1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#ifndef RYU_D2S_INTRINSICS_H
#define RYU_D2S_INTRINSICS_H
#include <assert.h>
#include <stdint.h>
// Defines RYU_32_BIT_PLATFORM if applicable.
#include "ryu/common.h"
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
// Let's do the same for now.
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
#define HAS_UINT128
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define HAS_64_BIT_INTRINSICS
#endif
#if defined(HAS_UINT128)
typedef __uint128_t uint128_t;
#endif
#if defined(HAS_64_BIT_INTRINSICS)
#include <intrin.h>
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
return _umul128(a, b, productHi);
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// For the __shiftright128 intrinsic, the shift value is always
// modulo 64.
// In the current implementation of the double-precision version
// of Ryu, the shift value is always < 64. (In the case
// RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
// Otherwise in the range [2, 59].)
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert(dist < 64);
return __shiftright128(lo, hi, (unsigned char) dist);
}
#else // defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
// The casts here help MSVC to avoid calls to the __allmul library function.
const uint32_t aLo = (uint32_t)a;
const uint32_t aHi = (uint32_t)(a >> 32);
const uint32_t bLo = (uint32_t)b;
const uint32_t bHi = (uint32_t)(b >> 32);
const uint64_t b00 = (uint64_t)aLo * bLo;
const uint64_t b01 = (uint64_t)aLo * bHi;
const uint64_t b10 = (uint64_t)aHi * bLo;
const uint64_t b11 = (uint64_t)aHi * bHi;
const uint32_t b00Lo = (uint32_t)b00;
const uint32_t b00Hi = (uint32_t)(b00 >> 32);
const uint64_t mid1 = b10 + b00Hi;
const uint32_t mid1Lo = (uint32_t)(mid1);
const uint32_t mid1Hi = (uint32_t)(mid1 >> 32);
const uint64_t mid2 = b01 + mid1Lo;
const uint32_t mid2Lo = (uint32_t)(mid2);
const uint32_t mid2Hi = (uint32_t)(mid2 >> 32);
const uint64_t pHi = b11 + mid1Hi + mid2Hi;
const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo;
*productHi = pHi;
return pLo;
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// We don't need to handle the case dist >= 64 here (see above).
assert(dist < 64);
#if defined(RYU_OPTIMIZE_SIZE) || !defined(RYU_32_BIT_PLATFORM)
assert(dist > 0);
return (hi << (64 - dist)) | (lo >> dist);
#else
// Avoid a 64-bit shift by taking advantage of the range of shift values.
assert(dist >= 32);
return (hi << (64 - dist)) | ((uint32_t)(lo >> 32) >> (dist - 32));
#endif
}
#endif // defined(HAS_64_BIT_INTRINSICS)
#if defined(RYU_32_BIT_PLATFORM)
// Returns the high 64 bits of the 128-bit product of a and b.
static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
// Reuse the umul128 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
uint64_t hi;
umul128(a, b, &hi);
return hi;
}
// On 32-bit platforms, compilers typically generate calls to library
// functions for 64-bit divisions, even if the divisor is a constant.
//
// E.g.:
// https://bugs.llvm.org/show_bug.cgi?id=37932
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
//
// The functions here perform division-by-constant using multiplications
// in the same way as 64-bit compilers would do.
//
// NB:
// The multipliers and shift values are the ones generated by clang x64
// for expressions like x/5, x/10, etc.
static inline uint64_t div5(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
}
static inline uint64_t div10(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
}
static inline uint64_t div100(const uint64_t x) {
return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
}
static inline uint64_t div1e8(const uint64_t x) {
return umulh(x, 0xABCC77118461CEFDu) >> 26;
}
static inline uint64_t div1e9(const uint64_t x) {
return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
}
static inline uint32_t mod1e9(const uint64_t x) {
// Avoid 64-bit math as much as possible.
// Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
// perform 32x64-bit multiplication and 64-bit subtraction.
// x and 1000000000 * div1e9(x) are guaranteed to differ by
// less than 10^9, so their highest 32 bits must be identical,
// so we can truncate both sides to uint32_t before subtracting.
// We can also simplify (uint32_t) (1000000000 * div1e9(x)).
// We can truncate before multiplying instead of after, as multiplying
// the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
}
#else // defined(RYU_32_BIT_PLATFORM)
static inline uint64_t div5(const uint64_t x) {
return x / 5;
}
static inline uint64_t div10(const uint64_t x) {
return x / 10;
}
static inline uint64_t div100(const uint64_t x) {
return x / 100;
}
static inline uint64_t div1e8(const uint64_t x) {
return x / 100000000;
}
static inline uint64_t div1e9(const uint64_t x) {
return x / 1000000000;
}
static inline uint32_t mod1e9(const uint64_t x) {
return (uint32_t) (x - 1000000000 * div1e9(x));
}
#endif // defined(RYU_32_BIT_PLATFORM)
static inline uint32_t pow5Factor(uint64_t value) {
uint32_t count = 0;
for (;;) {
assert(value != 0);
const uint64_t q = div5(value);
const uint32_t r = ((uint32_t) value) - 5 * ((uint32_t) q);
if (r != 0) {
break;
}
value = q;
++count;
}
return count;
}
// Returns true if value is divisible by 5^p.
static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
// I tried a case distinction on p, but there was no performance difference.
return pow5Factor(value) >= p;
}
// Returns true if value is divisible by 2^p.
static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
assert(value != 0);
// return __builtin_ctzll(value) >= p;
return (value & ((1ull << p) - 1)) == 0;
}
#endif // RYU_D2S_INTRINSICS_H
|