* we want shrink the increment enough so that we get two segments
* for a standard arc, or three segments for a complete circle. */
int min_segs = is_circle ? 3 : 2;
segments = ceil(total_angle / increment);
if (segments < min_segs)
{
segments = min_segs;
increment = total_angle / min_segs;
}
if ( flags & LW_LINEARIZE_FLAG_SYMMETRIC )
{
LWDEBUGF(2, "lwarc_linearize SYMMETRIC requested - total angle %g deg", total_angle * 180 / M_PI);
if ( flags & LW_LINEARIZE_FLAG_RETAIN_ANGLE )
{
/* Number of complete steps */
segments = trunc(total_angle / increment);
/* Figure out the angle remainder, i.e. the amount of the angle
* that is left after we can take no more complete angle
* increments. */
double angle_remainder = total_angle - (increment * segments);
/* Shift the starting angle by half of the remainder. This
* will have the effect of evenly distributing the remainder
* among the first and last segments in the arc. */
angle_shift = angle_remainder / 2.0;
LWDEBUGF(2,
"lwarc_linearize RETAIN_ANGLE operation requested - "
"total angle %g, steps %d, increment %g, remainder %g",
total_angle * 180 / M_PI,
segments,
increment * 180 / M_PI,
angle_remainder * 180 / M_PI);
}
else
{
/* Number of segments in output */
segments = ceil(total_angle / increment);
/* Tweak increment to be regular for all the arc */
increment = total_angle / segments;
LWDEBUGF(2,
"lwarc_linearize SYMMETRIC operation requested - "
"total angle %g degrees - LINESTRING(%g %g,%g %g,%g %g) - S:%d - I:%g",
total_angle * 180 / M_PI,
p1->x,
p1->y,
center.x,
center.y,
p3->x,
p3->y,
segments,
increment * 180 / M_PI);
}
}
/* p2 on left side => clockwise sweep */
if ( clockwise )
{
LWDEBUG(2, " Clockwise sweep");
increment *= -1;
angle_shift *= -1;
/* Adjust a3 down so we can decrement from a1 to a3 cleanly */
if ( a3 > a1 )
a3 -= 2.0 * M_PI;
if ( a2 > a1 )
a2 -= 2.0 * M_PI;
}
/* p2 on right side => counter-clockwise sweep */
else
{
LWDEBUG(2, " Counterclockwise sweep");
/* Adjust a3 up so we can increment from a1 to a3 cleanly */
if ( a3 < a1 )
a3 += 2.0 * M_PI;
if ( a2 < a1 )
a2 += 2.0 * M_PI;
}
/* Override angles for circle case */
if( is_circle )
{
increment = fabs(increment);
segments = ceil(total_angle / increment);
if (segments < 3)
{
segments = 3;
increment = total_angle / 3;
}
a3 = a1 + 2.0 * M_PI;
a2 = a1 + M_PI;
clockwise = LW_FALSE;
angle_shift = 0.0;
}
LWDEBUGF(2, "lwarc_linearize angle_shift:%g, increment:%g",
angle_shift * 180/M_PI, increment * 180/M_PI);
if ( reverse )
{
/* Append points in order to a temporary POINTARRAY and
* reverse them before writing to the output POINTARRAY. */
const int capacity = 8; /* TODO: compute exactly ? */
pa = ptarray_construct_empty(ptarray_has_z(to), ptarray_has_m(to), capacity);
}
else
{
/* Append points directly to the output POINTARRAY,
* starting with p1. */
pa = to;
ptarray_append_point(pa, p1, LW_FALSE);
++points_added;
}
/* Sweep from a1 to a3 */
int seg_start = 1; /* First point is added manually */
int seg_end = segments;
if (angle_shift != 0.0)
{
/* When we have extra angles we need to add the extra segments at the
* start and end that cover those parts of the arc */
seg_start = 0;
seg_end = segments + 1;
}
LWDEBUGF(2, "a1:%g (%g deg), a3:%g (%g deg), inc:%g, shi:%g, cw:%d",
a1, a1 * 180 / M_PI, a3, a3 * 180 / M_PI, increment, angle_shift, clockwise);
for (int s = seg_start; s < seg_end; s++)
{
double angle = a1 + increment * s + angle_shift;
LWDEBUGF(2, " SA: %g ( %g deg )", angle, angle*180/M_PI);
pt.x = center.x + radius * cos(angle);
pt.y = center.y + radius * sin(angle);
pt.z = interpolate_arc(angle, a1, a2, a3, p1->z, p2->z, p3->z);
pt.m = interpolate_arc(angle, a1, a2, a3, p1->m, p2->m, p3->m);
ptarray_append_point(pa, &pt, LW_FALSE);
++points_added;
}
/* Ensure the final point is EXACTLY the same as the first for the circular case */
if ( is_circle )
{
ptarray_remove_point(pa, pa->npoints - 1);
ptarray_append_point(pa, p1, LW_FALSE);
}
if ( reverse )
{
int i;
ptarray_append_point(to, p3, LW_FALSE);
for ( i=pa->npoints; i>0; i-- ) {
getPoint4d_p(pa, i-1, &pt);
ptarray_append_point(to, &pt, LW_FALSE);
}
ptarray_free(pa);
}
return points_added;
}
/*
* @param icurve input curve
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWLINE
*/
static LWLINE *
lwcircstring_linearize(const LWCIRCSTRING *icurve, double tol,
LW_LINEARIZE_TOLERANCE_TYPE tolerance_type,
int flags)
{
LWLINE *oline;
POINTARRAY *ptarray;
uint32_t i, j;
POINT4D p1, p2, p3, p4;
int ret;
LWDEBUGF(2, "lwcircstring_linearize called., dim = %d", icurve->points->flags);
ptarray = ptarray_construct_empty(FLAGS_GET_Z(icurve->points->flags), FLAGS_GET_M(icurve->points->flags), 64);
for (i = 2; i < icurve->points->npoints; i+=2)
{
LWDEBUGF(3, "lwcircstring_linearize: arc ending at point %d", i);
getPoint4d_p(icurve->points, i - 2, &p1);
getPoint4d_p(icurve->points, i - 1, &p2);
getPoint4d_p(icurve->points, i, &p3);
ret = lwarc_linearize(ptarray, &p1, &p2, &p3, tol, tolerance_type, flags);
if ( ret > 0 )
{
LWDEBUGF(3, "lwcircstring_linearize: generated %d points", ptarray->npoints);
}
else if ( ret == 0 )
{
LWDEBUG(3, "lwcircstring_linearize: points are colinear, returning curve points as line");
for (j = i - 2 ; j < i ; j++)
{
getPoint4d_p(icurve->points, j, &p4);
ptarray_append_point(ptarray, &p4, LW_TRUE);
}
}
else
{
/* An error occurred, lwerror should have been called by now */
ptarray_free(ptarray);
return NULL;
}
}
getPoint4d_p(icurve->points, icurve->points->npoints-1, &p1);
ptarray_append_point(ptarray, &p1, LW_FALSE);
oline = lwline_construct(icurve->srid, NULL, ptarray);
return oline;
}
/*
* @param icompound input compound curve
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWLINE
*/
static LWLINE *
lwcompound_linearize(const LWCOMPOUND *icompound, double tol,
LW_LINEARIZE_TOLERANCE_TYPE tolerance_type,
int flags)
{
LWGEOM *geom;
POINTARRAY *ptarray = NULL;
LWLINE *tmp = NULL;
uint32_t i, j;
POINT4D p;
LWDEBUG(2, "lwcompound_stroke called.");
ptarray = ptarray_construct_empty(FLAGS_GET_Z(icompound->flags), FLAGS_GET_M(icompound->flags), 64);
for (i = 0; i < icompound->ngeoms; i++)
{
geom = icompound->geoms[i];
if (geom->type == CIRCSTRINGTYPE)
{
tmp = lwcircstring_linearize((LWCIRCSTRING *)geom, tol, tolerance_type, flags);
for (j = 0; j < tmp->points->npoints; j++)
{
getPoint4d_p(tmp->points, j, &p);
ptarray_append_point(ptarray, &p, LW_TRUE);
}
lwline_free(tmp);
}
else if (geom->type == LINETYPE)
{
tmp = (LWLINE *)geom;
for (j = 0; j < tmp->points->npoints; j++)
{
getPoint4d_p(tmp->points, j, &p);
ptarray_append_point(ptarray, &p, LW_TRUE);
}
}
else
{
lwerror("%s: Unsupported geometry type: %s", __func__, lwtype_name(geom->type));
return NULL;
}
}
ptarray_remove_repeated_points_in_place(ptarray, 0.0, 2);
return lwline_construct(icompound->srid, NULL, ptarray);
}
/*
* @param icompound input curve polygon
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWPOLY
*/
static LWPOLY *
lwcurvepoly_linearize(const LWCURVEPOLY *curvepoly, double tol,
LW_LINEARIZE_TOLERANCE_TYPE tolerance_type,
int flags)
{
LWPOLY *ogeom;
LWGEOM *tmp;
LWLINE *line;
POINTARRAY **ptarray;
uint32_t i;
LWDEBUG(2, "lwcurvepoly_linearize called.");
ptarray = lwalloc(sizeof(POINTARRAY *)*curvepoly->nrings);
for (i = 0; i < curvepoly->nrings; i++)
{
tmp = curvepoly->rings[i];
if (tmp->type == CIRCSTRINGTYPE)
{
line = lwcircstring_linearize((LWCIRCSTRING *)tmp, tol, tolerance_type, flags);
ptarray[i] = ptarray_clone_deep(line->points);
lwline_free(line);
}
else if (tmp->type == LINETYPE)
{
line = (LWLINE *)tmp;
ptarray[i] = ptarray_clone_deep(line->points);
}
else if (tmp->type == COMPOUNDTYPE)
{
line = lwcompound_linearize((LWCOMPOUND *)tmp, tol, tolerance_type, flags);
ptarray[i] = ptarray_clone_deep(line->points);
lwline_free(line);
}
else
{
lwerror("Invalid ring type found in CurvePoly.");
return NULL;
}
}
ogeom = lwpoly_construct(curvepoly->srid, NULL, curvepoly->nrings, ptarray);
return ogeom;
}
/* Kept for backward compatibility - TODO: drop */
LWPOLY *
lwcurvepoly_stroke(const LWCURVEPOLY *curvepoly, uint32_t perQuad)
{
return lwcurvepoly_linearize(curvepoly, perQuad, LW_LINEARIZE_TOLERANCE_TYPE_SEGS_PER_QUAD, 0);
}
/**
* @param mcurve input compound curve
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWMLINE
*/
static LWMLINE *
lwmcurve_linearize(const LWMCURVE *mcurve, double tol,
LW_LINEARIZE_TOLERANCE_TYPE type,
int flags)
{
LWMLINE *ogeom;
LWGEOM **lines;
uint32_t i;
LWDEBUGF(2, "lwmcurve_linearize called, geoms=%d, dim=%d.", mcurve->ngeoms, FLAGS_NDIMS(mcurve->flags));
lines = lwalloc(sizeof(LWGEOM *)*mcurve->ngeoms);
for (i = 0; i < mcurve->ngeoms; i++)
{
const LWGEOM *tmp = mcurve->geoms[i];
if (tmp->type == CIRCSTRINGTYPE)
{
lines[i] = (LWGEOM *)lwcircstring_linearize((LWCIRCSTRING *)tmp, tol, type, flags);
}
else if (tmp->type == LINETYPE)
{
lines[i] = (LWGEOM *)lwline_construct(mcurve->srid, NULL, ptarray_clone_deep(((LWLINE *)tmp)->points));
}
else if (tmp->type == COMPOUNDTYPE)
{
lines[i] = (LWGEOM *)lwcompound_linearize((LWCOMPOUND *)tmp, tol, type, flags);
}
else
{
lwerror("Unsupported geometry found in MultiCurve.");
return NULL;
}
}
ogeom = (LWMLINE *)lwcollection_construct(MULTILINETYPE, mcurve->srid, NULL, mcurve->ngeoms, lines);
return ogeom;
}
/**
* @param msurface input multi surface
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWMPOLY
*/
static LWMPOLY *
lwmsurface_linearize(const LWMSURFACE *msurface, double tol,
LW_LINEARIZE_TOLERANCE_TYPE type,
int flags)
{
LWMPOLY *ogeom;
LWGEOM *tmp;
LWPOLY *poly;
LWGEOM **polys;
POINTARRAY **ptarray;
uint32_t i, j;
LWDEBUG(2, "lwmsurface_linearize called.");
polys = lwalloc(sizeof(LWGEOM *)*msurface->ngeoms);
for (i = 0; i < msurface->ngeoms; i++)
{
tmp = msurface->geoms[i];
if (tmp->type == CURVEPOLYTYPE)
{
polys[i] = (LWGEOM *)lwcurvepoly_linearize((LWCURVEPOLY *)tmp, tol, type, flags);
}
else if (tmp->type == POLYGONTYPE)
{
poly = (LWPOLY *)tmp;
ptarray = lwalloc(sizeof(POINTARRAY *)*poly->nrings);
for (j = 0; j < poly->nrings; j++)
{
ptarray[j] = ptarray_clone_deep(poly->rings[j]);
}
polys[i] = (LWGEOM *)lwpoly_construct(msurface->srid, NULL, poly->nrings, ptarray);
}
}
ogeom = (LWMPOLY *)lwcollection_construct(MULTIPOLYGONTYPE, msurface->srid, NULL, msurface->ngeoms, polys);
return ogeom;
}
/**
* @param collection input geometry collection
* @param tol tolerance, semantic driven by tolerance_type
* @param tolerance_type see LW_LINEARIZE_TOLERANCE_TYPE
* @param flags see flags in lwarc_linearize
*
* @return a newly allocated LWCOLLECTION
*/
static LWCOLLECTION *
lwcollection_linearize(const LWCOLLECTION *collection, double tol,
LW_LINEARIZE_TOLERANCE_TYPE type,
int flags)
{
LWCOLLECTION *ocol;
LWGEOM *tmp;
LWGEOM **geoms;
uint32_t i;
LWDEBUG(2, "lwcollection_linearize called.");
geoms = lwalloc(sizeof(LWGEOM *)*collection->ngeoms);
for (i=0; i<collection->ngeoms; i++)
{
tmp = collection->geoms[i];
switch (tmp->type)
{
case CIRCSTRINGTYPE:
geoms[i] = (LWGEOM *)lwcircstring_linearize((LWCIRCSTRING *)tmp, tol, type, flags);
break;
case COMPOUNDTYPE:
geoms[i] = (LWGEOM *)lwcompound_linearize((LWCOMPOUND *)tmp, tol, type, flags);
break;
case CURVEPOLYTYPE:
geoms[i] = (LWGEOM *)lwcurvepoly_linearize((LWCURVEPOLY *)tmp, tol, type, flags);
break;
case MULTICURVETYPE:
case MULTISURFACETYPE:
case COLLECTIONTYPE:
geoms[i] = (LWGEOM *)lwcollection_linearize((LWCOLLECTION *)tmp, tol, type, flags);
break;
default:
geoms[i] = lwgeom_clone_deep(tmp);
break;
}
}
ocol = lwcollection_construct(COLLECTIONTYPE, collection->srid, NULL, collection->ngeoms, geoms);
return ocol;
}
LWGEOM *
lwcurve_linearize(const LWGEOM *geom, double tol,
LW_LINEARIZE_TOLERANCE_TYPE type,
int flags)
{
LWGEOM * ogeom = NULL;
switch (geom->type)
{
case CIRCSTRINGTYPE:
ogeom = (LWGEOM *)lwcircstring_linearize((LWCIRCSTRING *)geom, tol, type, flags);
break;
case COMPOUNDTYPE:
ogeom = (LWGEOM *)lwcompound_linearize((LWCOMPOUND *)geom, tol, type, flags);
break;
case CURVEPOLYTYPE:
ogeom = (LWGEOM *)lwcurvepoly_linearize((LWCURVEPOLY *)geom, tol, type, flags);
break;
case MULTICURVETYPE:
ogeom = (LWGEOM *)lwmcurve_linearize((LWMCURVE *)geom, tol, type, flags);
break;
case MULTISURFACETYPE:
ogeom = (LWGEOM *)lwmsurface_linearize((LWMSURFACE *)geom, tol, type, flags);
break;
case COLLECTIONTYPE:
ogeom = (LWGEOM *)lwcollection_linearize((LWCOLLECTION *)geom, tol, type, flags);
break;
default:
ogeom = lwgeom_clone_deep(geom);
}
return ogeom;
}
/* Kept for backward compatibility - TODO: drop */
LWGEOM *
lwgeom_stroke(const LWGEOM *geom, uint32_t perQuad)
{
return lwcurve_linearize(geom, perQuad, LW_LINEARIZE_TOLERANCE_TYPE_SEGS_PER_QUAD, 0);
}
/**
* Return ABC angle in radians
* TODO: move to lwalgorithm
*/
static double
lw_arc_angle(const POINT2D *a, const POINT2D *b, const POINT2D *c)
{
POINT2D ab, cb;
ab.x = b->x - a->x;
ab.y = b->y - a->y;
cb.x = b->x - c->x;
cb.y = b->y - c->y;
double dot = (ab.x * cb.x + ab.y * cb.y); /* dot product */
double cross = (ab.x * cb.y - ab.y * cb.x); /* cross product */
double alpha = atan2(cross, dot);
return alpha;
}
/**
* Returns LW_TRUE if b is on the arc formed by a1/a2/a3, but not within
* that portion already described by a1/a2/a3
*/
static int pt_continues_arc(const POINT4D *a1, const POINT4D *a2, const POINT4D *a3, const POINT4D *b)
{
POINT2D center;
POINT2D *t1 = (POINT2D*)a1;
POINT2D *t2 = (POINT2D*)a2;
POINT2D *t3 = (POINT2D*)a3;
POINT2D *tb = (POINT2D*)b;
double radius = lw_arc_center(t1, t2, t3, ¢er);
double b_distance, diff;
/* Co-linear a1/a2/a3 */
if ( radius < 0.0 )
return LW_FALSE;
b_distance = distance2d_pt_pt(tb, ¢er);
diff = fabs(radius - b_distance);
LWDEBUGF(4, "circle_radius=%g, b_distance=%g, diff=%g, percentage=%g", radius, b_distance, diff, diff/radius);
/* Is the point b on the circle? */
if ( diff < EPSILON_SQLMM )
{
int a2_side = lw_segment_side(t1, t3, t2);
int b_side = lw_segment_side(t1, t3, tb);
double angle1 = lw_arc_angle(t1, t2, t3);
double angle2 = lw_arc_angle(t2, t3, tb);
/* Is the angle similar to the previous one ? */
diff = fabs(angle1 - angle2);
LWDEBUGF(4, " angle1: %g, angle2: %g, diff:%g", angle1, angle2, diff);
if ( diff > EPSILON_SQLMM )
{
return LW_FALSE;
}
/* Is the point b on the same side of a1/a3 as the mid-point a2 is? */
/* If not, it's in the unbounded part of the circle, so it continues the arc, return true. */
if ( b_side != a2_side )
return LW_TRUE;
}
return LW_FALSE;
}
static LWGEOM *
linestring_from_pa(const POINTARRAY *pa, int32_t srid, int start, int end)
{
int i = 0, j = 0;
POINT4D p;
POINTARRAY *pao = ptarray_construct(ptarray_has_z(pa), ptarray_has_m(pa), end-start+2);
LWDEBUGF(4, "srid=%d, start=%d, end=%d", srid, start, end);
for( i = start; i < end + 2; i++ )
{
getPoint4d_p(pa, i, &p);
ptarray_set_point4d(pao, j++, &p);
}
return lwline_as_lwgeom(lwline_construct(srid, NULL, pao));
}
static LWGEOM *
circstring_from_pa(const POINTARRAY *pa, int32_t srid, int start, int end)
{
POINT4D p0, p1, p2;
POINTARRAY *pao = ptarray_construct(ptarray_has_z(pa), ptarray_has_m(pa), 3);
LWDEBUGF(4, "srid=%d, start=%d, end=%d", srid, start, end);
getPoint4d_p(pa, start, &p0);
ptarray_set_point4d(pao, 0, &p0);
getPoint4d_p(pa, (start+end+1)/2, &p1);
ptarray_set_point4d(pao, 1, &p1);
getPoint4d_p(pa, end+1, &p2);
ptarray_set_point4d(pao, 2, &p2);
return lwcircstring_as_lwgeom(lwcircstring_construct(srid, NULL, pao));
}
static LWGEOM *
geom_from_pa(const POINTARRAY *pa, int32_t srid, int is_arc, int start, int end)
{
LWDEBUGF(4, "srid=%d, is_arc=%d, start=%d, end=%d", srid, is_arc, start, end);
if ( is_arc )
return circstring_from_pa(pa, srid, start, end);
else
return linestring_from_pa(pa, srid, start, end);
}
LWGEOM *
pta_unstroke(const POINTARRAY *points, int32_t srid)
{
int i = 0, j, k;
POINT4D a1, a2, a3, b;
POINT4D first, center;
char *edges_in_arcs;
int found_arc = LW_FALSE;
int current_arc = 1;
int num_edges;
int edge_type; /* non-zero if edge is part of an arc */
int start, end;
LWCOLLECTION *outcol;
/* Minimum number of edges, per quadrant, required to define an arc */
const unsigned int min_quad_edges = 2;
/* Die on null input */
if ( ! points )
lwerror("pta_unstroke called with null pointarray");
/* Null on empty input? */
if ( points->npoints == 0 )
return NULL;
/* We can't desegmentize anything shorter than four points */
if ( points->npoints < 4 )
{
/* Return a linestring here*/
lwerror("pta_unstroke needs implementation for npoints < 4");
}
/* Allocate our result array of vertices that are part of arcs */
num_edges = points->npoints - 1;
edges_in_arcs = lwalloc(num_edges + 1);
memset(edges_in_arcs, 0, num_edges + 1);
/* We make a candidate arc of the first two edges, */
/* And then see if the next edge follows it */
while( i < num_edges-2 )
{
unsigned int arc_edges;
double num_quadrants;
double angle;
found_arc = LW_FALSE;
/* Make candidate arc */
getPoint4d_p(points, i , &a1);
getPoint4d_p(points, i+1, &a2);
getPoint4d_p(points, i+2, &a3);
memcpy(&first, &a1, sizeof(POINT4D));
for( j = i+3; j < num_edges+1; j++ )
{
LWDEBUGF(4, "i=%d, j=%d", i, j);
getPoint4d_p(points, j, &b);
/* Does this point fall on our candidate arc? */
if ( pt_continues_arc(&a1, &a2, &a3, &b) )
{
/* Yes. Mark this edge and the two preceding it as arc components */
LWDEBUGF(4, "pt_continues_arc #%d", current_arc);
found_arc = LW_TRUE;
for ( k = j-1; k > j-4; k-- )
edges_in_arcs[k] = current_arc;
}
else
{
/* No. So we're done with this candidate arc */
LWDEBUG(4, "pt_continues_arc = false");
current_arc++;
break;
}
memcpy(&a1, &a2, sizeof(POINT4D));
memcpy(&a2, &a3, sizeof(POINT4D));
memcpy(&a3, &b, sizeof(POINT4D));
}
/* Jump past all the edges that were added to the arc */
if ( found_arc )
{
/* Check if an arc was composed by enough edges to be
* really considered an arc
* See http://trac.osgeo.org/postgis/ticket/2420
*/
arc_edges = j - 1 - i;
LWDEBUGF(4, "arc defined by %d edges found", arc_edges);
if ( first.x == b.x && first.y == b.y ) {
LWDEBUG(4, "arc is a circle");
num_quadrants = 4;
}
else {
lw_arc_center((POINT2D*)&first, (POINT2D*)&b, (POINT2D*)&a1, (POINT2D*)¢er);
angle = lw_arc_angle((POINT2D*)&first, (POINT2D*)¢er, (POINT2D*)&b);
int p2_side = lw_segment_side((POINT2D*)&first, (POINT2D*)&a1, (POINT2D*)&b);
if ( p2_side >= 0 ) angle = -angle;
if ( angle < 0 ) angle = 2 * M_PI + angle;
num_quadrants = ( 4 * angle ) / ( 2 * M_PI );
LWDEBUGF(4, "arc angle (%g %g, %g %g, %g %g) is %g (side is %d), quadrants:%g", first.x, first.y, center.x, center.y, b.x, b.y, angle, p2_side, num_quadrants);
}
/* a1 is first point, b is last point */
if ( arc_edges < min_quad_edges * num_quadrants ) {
LWDEBUGF(4, "Not enough edges for a %g quadrants arc, %g needed", num_quadrants, min_quad_edges * num_quadrants);
for ( k = j-1; k >= i; k-- )
edges_in_arcs[k] = 0;
}
i = j-1;
}
else
{
/* Mark this edge as a linear edge */
edges_in_arcs[i] = 0;
i = i+1;
}
}
#if POSTGIS_DEBUG_LEVEL > 3
{
char *edgestr = lwalloc(num_edges+1);
for ( i = 0; i < num_edges; i++ )
{
if ( edges_in_arcs[i] )
edgestr[i] = 48 + edges_in_arcs[i];
else
edgestr[i] = '.';
}
edgestr[num_edges] = 0;
LWDEBUGF(3, "edge pattern %s", edgestr);
lwfree(edgestr);
}
#endif
start = 0;
edge_type = edges_in_arcs[0];
outcol = lwcollection_construct_empty(COMPOUNDTYPE, srid, ptarray_has_z(points), ptarray_has_m(points));
for( i = 1; i < num_edges; i++ )
{
if( edge_type != edges_in_arcs[i] )
{
end = i - 1;
lwcollection_add_lwgeom(outcol, geom_from_pa(points, srid, edge_type, start, end));
start = i;
edge_type = edges_in_arcs[i];
}
}
lwfree(edges_in_arcs); /* not needed anymore */
/* Roll out last item */
end = num_edges - 1;
lwcollection_add_lwgeom(outcol, geom_from_pa(points, srid, edge_type, start, end));
/* Strip down to singleton if only one entry */
if ( outcol->ngeoms == 1 )
{
LWGEOM *outgeom = outcol->geoms[0];
outcol->ngeoms = 0; lwcollection_free(outcol);
return outgeom;
}
return lwcollection_as_lwgeom(outcol);
}
LWGEOM *
lwline_unstroke(const LWLINE *line)
{
LWDEBUG(2, "lwline_unstroke called.");
if ( line->points->npoints < 4 ) return lwline_as_lwgeom(lwline_clone_deep(line));
else return pta_unstroke(line->points, line->srid);
}
LWGEOM *
lwpolygon_unstroke(const LWPOLY *poly)
{
LWGEOM **geoms;
uint32_t i, hascurve = 0;
LWDEBUG(2, "lwpolygon_unstroke called.");
geoms = lwalloc(sizeof(LWGEOM *)*poly->nrings);
for (i=0; i<poly->nrings; i++)
{
geoms[i] = pta_unstroke(poly->rings[i], poly->srid);
if (geoms[i]->type == CIRCSTRINGTYPE || geoms[i]->type == COMPOUNDTYPE)
{
hascurve = 1;
}
}
if (hascurve == 0)
{
for (i=0; i<poly->nrings; i++)
{
lwfree(geoms[i]); /* TODO: should this be lwgeom_free instead ? */
}
return lwgeom_clone_deep((LWGEOM *)poly);
}
return (LWGEOM *)lwcollection_construct(CURVEPOLYTYPE, poly->srid, NULL, poly->nrings, geoms);
}
LWGEOM *
lwmline_unstroke(const LWMLINE *mline)
{
LWGEOM **geoms;
uint32_t i, hascurve = 0;
LWDEBUG(2, "lwmline_unstroke called.");
geoms = lwalloc(sizeof(LWGEOM *)*mline->ngeoms);
for (i=0; i<mline->ngeoms; i++)
{
geoms[i] = lwline_unstroke((LWLINE *)mline->geoms[i]);
if (geoms[i]->type == CIRCSTRINGTYPE || geoms[i]->type == COMPOUNDTYPE)
{
hascurve = 1;
}
}
if (hascurve == 0)
{
for (i=0; i<mline->ngeoms; i++)
{
lwfree(geoms[i]); /* TODO: should this be lwgeom_free instead ? */
}
return lwgeom_clone_deep((LWGEOM *)mline);
}
return (LWGEOM *)lwcollection_construct(MULTICURVETYPE, mline->srid, NULL, mline->ngeoms, geoms);
}
LWGEOM *
lwmpolygon_unstroke(const LWMPOLY *mpoly)
{
LWGEOM **geoms;
uint32_t i, hascurve = 0;
LWDEBUG(2, "lwmpoly_unstroke called.");
geoms = lwalloc(sizeof(LWGEOM *)*mpoly->ngeoms);
for (i=0; i<mpoly->ngeoms; i++)
{
geoms[i] = lwpolygon_unstroke((LWPOLY *)mpoly->geoms[i]);
if (geoms[i]->type == CURVEPOLYTYPE)
{
hascurve = 1;
}
}
if (hascurve == 0)
{
for (i=0; i<mpoly->ngeoms; i++)
{
lwfree(geoms[i]); /* TODO: should this be lwgeom_free instead ? */
}
return lwgeom_clone_deep((LWGEOM *)mpoly);
}
return (LWGEOM *)lwcollection_construct(MULTISURFACETYPE, mpoly->srid, NULL, mpoly->ngeoms, geoms);
}
LWGEOM *
lwcollection_unstroke(const LWCOLLECTION *c)
{
LWCOLLECTION *ret = lwalloc(sizeof(LWCOLLECTION));
memcpy(ret, c, sizeof(LWCOLLECTION));
if (c->ngeoms > 0)
{
uint32_t i;
ret->geoms = lwalloc(sizeof(LWGEOM *)*c->ngeoms);
for (i=0; i < c->ngeoms; i++)
{
ret->geoms[i] = lwgeom_unstroke(c->geoms[i]);
}
if (c->bbox)
{
ret->bbox = gbox_copy(c->bbox);
}
}
else
{
ret->bbox = NULL;
ret->geoms = NULL;
}
return (LWGEOM *)ret;
}
LWGEOM *
lwgeom_unstroke(const LWGEOM *geom)
{
LWDEBUG(2, "lwgeom_unstroke called.");
switch (geom->type)
{
case LINETYPE:
return lwline_unstroke((LWLINE *)geom);
case POLYGONTYPE:
return lwpolygon_unstroke((LWPOLY *)geom);
case MULTILINETYPE:
return lwmline_unstroke((LWMLINE *)geom);
case MULTIPOLYGONTYPE:
return lwmpolygon_unstroke((LWMPOLY *)geom);
case COLLECTIONTYPE:
return lwcollection_unstroke((LWCOLLECTION *)geom);
default:
return lwgeom_clone_deep(geom);
}
}
|