File: reference_cluster.xml

package info (click to toggle)
postgis 3.5.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 69,528 kB
  • sloc: ansic: 162,229; sql: 93,970; xml: 53,139; cpp: 12,646; perl: 5,658; sh: 5,369; makefile: 3,435; python: 1,205; yacc: 447; lex: 151; pascal: 58
file content (559 lines) | stat: -rw-r--r-- 20,671 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
<!-- Converted by db4-upgrade version 1.1 -->
<section xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://docbook.org/ns/docbook" version="5.0" xml:id="Clustering_Functions">
    <title>Clustering Functions</title><info>
    <abstract>
    <para>These functions implement clustering algorithms for sets of geometries.</para>
    </abstract>
    </info>


    <refentry xml:id="ST_ClusterDBSCAN">
	  <refnamediv>
		<refname>ST_ClusterDBSCAN</refname>

        <refpurpose>Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.</refpurpose>
    </refnamediv>

	  <refsynopsisdiv>
		<funcsynopsis>
		  <funcprototype>
			<funcdef>integer <function>ST_ClusterDBSCAN</function></funcdef>

			<paramdef><type>geometry winset </type>
			<parameter>geom</parameter></paramdef>

			<paramdef><type>float8 </type>
			<parameter>eps</parameter></paramdef>

			<paramdef><type>integer </type>
			<parameter>minpoints</parameter></paramdef>
		  </funcprototype>
		</funcsynopsis>
	  </refsynopsisdiv>

	  <refsection>
      <title>Description</title>

	  <para>
		  A window function that returns a cluster number for each input geometry, using the 2D
          <link xlink:href="https://en.wikipedia.org/wiki/DBSCAN">Density-based spatial clustering of applications with noise (DBSCAN)</link>
		  algorithm.  Unlike <xref linkend="ST_ClusterKMeans"/>, it does not require the number of clusters to be specified, but instead
		  uses the desired <link linkend="ST_Distance">distance</link> (<varname>eps</varname>) and density (<varname>minpoints</varname>) parameters to determine each cluster.
	  </para>

	  <para>
		  An input geometry is added to a cluster if it is either:
		  <itemizedlist>
              <listitem>
                  <para>
                      A "core" geometry, that is within <varname>eps</varname> <link linkend="ST_Distance">distance</link> of at least <varname>minpoints</varname> input geometries (including itself); or
                  </para>
			  </listitem>
			  <listitem>
                  <para>
                      A "border" geometry, that is within <varname>eps</varname> <link linkend="ST_Distance">distance</link> of a core geometry.
                  </para>
			  </listitem>
		  </itemizedlist>
		</para>

		<para>
		  Note that border geometries may be within <varname>eps</varname> distance of core geometries in more than one cluster.
      Either assignment would be correct, so the border geometry will be arbitrarily asssigned to one of the available clusters.
		  In this situation it is possible for a correct cluster to be generated with fewer than <varname>minpoints</varname> geometries.
		  To ensure deterministic assignment of border geometries
      (so that repeated calls to ST_ClusterDBSCAN will produce identical results)
      use an <code>ORDER BY</code> clause in the window definition.
      Ambiguous cluster assignments may differ from other DBSCAN implementations.
	  </para>

	  <note><para>
		  Geometries that do not meet the criteria to join any cluster are assigned a cluster number of NULL.
	  </para></note>

      <para role="availability" conformance="2.3.0">Availability: 2.3.0</para>
      <para>&curve_support;</para>
    </refsection>

    <refsection>
      <title>Examples</title>
      <para>
          Clustering polygon within 50 meters of each other, and requiring at least 2 polygons per cluster.
      </para>
	<informaltable>
				  <tgroup cols="2">
					<tbody>
				  <row>
						<entry><para><informalfigure>
							<mediaobject>
							  <imageobject>
								<imagedata fileref="images/st_clusterdbscan01.png"/>
							  </imageobject>
							  <caption><para>Clusters within 50 meters with at least 2 items per cluster. Singletons have NULL for cid</para></caption>
							</mediaobject>
						  </informalfigure>
  <programlisting><![CDATA[
SELECT name, ST_ClusterDBSCAN(geom, eps => 50, minpoints => 2) over () AS cid
FROM boston_polys
WHERE name > '' AND building > ''
	AND ST_DWithin(geom,
        ST_Transform(
            ST_GeomFromText('POINT(-71.04054 42.35141)', 4326), 26986),
           500);
]]></programlisting>
						  </para></entry>

						<entry><para><screen><![CDATA[
                name                 | bucket
-------------------------------------+--------
 Manulife Tower                      |      0
 Park Lane Seaport I                 |      0
 Park Lane Seaport II                |      0
 Renaissance Boston Waterfront Hotel |      0
 Seaport Boston Hotel                |      0
 Seaport Hotel & World Trade Center  |      0
 Waterside Place                     |      0
 World Trade Center East             |      0
 100 Northern Avenue                 |      1
 100 Pier 4                          |      1
 The Institute of Contemporary Art   |      1
 101 Seaport                         |      2
 District Hall                       |      2
 One Marina Park Drive               |      2
 Twenty Two Liberty                  |      2
 Vertex                              |      2
 Vertex                              |      2
 Watermark Seaport                   |      2
 Blue Hills Bank Pavilion            |   NULL
 World Trade Center West             |   NULL
(20 rows)
]]></screen></para>
				</entry>
					  </row>
				</tbody>
				</tgroup>
			</informaltable>


        <para>
            A example showing combining parcels with the same cluster number into geometry collections.
        </para>
		    <programlisting>
SELECT cid, ST_Collect(geom) AS cluster_geom, array_agg(parcel_id) AS ids_in_cluster FROM (
    SELECT parcel_id, ST_ClusterDBSCAN(geom, eps =&gt; 0.5, minpoints =&gt; 5) over () AS cid, geom
    FROM parcels) sq
GROUP BY cid;
    </programlisting>
    </refsection>

    <refsection>
		  <title>See Also</title>
          <para><xref linkend="ST_DWithin"/>,
              <xref linkend="ST_ClusterKMeans"/>,
              <xref linkend="ST_ClusterIntersecting"/>,
              <xref linkend="ST_ClusterIntersectingWin"/>,
              <xref linkend="ST_ClusterWithin"/>,
              <xref linkend="ST_ClusterWithinWin"/>
          </para>
	  </refsection>
    </refentry>


    <refentry xml:id="ST_ClusterIntersecting">
      <refnamediv>
        <refname>ST_ClusterIntersecting</refname>

        <refpurpose>Aggregate function that clusters input geometries into connected sets.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry[] <function>ST_ClusterIntersecting</function></funcdef>
            <paramdef><type>geometry set</type> <parameter>g</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>An aggregate function that returns an array of GeometryCollections
        partitioning the input geometries into connected clusters that are disjoint.
        Each geometry in a cluster intersects at least one other geometry in the cluster,
        and does not intersect any geometry in other clusters.
        </para>

        <para role="availability" conformance="2.2.0">Availability: 2.2.0</para>
      </refsection>

      <refsection>
        <title>Examples</title>
        <programlisting>
WITH testdata AS
  (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
           'LINESTRING (5 5, 4 4)'::geometry,
           'LINESTRING (6 6, 7 7)'::geometry,
           'LINESTRING (0 0, -1 -1)'::geometry,
           'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext
---------
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))
        </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
            <xref linkend="ST_ClusterIntersectingWin"/>,
            <xref linkend="ST_ClusterWithin"/>,
            <xref linkend="ST_ClusterWithinWin"/>
        </para>
      </refsection>

    </refentry>


    <refentry xml:id="ST_ClusterIntersectingWin">
      <refnamediv>
        <refname>ST_ClusterIntersectingWin</refname>

        <refpurpose>Window function that returns a cluster id for each input geometry, clustering input geometries into connected sets.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>integer <function>ST_ClusterIntersectingWin</function></funcdef>
            <paramdef><type>geometry winset </type> <parameter>geom</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>A window function that builds connected clusters of geometries that intersect. It is possible to traverse all geometries in a cluster without leaving the cluster. The return value is the cluster number that the geometry argument participates in, or null for null inputs.</para>

        <para role="availability" conformance="3.4.0">Availability: 3.4.0</para>
      </refsection>

      <refsection>
        <title>Examples</title>
        <programlisting>
WITH testdata AS (
  SELECT id, geom::geometry FROM (
  VALUES  (1, 'LINESTRING (0 0, 1 1)'),
          (2, 'LINESTRING (5 5, 4 4)'),
          (3, 'LINESTRING (6 6, 7 7)'),
          (4, 'LINESTRING (0 0, -1 -1)'),
          (5, 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))')) AS t(id, geom)
)
SELECT id,
  ST_AsText(geom),
  ST_ClusterIntersectingWin(geom) OVER () AS cluster
FROM testdata;

 id |           st_astext            | cluster
----+--------------------------------+---------
  1 | LINESTRING(0 0,1 1)            |       0
  2 | LINESTRING(5 5,4 4)            |       0
  3 | LINESTRING(6 6,7 7)            |       1
  4 | LINESTRING(0 0,-1 -1)          |       0
  5 | POLYGON((0 0,4 0,4 4,0 4,0 0)) |       0

        </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
            <xref linkend="ST_ClusterIntersecting"/>,
            <xref linkend="ST_ClusterWithin"/>,
            <xref linkend="ST_ClusterWithinWin"/>
        </para>
      </refsection>

    </refentry>


	<refentry xml:id="ST_ClusterKMeans">
	  <refnamediv>
		<refname>ST_ClusterKMeans</refname>

		<refpurpose>Window function that returns a cluster id for each input geometry using the K-means algorithm.</refpurpose>
	  </refnamediv>

	  <refsynopsisdiv>
		<funcsynopsis>
		  <funcprototype>
			<funcdef>integer <function>ST_ClusterKMeans</function></funcdef>

			<paramdef><type>geometry winset </type>
			<parameter>geom</parameter></paramdef>

			<paramdef><type>integer </type>
			<parameter>number_of_clusters</parameter></paramdef>

            <paramdef><type>float </type>
			<parameter>max_radius</parameter></paramdef>
		  </funcprototype>
		</funcsynopsis>
	  </refsynopsisdiv>

	  <refsection>
      <title>Description</title>

      <para>Returns <link xlink:href="https://en.wikipedia.org/wiki/K-means_clustering">K-means</link>
        cluster number for each input geometry. The distance used for clustering is the
        distance between the centroids for 2D geometries, and distance between bounding box centers for 3D geometries.
        For POINT inputs, M coordinate will be treated as weight of input and has to be larger than 0.
      </para>
      <para><varname>max_radius</varname>, if set, will cause ST_ClusterKMeans to generate more clusters than
        <varname>k</varname> ensuring that no cluster in output has radius larger than <varname>max_radius</varname>.
        This is useful in reachability analysis. </para>
      <para role="enhanced" conformance="3.2.0">Enhanced: 3.2.0 Support for <varname>max_radius</varname></para>
      <para role="enhanced" conformance="3.1.0">Enhanced: 3.1.0 Support for 3D geometries and weights</para>
      <para role="availability" conformance="2.3.0">Availability: 2.3.0</para>
    </refsection>

    <refsection>
      <title>Examples</title>
		<para>Generate dummy set of parcels for examples:</para>
		<programlisting>CREATE TABLE parcels AS
SELECT lpad((row_number() over())::text,3,'0') As parcel_id, geom,
('{residential, commercial}'::text[])[1 + mod(row_number()OVER(),2)] As type
FROM
    ST_Subdivide(ST_Buffer('SRID=3857;LINESTRING(40 100, 98 100, 100 150, 60 90)'::geometry,
    40, 'endcap=square'),12) As geom;
</programlisting>

        <para><informalfigure>
            <mediaobject>
                <imageobject>
                <imagedata fileref="images/st_clusterkmeans02.png"/>
                </imageobject>
                <caption><para>Parcels color-coded by cluster number (cid)</para></caption>
            </mediaobject>
            </informalfigure>
<programlisting>
SELECT ST_ClusterKMeans(geom, 3) OVER() AS cid, parcel_id, geom
    FROM parcels;</programlisting>
<screen> cid | parcel_id |   geom
-----+-----------+---------------
   0 | 001       | 0103000000...
   0 | 002       | 0103000000...
   1 | 003       | 0103000000...
   0 | 004       | 0103000000...
   1 | 005       | 0103000000...
   2 | 006       | 0103000000...
   2 | 007       | 0103000000...
</screen>
        </para>

        <para>Partitioning parcel clusters by type:</para>
<programlisting>
SELECT ST_ClusterKMeans(geom, 3) over (PARTITION BY type) AS cid, parcel_id, type
    FROM parcels;</programlisting>
<screen> cid | parcel_id |    type
-----+-----------+-------------
   1 | 005       | commercial
   1 | 003       | commercial
   2 | 007       | commercial
   0 | 001       | commercial
   1 | 004       | residential
   0 | 002       | residential
   2 | 006       | residential
</screen>

<para>Example: Clustering a preaggregated planetary-scale data population dataset
using 3D clusering and weighting.
Identify at least 20 regions based on
<link xlink:href="https://data.humdata.org/dataset/kontur-population-dataset">Kontur Population Data</link>
that do not span more than 3000 km from their center:</para>
<programlisting>create table kontur_population_3000km_clusters as
select
    geom,
    ST_ClusterKMeans(
        ST_Force4D(
            ST_Transform(ST_Force3D(geom), 4978), -- cluster in 3D XYZ CRS
            mvalue =&gt; population -- set clustering to be weighed by population
        ),
        20,                      -- aim to generate at least 20 clusters
        max_radius =&gt; 3000000    -- but generate more to make each under 3000 km radius
    ) over () as cid
from
    kontur_population;
    </programlisting>
    <para><informalfigure>
    <mediaobject>
        <imageobject>
        <imagedata fileref="images/st_clusterkmeans03.png"/>
        </imageobject>
        <caption><para>World population clustered to above specs produces 46 clusters.
        Clusters are centered at well-populated regions (New York, Moscow).
        Greenland is one cluster.
        There are island clusters that span across the antimeridian.
        Cluster edges follow Earth's curvature.</para></caption>
    </mediaobject>
    </informalfigure>
    </para>

    </refsection>

    <refsection>
		  <title>See Also</title>
          <para>
              <xref linkend="ST_ClusterDBSCAN"/>,
              <xref linkend="ST_ClusterIntersectingWin"/>,
              <xref linkend="ST_ClusterWithinWin"/>,
              <xref linkend="ST_ClusterIntersecting"/>,
              <xref linkend="ST_ClusterWithin"/>,
              <xref linkend="ST_Subdivide"/>,
              <xref linkend="ST_Force_3D"/>,
              <xref linkend="ST_Force_4D"/>,
          </para>
	  </refsection>
	</refentry>

	<refentry xml:id="ST_ClusterWithin">
      <refnamediv>
        <refname>ST_ClusterWithin</refname>

        <refpurpose>Aggregate function that clusters geometries by separation distance.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>geometry[] <function>ST_ClusterWithin</function></funcdef>
            <paramdef><type>geometry set </type> <parameter>g</parameter></paramdef>
            <paramdef><type>float8 </type> <parameter>distance</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>An aggregate function that returns an array of GeometryCollections,
        where each collection is a cluster containing some input geometries.
        Clustering partitions the input geometries into sets
        in which each geometry is within the specified <parameter>distance</parameter>
        of at least one other geometry in the same cluster.
        Distances are Cartesian distances in the units of the SRID.
        </para>
        <para>ST_ClusterWithin is equivalent to running <xref linkend="ST_ClusterDBSCAN"/> with <code>minpoints =&gt; 0</code>.</para>

        <para role="availability" conformance="2.2.0">Availability: 2.2.0</para>
        <para>&curve_support;</para>
      </refsection>

      <refsection>
        <title>Examples</title>
        <programlisting>
WITH testdata AS
  (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		       'LINESTRING (5 5, 4 4)'::geometry,
		       'LINESTRING (6 6, 7 7)'::geometry,
		       'LINESTRING (0 0, -1 -1)'::geometry,
		       'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterWithin(geom, 1.4))) FROM testdata;

--result

st_astext
---------
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))
        </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
          <xref linkend="ST_ClusterWithinWin"/>,
          <xref linkend="ST_ClusterDBSCAN"/>,
          <xref linkend="ST_ClusterIntersecting"/>,
          <xref linkend="ST_ClusterIntersectingWin"/>
        </para>
      </refsection>

    </refentry>

  <refentry xml:id="ST_ClusterWithinWin">
      <refnamediv>
        <refname>ST_ClusterWithinWin</refname>

        <refpurpose>Window function that returns a cluster id for each input geometry, clustering using separation distance.</refpurpose>
      </refnamediv>

      <refsynopsisdiv>
        <funcsynopsis>
          <funcprototype>
            <funcdef>integer <function>ST_ClusterWithinWin</function></funcdef>
            <paramdef><type>geometry winset </type> <parameter>geom</parameter></paramdef>
            <paramdef><type>float8 </type> <parameter>distance</parameter></paramdef>
          </funcprototype>
        </funcsynopsis>
      </refsynopsisdiv>

      <refsection>
        <title>Description</title>

        <para>A window function that returns a cluster number for each input geometry.
        Clustering partitions the geometries into sets
        in which each geometry is within the specified <varname>distance</varname>
        of at least one other geometry in the same cluster.
        Distances are Cartesian distances in the units of the SRID.
        </para>
        <para>ST_ClusterWithinWin is equivalent to running <xref linkend="ST_ClusterDBSCAN"/> with <code>minpoints =&gt; 0</code>.</para>
        <para role="availability" conformance="3.4.0">Availability: 3.4.0</para>
        <para>&curve_support;</para>

      </refsection>

      <refsection>
        <title>Examples</title>
        <programlisting>
WITH testdata AS (
  SELECT id, geom::geometry FROM (
  VALUES  (1, 'LINESTRING (0 0, 1 1)'),
          (2, 'LINESTRING (5 5, 4 4)'),
          (3, 'LINESTRING (6 6, 7 7)'),
          (4, 'LINESTRING (0 0, -1 -1)'),
          (5, 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))')) AS t(id, geom)
)
SELECT id,
  ST_AsText(geom),
  ST_ClusterWithinWin(geom, 1.4) OVER () AS cluster
FROM testdata;


 id |           st_astext            | cluster
----+--------------------------------+---------
  1 | LINESTRING(0 0,1 1)            |       0
  2 | LINESTRING(5 5,4 4)            |       0
  3 | LINESTRING(6 6,7 7)            |       1
  4 | LINESTRING(0 0,-1 -1)          |       0
  5 | POLYGON((0 0,4 0,4 4,0 4,0 0)) |       0

        </programlisting>
      </refsection>
      <refsection>
        <title>See Also</title>
        <para>
          <xref linkend="ST_ClusterWithin"/>,
          <xref linkend="ST_ClusterDBSCAN"/>,
          <xref linkend="ST_ClusterIntersecting"/>,
          <xref linkend="ST_ClusterIntersectingWin"/>,
        </para>
      </refsection>

    </refentry>

</section>