1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
//
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
// depending on your compiler.
//
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
// required power of 5, only store every 26th entry, and compute
// intermediate values with a multiplication. This reduces the lookup table
// size by about 10x (only one case, and only double) at the cost of some
// performance. Currently requires MSVC intrinsics.
#include "ryu/ryu.h"
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef RYU_DEBUG
#include <inttypes.h>
#include <stdio.h>
#endif
#include "ryu/common.h"
#include "ryu/digit_table.h"
#include "ryu/d2s_intrinsics.h"
// Include either the small or the full lookup tables depending on the mode.
#if defined(RYU_OPTIMIZE_SIZE)
#include "ryu/d2s_small_table.h"
#else
#include "ryu/d2s_full_table.h"
#endif
#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_BIAS 1023
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
// Multiplication:
// The 64-bit factor is variable and passed in, the 128-bit factor comes
// from a lookup table. We know that the 64-bit factor only has 55
// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
// factor only has 124 significant bits (i.e., the 4 topmost bits are
// zeros).
// Shift:
// In principle, the multiplication result requires 55 + 124 = 179 bits to
// represent. However, we then shift this value to the right by j, which is
// at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
// bits. This means that we only need the topmost 64 significant bits of
// the 64x128-bit multiplication.
//
// There are several ways to do this:
// 1. Best case: the compiler exposes a 128-bit type.
// We perform two 64x64-bit multiplications, add the higher 64 bits of the
// lower result to the higher result, and shift by j - 64 bits.
//
// We explicitly cast from 64-bit to 128-bit, so the compiler can tell
// that these are only 64-bit inputs, and can map these to the best
// possible sequence of assembly instructions.
// x64 machines happen to have matching assembly instructions for
// 64x64-bit multiplications and 128-bit shifts.
//
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
// instructions mentioned in 1.
//
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
// the result, i.e., we have to use plain C.
// Our inputs are less than the full width, so we have three options:
// a. Ignore this fact and just implement the intrinsics manually.
// b. Split both into 31-bit pieces, which guarantees no internal overflow,
// but requires extra work upfront (unless we change the lookup table).
// c. Split only the first factor into 31-bit pieces, which also guarantees
// no internal overflow, but requires extra work since the intermediate
// results are not perfectly aligned.
#if defined(HAS_UINT128)
// Best case: use 128-bit type.
static inline uint64_t mulShift(const uint64_t m, const uint64_t* const mul, const int32_t j) {
const uint128_t b0 = ((uint128_t) m) * mul[0];
const uint128_t b2 = ((uint128_t) m) * mul[1];
return (uint64_t) (((b0 >> 64) + b2) >> (j - 64));
}
static inline uint64_t mulShiftAll(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
// m <<= 2;
// uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
// uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
//
// uint128_t hi = (b0 >> 64) + b2;
// uint128_t lo = b0 & 0xffffffffffffffffull;
// uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
// uint128_t vpLo = lo + (factor << 1);
// *vp = (uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
// uint128_t vmLo = lo - (factor << mmShift);
// *vm = (uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
// return (uint64_t) (hi >> (j - 64));
*vp = mulShift(4 * m + 2, mul, j);
*vm = mulShift(4 * m - 1 - mmShift, mul, j);
return mulShift(4 * m, mul, j);
}
#elif defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShift(const uint64_t m, const uint64_t* const mul, const int32_t j) {
// m is maximum 55 bits
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high0; // 64
umul128(m, mul[0], &high0); // 0
const uint64_t sum = high0 + low1;
if (sum < high0) {
++high1; // overflow into high1
}
return shiftright128(sum, high1, j - 64);
}
static inline uint64_t mulShiftAll(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
*vp = mulShift(4 * m + 2, mul, j);
*vm = mulShift(4 * m - 1 - mmShift, mul, j);
return mulShift(4 * m, mul, j);
}
#else // !defined(HAS_UINT128) && !defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShiftAll(uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
m <<= 1;
// m is maximum 55 bits
uint64_t tmp;
const uint64_t lo = umul128(m, mul[0], &tmp);
uint64_t hi;
const uint64_t mid = tmp + umul128(m, mul[1], &hi);
hi += mid < tmp; // overflow into hi
const uint64_t lo2 = lo + mul[0];
const uint64_t mid2 = mid + mul[1] + (lo2 < lo);
const uint64_t hi2 = hi + (mid2 < mid);
*vp = shiftright128(mid2, hi2, (uint32_t) (j - 64 - 1));
if (mmShift == 1) {
const uint64_t lo3 = lo - mul[0];
const uint64_t mid3 = mid - mul[1] - (lo3 > lo);
const uint64_t hi3 = hi - (mid3 > mid);
*vm = shiftright128(mid3, hi3, (uint32_t) (j - 64 - 1));
} else {
const uint64_t lo3 = lo + lo;
const uint64_t mid3 = mid + mid + (lo3 < lo);
const uint64_t hi3 = hi + hi + (mid3 < mid);
const uint64_t lo4 = lo3 - mul[0];
const uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
const uint64_t hi4 = hi3 - (mid4 > mid3);
*vm = shiftright128(mid4, hi4, (uint32_t) (j - 64));
}
return shiftright128(mid, hi, (uint32_t) (j - 64 - 1));
}
#endif // HAS_64_BIT_INTRINSICS
static inline uint32_t decimalLength17(const uint64_t v) {
// This is slightly faster than a loop.
// The average output length is 16.38 digits, so we check high-to-low.
// Function precondition: v is not an 18, 19, or 20-digit number.
// (17 digits are sufficient for round-tripping.)
assert(v < 100000000000000000L);
if (v >= 10000000000000000L) { return 17; }
if (v >= 1000000000000000L) { return 16; }
if (v >= 100000000000000L) { return 15; }
if (v >= 10000000000000L) { return 14; }
if (v >= 1000000000000L) { return 13; }
if (v >= 100000000000L) { return 12; }
if (v >= 10000000000L) { return 11; }
if (v >= 1000000000L) { return 10; }
if (v >= 100000000L) { return 9; }
if (v >= 10000000L) { return 8; }
if (v >= 1000000L) { return 7; }
if (v >= 100000L) { return 6; }
if (v >= 10000L) { return 5; }
if (v >= 1000L) { return 4; }
if (v >= 100L) { return 3; }
if (v >= 10L) { return 2; }
return 1;
}
// A floating decimal representing m * 10^e.
typedef struct floating_decimal_64 {
uint64_t mantissa;
// Decimal exponent's range is -324 to 308
// inclusive, and can fit in a short if needed.
int32_t exponent;
} floating_decimal_64;
static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent) {
int32_t e2;
uint64_t m2;
if (ieeeExponent == 0) {
// We subtract 2 so that the bounds computation has 2 additional bits.
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = ieeeMantissa;
} else {
e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
}
const bool even = (m2 & 1) == 0;
const bool acceptBounds = even;
#ifdef RYU_DEBUG
printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
#endif
// Step 2: Determine the interval of valid decimal representations.
const uint64_t mv = 4 * m2;
// Implicit bool -> int conversion. True is 1, false is 0.
const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
// We would compute mp and mm like this:
// uint64_t mp = 4 * m2 + 2;
// uint64_t mm = mv - 1 - mmShift;
// Step 3: Convert to a decimal power base using 128-bit arithmetic.
uint64_t vr, vp, vm;
int32_t e10;
bool vmIsTrailingZeros = false;
bool vrIsTrailingZeros = false;
if (e2 >= 0) {
// I tried special-casing q == 0, but there was no effect on performance.
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
const uint32_t q = log10Pow2(e2) - (e2 > 3);
e10 = (int32_t) q;
const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
const int32_t i = -e2 + (int32_t) q + k;
#if defined(RYU_OPTIMIZE_SIZE)
uint64_t pow5[2];
double_computeInvPow5(q, pow5);
vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
#else
vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
if (q <= 21) {
// This should use q <= 22, but I think 21 is also safe. Smaller values
// may still be safe, but it's more difficult to reason about them.
// Only one of mp, mv, and mm can be a multiple of 5, if any.
const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
if (mvMod5 == 0) {
vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
} else if (acceptBounds) {
// Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
// <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
// <=> true && pow5Factor(mm) >= q, since e2 >= q.
vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
} else {
// Same as min(e2 + 1, pow5Factor(mp)) >= q.
vp -= multipleOfPowerOf5(mv + 2, q);
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
e10 = (int32_t) q + e2;
const int32_t i = -e2 - (int32_t) q;
const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
const int32_t j = (int32_t) q - k;
#if defined(RYU_OPTIMIZE_SIZE)
uint64_t pow5[2];
double_computePow5(i, pow5);
vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
#else
vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
#endif
#ifdef RYU_DEBUG
printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
printf("%u %d %d %d\n", q, i, k, j);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
#endif
if (q <= 1) {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vrIsTrailingZeros = true;
if (acceptBounds) {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vmIsTrailingZeros = mmShift == 1;
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
--vp;
}
} else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
// We want to know if the full product has at least q trailing zeros.
// We need to compute min(p2(mv), p5(mv) - e2) >= q
// <=> p2(mv) >= q && p5(mv) - e2 >= q
// <=> p2(mv) >= q (because -e2 >= q)
vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
#ifdef RYU_DEBUG
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
}
}
#ifdef RYU_DEBUG
printf("e10=%d\n", e10);
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
// Step 4: Find the shortest decimal representation in the interval of valid representations.
int32_t removed = 0;
uint8_t lastRemovedDigit = 0;
uint64_t output;
// On average, we remove ~2 digits.
if (vmIsTrailingZeros || vrIsTrailingZeros) {
// General case, which happens rarely (~0.7%).
for (;;) {
const uint64_t vpDiv10 = div10(vp);
const uint64_t vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10) {
break;
}
const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
vmIsTrailingZeros &= vmMod10 == 0;
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
#ifdef RYU_DEBUG
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
if (vmIsTrailingZeros) {
for (;;) {
const uint64_t vmDiv10 = div10(vm);
const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
if (vmMod10 != 0) {
break;
}
const uint64_t vpDiv10 = div10(vp);
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
}
#ifdef RYU_DEBUG
printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
// Round even if the exact number is .....50..0.
lastRemovedDigit = 4;
}
// We need to take vr + 1 if vr is outside bounds or we need to round up.
output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
} else {
// Specialized for the common case (~99.3%). Percentages below are relative to this.
bool roundUp = false;
const uint64_t vpDiv100 = div100(vp);
const uint64_t vmDiv100 = div100(vm);
if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
const uint64_t vrDiv100 = div100(vr);
const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
roundUp = vrMod100 >= 50;
vr = vrDiv100;
vp = vpDiv100;
vm = vmDiv100;
removed += 2;
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for (;;) {
const uint64_t vpDiv10 = div10(vp);
const uint64_t vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10) {
break;
}
const uint64_t vrDiv10 = div10(vr);
const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
roundUp = vrMod10 >= 5;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
#ifdef RYU_DEBUG
printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
// We need to take vr + 1 if vr is outside bounds or we need to round up.
output = vr + (vr == vm || roundUp);
}
const int32_t exp = e10 + removed;
#ifdef RYU_DEBUG
printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
printf("O=%" PRIu64 "\n", output);
printf("EXP=%d\n", exp);
#endif
floating_decimal_64 fd;
fd.exponent = exp;
fd.mantissa = output;
return fd;
}
static inline uint64_t
pow_10(const int32_t exp)
{
static const uint64_t POW_TABLE[18] = {
1ULL,
10ULL,
100ULL,
1000ULL,
10000ULL,
100000ULL,
1000000ULL,
10000000ULL,
100000000ULL,
1000000000ULL,
10000000000ULL,
100000000000ULL,
1000000000000ULL,
10000000000000ULL,
100000000000000ULL,
1000000000000000ULL,
10000000000000000ULL,
100000000000000000ULL
};
assert(exp <= 17);
assert(exp >= 0);
return POW_TABLE[exp];
}
static inline int to_chars_uint64(uint64_t output, uint32_t olength, char* const result)
{
uint32_t i = 0;
// We prefer 32-bit operations, even on 64-bit platforms.
// We have at most 17 digits, and uint32_t can store 9 digits.
// If output doesn't fit into uint32_t, we cut off 8 digits,
// so the rest will fit into uint32_t.
if ((output >> 32) != 0) {
// Expensive 64-bit division.
const uint64_t q = div1e8(output);
uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
output = q;
const uint32_t c = output2 % 10000;
output2 /= 10000;
const uint32_t d = output2 % 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
const uint32_t d0 = (d % 100) << 1;
const uint32_t d1 = (d / 100) << 1;
memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2);
memcpy(result + olength - i - 6, DIGIT_TABLE + d0, 2);
memcpy(result + olength - i - 8, DIGIT_TABLE + d1, 2);
i += 8;
}
uint32_t output2 = (uint32_t) output;
while (output2 >= 10000)
{
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = output2 - 10000 * (output2 / 10000);
#else
const uint32_t c = output2 % 10000;
#endif
output2 /= 10000;
const uint32_t c0 = (c % 100) << 1;
const uint32_t c1 = (c / 100) << 1;
memcpy(result + olength - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + olength - i - 4, DIGIT_TABLE + c1, 2);
i += 4;
}
if (output2 >= 100)
{
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
const uint32_t c = (output2 % 100) << 1;
#else
const uint32_t c = (output2 - 100 * (output2 / 100)) << 1;
#endif
output2 /= 100;
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
i += 2;
}
if (output2 >= 10)
{
const uint32_t c = output2 << 1;
memcpy(result + olength - i - 2, DIGIT_TABLE + c, 2);
i += 2;
} else {
result[0] = (char) ('0' + output2);
i += 1;
}
return i;
}
static inline int to_chars_fixed(const floating_decimal_64 v, const bool sign, uint32_t precision, char* const result)
{
uint64_t output = v.mantissa;
uint32_t olength = decimalLength17(output);
int32_t exp = v.exponent;
uint64_t integer_part;
uint32_t integer_part_length = 0;
uint64_t decimal_part;
uint32_t decimal_part_length = 0;
uint32_t trailing_integer_zeros = 0;
uint32_t leading_decimal_zeros = 0;
if (exp >= 0)
{
integer_part = output;
integer_part_length = olength;
trailing_integer_zeros = exp;
decimal_part = 0;
}
else
{
/* Adapt the decimal digits to the desired precision */
if (precision < (uint32_t) -exp)
{
int32_t digits_to_trim = -exp - precision;
if (digits_to_trim > (int32_t) olength)
{
output = 0;
exp = 0;
}
else
{
const uint64_t divisor = pow_10(digits_to_trim);
const uint64_t divisor_half = divisor / 2;
const uint64_t outputDiv = output / divisor;
const uint64_t remainder = output - outputDiv * divisor;
output = outputDiv;
exp += digits_to_trim;
if (remainder > divisor_half || (remainder == divisor_half && (output & 1)))
{
output++;
olength = decimalLength17(output);
}
else
{
olength -= digits_to_trim;
}
while (output && output % 10 == 0)
{
output = div10(output);
exp++;
olength--;
}
}
}
int32_t nexp = -exp;
if (exp >= 0)
{
integer_part = output;
integer_part_length = olength;
trailing_integer_zeros = exp;
decimal_part = 0;
}
else if (nexp < (int32_t) olength)
{
uint64_t p = pow_10(nexp);
integer_part = output / p;
decimal_part = output % p;
integer_part_length = olength - nexp;
decimal_part_length = olength - integer_part_length;
if (decimal_part < pow_10(decimal_part_length - 1))
{
/* The decimal part had leading zeros (e.g. 123.0001) which were lost */
decimal_part_length = decimalLength17(decimal_part);
leading_decimal_zeros = olength - integer_part_length - decimal_part_length;
}
}
else
{
integer_part = 0;
decimal_part = output;
decimal_part_length = olength;
leading_decimal_zeros = nexp - olength;
}
}
#ifdef RYU_DEBUG
printf("DIGITS=%" PRIu64 "\n", v.mantissa);
printf("EXP=%d\n", v.exponent);
printf("INTEGER=%lu\n", integer_part);
printf("DECIMAL=%lu\n", decimal_part);
printf("EXTRA TRAILING ZEROS=%d\n", trailing_integer_zeros);
printf("EXTRA LEADING ZEROS=%d\n", leading_decimal_zeros);
#endif
/* If we have removed all digits, it may happen that we have -0 and we want it to be just 0 */
int index = 0;
if (sign && (integer_part || decimal_part))
{
result[index++] = '-';
}
index += to_chars_uint64(integer_part, integer_part_length, &result[index]);
for (uint32_t i = 0; i < trailing_integer_zeros; i++)
result[index++] = '0';
if (decimal_part)
{
result[index++] = '.';
for (uint32_t i = 0; i < leading_decimal_zeros; i++)
result[index++] = '0';
index += to_chars_uint64(decimal_part, decimal_part_length, &result[index]);
}
return index;
}
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
floating_decimal_64* const v) {
const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
if (e2 > 0) {
// f = m2 * 2^e2 >= 2^53 is an integer.
// Ignore this case for now.
return false;
}
if (e2 < -52) {
// f < 1.
return false;
}
// Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
// Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
const uint64_t mask = (1ull << -e2) - 1;
const uint64_t fraction = m2 & mask;
if (fraction != 0) {
return false;
}
// f is an integer in the range [1, 2^53).
// Note: mantissa might contain trailing (decimal) 0's.
// Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
v->mantissa = m2 >> -e2;
v->exponent = 0;
return true;
}
int d2sfixed_buffered_n(double f, uint32_t precision, char* result) {
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint64_t bits = double_to_bits(f);
#ifdef RYU_DEBUG
printf("IN=");
for (int32_t bit = 63; bit >= 0; --bit) {
printf("%d", (int) ((bits >> bit) & 1));
}
printf("\n");
#endif
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
// Case distinction; exit early for the easy cases.
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
return copy_special_str(result, ieeeSign, ieeeExponent, ieeeMantissa);
}
floating_decimal_64 v;
const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
if (isSmallInt) {
// For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
// For scientific notation we need to move these zeros into the exponent.
// (This is not needed for fixed-point notation, so it might be beneficial to trim
// trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
for (;;) {
const uint64_t q = div10(v.mantissa);
const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
if (r != 0) {
break;
}
v.mantissa = q;
++v.exponent;
}
} else {
v = d2d(ieeeMantissa, ieeeExponent);
}
return to_chars_fixed(v, ieeeSign, precision, result);
}
int d2sexp_buffered_n(double f, uint32_t precision, char* result) {
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint64_t bits = double_to_bits(f);
#ifdef RYU_DEBUG
printf("IN=");
for (int32_t bit = 63; bit >= 0; --bit) {
printf("%d", (int) ((bits >> bit) & 1));
}
printf("\n");
#endif
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
// Case distinction; exit early for the easy cases.
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
return copy_special_str(result, ieeeSign, ieeeExponent, ieeeMantissa);
}
floating_decimal_64 v;
const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
if (isSmallInt) {
// For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
// For scientific notation we need to move these zeros into the exponent.
// (This is not needed for fixed-point notation, so it might be beneficial to trim
// trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
for (;;) {
const uint64_t q = div10(v.mantissa);
const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
if (r != 0) {
break;
}
v.mantissa = q;
++v.exponent;
}
} else {
v = d2d(ieeeMantissa, ieeeExponent);
}
// Print first the mantissa using the fixed point notation, then add the exponent manually
const int32_t olength = (int32_t) decimalLength17(v.mantissa);
const int32_t original_ieeeExponent = v.exponent + olength - 1;
v.exponent = 1 - olength;
int index = to_chars_fixed(v, ieeeSign, precision, result);
// Print the exponent.
result[index++] = 'e';
int32_t exp = original_ieeeExponent;
if (exp < 0) {
result[index++] = '-';
exp = -exp;
}
else
{
result[index++] = '+';
}
if (exp >= 100) {
const int32_t c = exp % 10;
memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
result[index + 2] = (char) ('0' + c);
index += 3;
} else if (exp >= 10) {
memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
index += 2;
} else {
result[index++] = (char) ('0' + exp);
}
return index;
}
|