1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
|
<!-- Converted by db4-upgrade version 1.1 -->
<section xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://docbook.org/ns/docbook" version="5.0" xml:id="Measurement_Functions">
<title>Measurement Functions</title><info>
<abstract>
<para>These functions compute measurements of distance, area and angles.
There are also functions to compute geometry values determined by measurements.</para>
</abstract>
</info>
<refentry xml:id="ST_Area">
<refnamediv>
<refname>ST_Area</refname>
<refpurpose>Returns the area of a polygonal geometry.
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Area</function></funcdef>
<paramdef><type>geometry </type><parameter>g1</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Area</function></funcdef>
<paramdef><type>geography </type><parameter>geog</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type><parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the area of a polygonal geometry.
For geometry types a 2D Cartesian (planar) area is computed, with units specified by the SRID.
For geography types by default area is determined on a spheroid with units in square meters.
To compute the area using the faster but less accurate spherical model use <varname>ST_Area(geog,false)</varname>.
</para>
<para role="enhanced" conformance="2.0.0">Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.</para>
<para role="enhanced" conformance="2.2.0">Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.</para>
<para role="changed" conformance="3.0.0">Changed: 3.0.0 - does not depend on SFCGAL anymore.</para>
<para>&sfs_compliant;</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.2, 9.5.3</para>
<para>&P_support;</para>
<note><para>For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but only for the faces that
sit completely in XY plane.</para></note>
</refsection>
<refsection>
<title>Examples</title>
<para>Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters.
Note this is in square feet because EPSG:2249 is
Massachusetts State Plane Feet </para>
<programlisting>
select ST_Area(geom) sqft,
ST_Area(geom) * 0.3048 ^ 2 sqm
from (
select 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
) subquery;
┌─────────┬─────────────┐
│ sqft │ sqm │
├─────────┼─────────────┤
│ 928.625 │ 86.27208552 │
└─────────┴─────────────┘
</programlisting>
<para>Return area square feet and transform to Massachusetts state plane meters (EPSG:26986) to get square meters.
Note this is in square feet because 2249 is
Massachusetts State Plane Feet and transformed area is in square meters since EPSG:26986 is state plane Massachusetts meters </para>
<programlisting>select ST_Area(geom) sqft,
ST_Area(ST_Transform(geom, 26986)) As sqm
from (
select
'SRID=2249;POLYGON((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
) subquery;
┌─────────┬─────────────────┐
│ sqft │ sqm │
├─────────┼─────────────────┤
│ 928.625 │ 86.272430607008 │
└─────────┴─────────────────┘
</programlisting>
<para>Return area square feet and square meters using geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters.
This is just for demonstration to compare. Normally your table will be stored in geography data type already.</para>
<programlisting>
select ST_Area(geog) / 0.3048 ^ 2 sqft_spheroid,
ST_Area(geog, false) / 0.3048 ^ 2 sqft_sphere,
ST_Area(geog) sqm_spheroid
from (
select ST_Transform(
'SRID=2249;POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))'::geometry,
4326
) :: geography geog
) as subquery;
┌──────────────────┬──────────────────┬──────────────────┐
│ sqft_spheroid │ sqft_sphere │ sqm_spheroid │
├──────────────────┼──────────────────┼──────────────────┤
│ 928.684405784452 │ 927.049336105925 │ 86.2776044979692 │
└──────────────────┴──────────────────┴──────────────────┘
</programlisting>
<para>If your data is in geography already:</para>
<programlisting>
select ST_Area(geog) / 0.3048 ^ 2 sqft,
ST_Area(the_geog) sqm
from somegeogtable;</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_3DArea"/>, <xref linkend="ST_GeomFromText"/>, <xref linkend="ST_GeographyFromText"/>, <xref linkend="ST_SetSRID"/>, <xref linkend="ST_Transform"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Azimuth">
<refnamediv>
<refname>ST_Azimuth</refname>
<refpurpose>Returns the north-based azimuth of a line between two points.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Azimuth</function></funcdef>
<paramdef><type>geometry </type><parameter>origin</parameter></paramdef>
<paramdef><type>geometry </type><parameter>target</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Azimuth</function></funcdef>
<paramdef><type>geography </type><parameter>origin</parameter></paramdef>
<paramdef><type>geography </type><parameter>target</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the azimuth in radians of the target point from the origin point,
or NULL if the two points are coincident.
The azimuth angle is a positive clockwise angle
referenced from the positive Y axis (geometry) or the North meridian (geography):
North = 0; Northeast = π/4; East = π/2; Southeast = 3π/4;
South = π; Southwest 5π/4; West = 3π/2; Northwest = 7π/4.</para>
<para>For the geography type, the azimuth solution is known as the
<link xlink:href="https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid">inverse geodesic problem</link>.</para>
<para>The azimuth is a mathematical concept defined as the angle between a reference vector and a point, with angular units in radians.
The result value in radians can be converted to degrees using the PostgreSQL function <varname>degrees()</varname>.</para>
<para>Azimuth can be used in conjunction with <xref linkend="ST_Translate"/> to shift an object along its perpendicular axis. See
the <varname>upgis_lineshift()</varname> function in the <link xlink:href="http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctions">PostGIS wiki</link> for an implementation of this.</para>
<para role="availability" conformance="1.1.0">Availability: 1.1.0</para>
<para role="enhanced" conformance="2.0.0">Enhanced: 2.0.0 support for geography was introduced.</para>
<para role="enhanced" conformance="2.2.0">Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Geometry Azimuth in degrees </para>
<programlisting>
SELECT degrees(ST_Azimuth( ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
degrees(ST_Azimuth( ST_Point(75, 100), ST_Point(25, 45) )) AS degB_A;
dega_b | degb_a
------------------+------------------
42.2736890060937 | 222.273689006094
</programlisting>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_azimuth01.png"/>
</imageobject>
<caption><para>Blue: origin Point(25,45); Green: target Point(75, 100); Yellow: Y axis or North;
Red: azimuth angle.</para></caption>
</mediaobject>
</informalfigure>
</para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_azimuth02.png"/>
</imageobject>
<caption><para>Blue: origin Point(75, 100); Green: target Point(25, 45); Yellow: Y axis or North;
Red: azimuth angle.</para></caption>
</mediaobject>
</informalfigure>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Angle"/>, <xref linkend="ST_Point"/>, <xref linkend="ST_Translate"/>, <xref linkend="ST_Project"/>, <link xlink:href="http://www.postgresql.org/docs/current/interactive/functions-math.html">PostgreSQL Math Functions</link></para>
</refsection>
</refentry>
<refentry xml:id="ST_Angle">
<refnamediv>
<refname>ST_Angle</refname>
<refpurpose>Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Angle</function></funcdef>
<paramdef><type>geometry </type><parameter>point1</parameter></paramdef>
<paramdef><type>geometry </type><parameter>point2</parameter></paramdef>
<paramdef><type>geometry </type><parameter>point3</parameter></paramdef>
<paramdef choice="opt"><type>geometry </type><parameter>point4</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Angle</function></funcdef>
<paramdef><type>geometry </type><parameter>line1</parameter></paramdef>
<paramdef><type>geometry </type><parameter>line2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para> Computes the clockwise angle between two vectors.
</para>
<para><emphasis role="bold">Variant 1:</emphasis> computes the angle enclosed by the points P1-P2-P3. If a 4th point provided computes the angle points P1-P2 and P3-P4</para>
<para><emphasis role="bold">Variant 2:</emphasis> computes the angle between two vectors S1-E1 and S2-E2,
defined by the start and end points of the input lines
</para>
<para>The result is a positive angle between 0 and 2π radians.
The radian result can be converted to degrees using the PostgreSQL function <varname>degrees()</varname>.
</para>
<para>Note that <varname>ST_Angle(P1,P2,P3) = ST_Angle(P2,P1,P2,P3)</varname>.</para>
<para role="availability" conformance="2.5.0">Availability: 2.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Angle between three points</para>
<programlisting>
SELECT degrees( ST_Angle('POINT(0 0)', 'POINT(10 10)', 'POINT(20 0)') );
degrees
---------
270
</programlisting>
<para>Angle between vectors defined by four points</para>
<programlisting>
SELECT degrees( ST_Angle('POINT (10 10)', 'POINT (0 0)', 'POINT(90 90)', 'POINT (100 80)') );
degrees
-------------------
269.9999999999999
</programlisting>
<para>Angle between vectors defined by the start and end points of lines</para>
<programlisting>
SELECT degrees( ST_Angle('LINESTRING(0 0, 0.3 0.7, 1 1)', 'LINESTRING(0 0, 0.2 0.5, 1 0)') );
degrees
--------------
45
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Azimuth"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_ClosestPoint">
<refnamediv>
<refname>ST_ClosestPoint</refname>
<refpurpose>Returns the 2D point on g1 that is closest to g2. This is the first point of
the shortest line from one geometry to the other.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_ClosestPoint</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geom1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geom2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>geography <function>ST_ClosestPoint</function></funcdef>
<paramdef><type>geography </type>
<parameter>geom1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>geom2</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type>
<parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional point on <varname>geom1</varname> that is closest to <varname>geom2</varname>.
This is the first point of the shortest line between the geometries
(as computed by <xref linkend="ST_ShortestLine"/>).
</para>
<note><para>If you have a 3D Geometry, you may prefer to use <xref linkend="ST_3DClosestPoint"/>.</para></note>
<para role="enhanced" conformance="3.4.0">Enhanced: 3.4.0 - Support for geography.</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_closestpoint01.png"/>
</imageobject>
<caption><para>The closest point for a Point and a LineString is the point itself.
The closest point for a LineString and a Point is a point on the line.</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_ClosestPoint(pt,line)) AS cp_pt_line,
ST_AsText( ST_ClosestPoint(line,pt)) AS cp_line_pt
FROM (SELECT 'POINT (160 40)'::geometry AS pt,
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)'::geometry AS line ) AS t;
cp_pt_line | cp_line_pt
----------------+------------------------------------------
POINT(160 40) | POINT(125.75342465753425 115.34246575342466)
</programlisting>
</para>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_closestpoint02.png"/>
</imageobject>
<caption><para>The closest point on polygon A to polygon B</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_ClosestPoint(
'POLYGON ((190 150, 20 10, 160 70, 190 150))',
ST_Buffer('POINT(80 160)', 30) )) As ptwkt;
------------------------------------------
POINT(131.59149149528952 101.89887534906197)
</programlisting>
</para>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_3DClosestPoint"/>, <xref linkend="ST_Distance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_ShortestLine"/>, <xref linkend="ST_MaxDistance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DClosestPoint">
<refnamediv>
<refname>ST_3DClosestPoint</refname>
<refpurpose>Returns the 3D point on g1 that is closest to g2. This is the first point of
the 3D shortest line. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_3DClosestPoint</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of
the 3D shortest line. The 3D length of the 3D shortest line is the 3D distance.
</para>
<para>&Z_support;</para>
<!-- Optionally mention supports Polyhedral Surface -->
<para>&P_support;</para>
<para role="availability" conformance="2.0.0">Availability: 2.0.0</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.</para>
</refsection>
<refsection>
<title>Examples</title>
<informaltable>
<tgroup cols="1">
<tbody>
<row>
<entry><para>linestring and point -- both 3d and 2d closest point
<programlisting>
SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;
cp3d_line_pt | cp2d_line_pt
-----------------------------------------------------------+------------------------------------------
POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(73.0769230769231 115.384615384615)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>linestring and multipoint -- both 3d and 2d closest point
<programlisting>SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;
cp3d_line_pt | cp2d_line_pt
-----------------------------------------------------------+--------------
POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(50 75)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>Multilinestring and polygon both 3d and 2d closest point
<programlisting>SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
(1 10 2, 5 20 1))') As mline ) As foo;
cp3d | cp2d
-------------------------------------------+--------------
POINT(39.993580415989 54.1889925532825 5) | POINT(20 40)
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_AsEWKT"/>, <xref linkend="ST_ClosestPoint"/>, <xref linkend="ST_3DDistance"/>, <xref linkend="ST_3DShortestLine"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Distance">
<refnamediv>
<refname>ST_Distance</refname>
<refpurpose>Returns the distance between two geometry or geography values.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Distance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Distance</function></funcdef>
<paramdef><type>geography </type>
<parameter>geog1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>geog2</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type>
<parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>For <xref linkend="geometry"/> types returns the minimum 2D Cartesian (planar) distance between two geometries, in
projected units (spatial ref units).
</para>
<para>For <xref linkend="geography"/> types defaults to return the minimum geodesic distance between two geographies in meters,
compute on the spheroid determined by the SRID.
If <varname>use_spheroid</varname> is
false, a faster spherical calculation is used.</para>
<para>&sfs_compliant;</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.23</para>
<para>&curve_support;</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries</para>
<para role="enhanced" conformance="2.1.0">Enhanced: 2.1.0 improved speed for geography. See <link xlink:href="http://boundlessgeo.com/2012/07/making-geography-faster/">Making Geography faster</link> for details.</para>
<para role="enhanced" conformance="2.1.0">Enhanced: 2.1.0 - support for curved geometries was introduced.</para>
<para role="enhanced" conformance="2.2.0">Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.</para>
<para role="changed" conformance="3.0.0">Changed: 3.0.0 - does not depend on SFCGAL anymore.</para>
</refsection>
<refsection>
<title>Geometry Examples</title>
<para>Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.</para>
<programlisting>SELECT ST_Distance(
'SRID=4326;POINT(-72.1235 42.3521)'::geometry,
'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry );
-----------------
0.00150567726382282</programlisting>
<para>Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps).
Although the value is off, nearby ones can be compared correctly,
which makes it a good choice for algorithms like KNN or KMeans.</para>
<programlisting>SELECT ST_Distance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857) );
-----------------
167.441410065196</programlisting>
<para>Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)</para>
<programlisting>SELECT ST_Distance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857)
) * cosd(42.3521);
-----------------
123.742351254151</programlisting>
<para>Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)</para>
<programlisting>SELECT ST_Distance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 26986),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 26986) );
-----------------
123.797937878454</programlisting>
<para>Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate) </para>
<programlisting>SELECT ST_Distance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 2163),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 2163) );
------------------
126.664256056812</programlisting>
</refsection>
<refsection>
<title>Geography Examples</title>
<para>Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.</para>
<programlisting>SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
'SRID=4326;POINT(-72.1235 42.3521)'::geography as gg1,
'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geography as gg2
) As foo ;
spheroid_dist | sphere_dist
------------------+------------------
123.802076746848 | 123.475736916397</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_3DDistance"/>, <xref linkend="ST_DWithin"/>, <xref linkend="ST_DistanceSphere"/>, <xref linkend="ST_Distance_Spheroid"/>,
<xref linkend="ST_MaxDistance"/>, <xref linkend="ST_HausdorffDistance"/>, <xref linkend="ST_FrechetDistance"/>, <xref linkend="ST_Transform"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DDistance">
<refnamediv>
<refname>ST_3DDistance</refname>
<refpurpose>Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in
projected units. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_3DDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional minimum cartesian distance between two geometries in
projected units (spatial ref units).</para>
<para>&Z_support;</para>
<!-- Optionally mention supports Polyhedral Surface -->
<para>&P_support;</para>
<para>&sqlmm_compliant; SQL-MM ISO/IEC 13249-3</para>
<para role="availability" conformance="2.0.0">Availability: 2.0.0</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.</para>
<para role="changed" conformance="3.0.0">Changed: 3.0.0 - SFCGAL version removed</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDistance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521 4)'::geometry,2163),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'::geometry,2163)
) As dist_3d,
ST_Distance(
ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry,2163),
ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry,2163)
) As dist_2d;
dist_3d | dist_2d
------------------+-----------------
127.295059324629 | 126.66425605671
</programlisting>
<programlisting>
-- Multilinestring and polygon both 3d and 2d distance
-- Same example as 3D closest point example
SELECT ST_3DDistance(poly, mline) As dist3d,
ST_Distance(poly, mline) As dist2d
FROM (SELECT 'POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))'::geometry as poly,
'MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1), (1 10 2, 5 20 1))'::geometry as mline) as foo;
dist3d | dist2d
-------------------+--------
0.716635696066337 | 0
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_3DClosestPoint"/>, <xref linkend="ST_3DDWithin"/>, <xref linkend="ST_3DMaxDistance"/>, <xref linkend="ST_3DShortestLine"/>, <xref linkend="ST_Transform"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_DistanceSphere">
<refnamediv>
<refname>ST_DistanceSphere</refname>
<refpurpose>Returns minimum distance in meters between two lon/lat
geometries using a spherical earth model.
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_DistanceSphere</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomlonlatA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomlonlatB</parameter></paramdef>
<paramdef choice="opt"><type>float8 </type> <parameter>radius=6371008</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns minimum distance in meters between two lon/lat
points. Uses a spherical earth and radius derived from the spheroid
defined by the SRID.
Faster than <xref linkend="ST_Distance_Spheroid"/>, but less
accurate. PostGIS Versions prior to 1.5 only implemented for points.</para>
<para role="availability" conformance="1.5">Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT round(CAST(ST_DistanceSphere(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(geom),32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters,
round(CAST(ST_Distance(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)', 4326)) As numeric),5) As dist_degrees,
round(CAST(ST_Distance(ST_Transform(geom,32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As min_dist_line_point_meters
FROM
(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As geom) as foo;
dist_meters | dist_utm11_meters | dist_degrees | min_dist_line_point_meters
-------------+-------------------+--------------+----------------------------
70424.47 | 70438.00 | 0.72900 | 65871.18
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_Distance_Spheroid"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Distance_Spheroid">
<refnamediv>
<refname>ST_DistanceSpheroid</refname>
<refpurpose>Returns the minimum distance between two lon/lat geometries
using a spheroidal earth model.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_DistanceSpheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomlonlatA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomlonlatB</parameter></paramdef>
<paramdef choice="opt"><type>spheroid </type><parameter>measurement_spheroid=WGS84</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns minimum distance in meters between two lon/lat
geometries given a particular spheroid. See the explanation of spheroids given for
<xref linkend="ST_Length_Spheroid"/>.</para>
<note>
<para>This function does not look at the SRID of the geometry.
It assumes the geometry coordinates are based on the provided spheroid.
</para>
</note>
<para role="availability" conformance="1.5">Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT round(CAST(
ST_DistanceSpheroid(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
As numeric),2) As dist_meters_spheroid,
round(CAST(ST_DistanceSphere(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(geom),32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As geom) as foo;
dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
70454.92 | 70424.47 | 70438.00
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_DistanceSphere"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_FrechetDistance">
<refnamediv>
<refname>ST_FrechetDistance</refname>
<refpurpose>Returns the Fréchet distance between two geometries.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_FrechetDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>float</type>
<parameter>densifyFrac = -1</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Implements algorithm for computing the Fréchet distance restricted to discrete points for both geometries, based on <link xlink:href="http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf">Computing Discrete Fréchet Distance</link>.
The Fréchet distance is a measure of similarity between curves that takes into account the location and ordering of the points along the curves. Therefore it is often better than the Hausdorff distance. </para>
<para>
When the optional densifyFrac is specified, this function performs a segment densification before computing the discrete Fréchet distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.
</para>
<para>Units are in the units of the spatial reference system of the geometries.
</para>
<note>
<para>
The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.
</para>
</note>
<note>
<para>
The smaller densifyFrac we specify, the more accurate Fréchet distance we get. But, the computation time and the memory usage increase with the square of the number of subsegments.
</para>
</note>
<para>Performed by the GEOS module.</para>
<para role="availability" conformance="2.4.0">Availability: 2.4.0 - requires GEOS >= 3.7.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>postgres=# SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
st_frechetdistance
--------------------
70.7106781186548
(1 row)
</programlisting>
<programlisting>SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry, 0.5);
st_frechetdistance
--------------------
50
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_HausdorffDistance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_HausdorffDistance">
<refnamediv>
<refname>ST_HausdorffDistance</refname>
<refpurpose>Returns the Hausdorff distance between two geometries. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_HausdorffDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_HausdorffDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>float</type>
<parameter>densifyFrac</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the
<link xlink:href="http://en.wikipedia.org/wiki/Hausdorff_distance">Hausdorff distance</link>
between two geometries.
The Hausdorff distance is a measure of how similar or dissimilar 2 geometries are.
</para>
<para>The function actually computes the "Discrete Hausdorff Distance".
This is the Hausdorff distance computed at discrete points on the geometries.
The <parameter>densifyFrac</parameter> parameter can be specified,
to provide a more accurate answer by densifying
segments before computing the discrete Hausdorff distance.
Each segment is split into a number of equal-length subsegments
whose fraction of the segment length is closest to the given fraction.
</para>
<para>Units are in the units of the spatial reference system of the geometries.
</para>
<note>
<para>
This algorithm is NOT equivalent to the standard Hausdorff distance.
However, it computes an approximation that is correct for a large subset of useful cases.
One important case is Linestrings that are roughly parallel to each other,
and roughly equal in length. This is a useful metric for line matching.
</para>
</note>
<para role="availability" conformance="1.5.0">Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_hausdorffdistance01.png"/>
</imageobject>
<caption><para>Hausdorff distance (red) and distance (yellow)
between two lines </para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_HausdorffDistance(geomA, geomB),
ST_Distance(geomA, geomB)
FROM (SELECT 'LINESTRING (20 70, 70 60, 110 70, 170 70)'::geometry AS geomA,
'LINESTRING (20 90, 130 90, 60 100, 190 100)'::geometry AS geomB) AS t;
st_hausdorffdistance | st_distance
----------------------+-------------
37.26206567625497 | 20
</programlisting>
<para><emphasis role="bold">Example:</emphasis> Hausdorff distance with densification.</para>
<programlisting>
SELECT ST_HausdorffDistance(
'LINESTRING (130 0, 0 0, 0 150)'::geometry,
'LINESTRING (10 10, 10 150, 130 10)'::geometry,
0.5);
----------------------
70
</programlisting>
<para><emphasis role="bold">Example:</emphasis>
For each building, find the parcel that best represents it.
First we require that the parcel intersect with the building geometry.
<code>DISTINCT ON</code> guarantees we get each building listed only once.
<code>ORDER BY .. ST_HausdorffDistance</code> selects the parcel that is most similar to the building.</para>
<programlisting>
SELECT DISTINCT ON (buildings.gid) buildings.gid, parcels.parcel_id
FROM buildings
INNER JOIN parcels
ON ST_Intersects(buildings.geom, parcels.geom)
ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_FrechetDistance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Length">
<refnamediv>
<refname>ST_Length</refname>
<refpurpose>Returns the 2D length of a linear geometry.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length</function></funcdef>
<paramdef><type>geometry </type><parameter>a_2dlinestring</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Length</function></funcdef>
<paramdef><type>geography </type><parameter>geog</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type><parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>For geometry types: returns the 2D Cartesian length of the geometry if it is a LineString, MultiLineString, ST_Curve, ST_MultiCurve.
For areal geometries 0 is returned; use <xref linkend="ST_Perimeter"/> instead.
The units of length is determined by the
spatial reference system of the geometry.</para>
<para>For geography types: computation is performed using the inverse geodesic calculation. Units of length are in meters.
If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
If <varname>use_spheroid = false</varname>, then the calculation is based on a sphere instead of a spheroid.
</para>
<para>Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.</para>
<warning><para role="changed" conformance="2.0.0">Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon</para></warning>
<note><para>For geography the calculation defaults to using a spheroidal model. To use the faster but less accurate spherical calculation use ST_Length(gg,false);</para></note>
<para>&sfs_compliant; s2.1.5.1</para>
<para>&sqlmm_compliant; SQL-MM 3: 7.1.2, 9.3.4</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0 geography support was introduced in 1.5.</para>
</refsection>
<refsection>
<title>Geometry Examples</title>
<para>Return length in feet for line string. Note this is in feet because EPSG:2249 is
Massachusetts State Plane Feet</para>
<programlisting>
SELECT ST_Length(ST_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length
---------
122.630744000095
--Transforming WGS 84 LineString to Massachusetts state plane meters
SELECT ST_Length(
ST_Transform(
ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)'),
26986
)
);
st_length
---------
34309.4563576191
</programlisting>
</refsection>
<refsection>
<title>Geography Examples</title>
<para>Return length of WGS 84 geography line</para>
<programlisting>
-- the default calculation uses a spheroid
SELECT ST_Length(the_geog) As length_spheroid, ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText(
'SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)') As the_geog)
As foo;
length_spheroid | length_sphere
------------------+------------------
34310.5703627288 | 34346.2060960742
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeographyFromText"/>, <xref linkend="ST_GeomFromEWKT"/>, <xref linkend="ST_Length_Spheroid"/>, <xref linkend="ST_Perimeter"/>, <xref linkend="ST_Transform"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Length2D">
<refnamediv>
<refname>ST_Length2D</refname>
<refpurpose>Returns the 2D length of a linear geometry. Alias for <varname>ST_Length</varname></refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length2D</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_2dlinestring</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2D length of the geometry if it is a
linestring or multi-linestring. This is an alias for <varname>ST_Length</varname></para>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Length"/>, <xref linkend="ST_3DLength"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DLength">
<refnamediv>
<refname>ST_3DLength</refname>
<refpurpose>Returns the 3D length of a linear geometry.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_3DLength</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_3dlinestring</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
LineString or MultiLineString. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)</para>
<para>&Z_support;</para>
<para>&sqlmm_compliant; SQL-MM IEC 13249-3: 7.1, 10.3</para>
<para role="changed" conformance="2.0.0">Changed: 2.0.0 In prior versions this used to be called ST_Length3D</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is
Massachusetts State Plane Feet</para>
<programlisting>
SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength
-----------
122.704716741457
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Length"/>, <xref linkend="ST_Length2D"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Length_Spheroid">
<refnamediv>
<refname>ST_LengthSpheroid</refname>
<refpurpose>Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_LengthSpheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_geometry</parameter></paramdef>
<paramdef><type>spheroid </type> <parameter>a_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Calculates the length or perimeter of a geometry on an ellipsoid. This
is useful if the coordinates of the geometry are in
longitude/latitude and a length is desired without reprojection.
The spheroid is specified by a text value as follows:</para>
<literallayout><![CDATA[
SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]
]]> </literallayout>
<para>For example:</para>
<literallayout>SPHEROID["GRS_1980",6378137,298.257222101]</literallayout>
<para role="availability" conformance="1.2.2">Availability: 1.2.2</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid</para>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_LengthSpheroid( geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]' )
FROM geometry_table;
SELECT ST_LengthSpheroid( geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(-71.05957 42.3589 , -71.061 43))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+------------------+------------------
85204.5207562955 | 13986.8725229309 | 71217.6482333646
--3D
SELECT ST_LengthSpheroid( geom, sph_m ) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
(-71.05957 42.3589 75, -71.061 43 90))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+-----------------+------------------
85204.5259107402 | 13986.876097711 | 71217.6498130292
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeometryN"/>, <xref linkend="ST_Length"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_LongestLine">
<refnamediv>
<refname>ST_LongestLine</refname>
<refpurpose>Returns the 2D longest line between two geometries.
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_LongestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional longest line between the points of two geometries.
The line returned starts on <varname>g1</varname> and ends on <varname>g2</varname>.
</para>
<para>The longest line always occurs between two vertices.
The function returns the first longest line if more than one is found.
The length of the line is equal to the distance returned by <xref linkend="ST_MaxDistance"/>.
</para>
<para>
If g1 and g2 are the same geometry, returns the line between the two vertices farthest apart in the geometry.
The endpoints of the line lie on the circle computed by <xref linkend="ST_MinimumBoundingCircle"/>.
</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline01.png"/>
</imageobject>
<caption><para>Longest line between a point and a line</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_LongestLine(
'POINT (160 40)',
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)' )
) AS lline;
-----------------
LINESTRING(160 40,130 190)
</programlisting>
</para>
<para>
<informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline02.png"/>
</imageobject>
<caption><para>Longest line between two polygons</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_LongestLine(
'POLYGON ((190 150, 20 10, 160 70, 190 150))',
ST_Buffer('POINT(80 160)', 30)
) ) AS llinewkt;
-----------------
LINESTRING(20 10,105.3073372946034 186.95518130045156)
</programlisting>
</para>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline03.png"/>
</imageobject>
<caption><para>Longest line across a single geometry.
The length of the line is equal to the Maximum Distance.
The endpoints of the line lie on the Minimum Bounding Circle.</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_LongestLine( geom, geom)) AS llinewkt,
ST_MaxDistance( geom, geom) AS max_dist,
ST_Length( ST_LongestLine(geom, geom)) AS lenll
FROM (SELECT 'POLYGON ((40 180, 110 160, 180 180, 180 120, 140 90, 160 40, 80 10, 70 40, 20 50, 40 180),
(60 140, 99 77.5, 90 140, 60 140))'::geometry AS geom) AS t;
llinewkt | max_dist | lenll
---------------------------+--------------------+--------------------
LINESTRING(20 50,180 180) | 206.15528128088303 | 206.15528128088303
</programlisting>
</para>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MaxDistance"/>, <xref linkend="ST_ShortestLine"/>,
<xref linkend="ST_3DLongestLine"/>, <xref linkend="ST_MinimumBoundingCircle"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DLongestLine">
<refnamediv>
<refname>ST_3DLongestLine</refname>
<refpurpose>Returns the 3D longest line between two geometries</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_3DLongestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional longest line between two geometries.
The function returns the first longest line if more than one.
The line returned starts in g1 and ends in g2.
The 3D length of the line is equal to the distance returned by <xref linkend="ST_3DMaxDistance"/>.
</para>
<para role="availability" conformance="2.0.0">Availability: 2.0.0</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.</para>
<para>&Z_support;</para>
<!-- Optionally mention supports Polyhedral Surface -->
<para>&P_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<informaltable>
<tgroup cols="1">
<tbody>
<row>
<entry><para>linestring and point -- both 3d and 2d longest line
<programlisting>
SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;
lol3d_line_pt | lol2d_line_pt
-----------------------------------+----------------------------
LINESTRING(50 75 1000,100 100 30) | LINESTRING(98 190,100 100)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>linestring and multipoint -- both 3d and 2d longest line
<programlisting>SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;
lol3d_line_pt | lol2d_line_pt
---------------------------------+--------------------------
LINESTRING(98 190 1,50 74 1000) | LINESTRING(98 190,50 74)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>MultiLineString and Polygon both 3d and 2d longest line
<programlisting>SELECT ST_AsEWKT(ST_3DLongestLine(poly, mline)) As lol3d,
ST_AsEWKT(ST_LongestLine(poly, mline)) As lol2d
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
(1 10 2, 5 20 1))') As mline ) As foo;
lol3d | lol2d
------------------------------+--------------------------
LINESTRING(175 150 5,1 10 2) | LINESTRING(175 150,1 10)
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_3DClosestPoint"/>, <xref linkend="ST_3DDistance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_3DShortestLine"/>, <xref linkend="ST_3DMaxDistance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_MaxDistance">
<refnamediv>
<refname>ST_MaxDistance</refname>
<refpurpose>Returns the 2D largest distance between two geometries in
projected units.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_MaxDistance</function></funcdef>
<paramdef><type>geometry </type> <parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<!-- optionally mention that this function uses indexes if appropriate -->
<para>Returns the 2-dimensional maximum distance between two geometries, in projected units.
The maximum distance always occurs between two vertices.
This is the length of the line returned by <xref linkend="ST_LongestLine"/>.
</para>
<para>If g1 and g2 are the same geometry, returns the distance between
the two vertices farthest apart in that geometry.
</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Maximum distance between a point and lines.</para>
<programlisting>SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
-----------------
2
SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 2, 2 2 )'::geometry);
------------------
2.82842712474619
</programlisting>
<para>Maximum distance between vertices of a single geometry.</para>
<programlisting>
SELECT ST_MaxDistance('POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry,
'POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry);
------------------
14.142135623730951
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_DFullyWithin"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DMaxDistance">
<refnamediv>
<refname>ST_3DMaxDistance</refname>
<refpurpose>Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in
projected units. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_3DMaxDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional maximum cartesian distance between two geometries in
projected units (spatial ref units). </para>
<para>&Z_support;</para>
<!-- Optionally mention supports Polyhedral Surface -->
<para>&P_support;</para>
<para role="availability" conformance="2.0.0">Availability: 2.0.0</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DMaxDistance(
ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
ST_MaxDistance(
ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_2d;
dist_3d | dist_2d
------------------+------------------
24383.7467488441 | 22247.8472107251
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_3DDWithin"/>, <xref linkend="ST_3DMaxDistance"/>, <xref linkend="ST_Transform"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_MinimumClearance">
<refnamediv>
<refname>ST_MinimumClearance</refname>
<refpurpose>Returns the minimum clearance of a geometry, a measure of a geometry's robustness.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_MinimumClearance</function></funcdef>
<paramdef><type>geometry </type><parameter>g</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>
It is possible for a geometry to meet the criteria for validity according to <xref linkend="ST_IsValid"/> (polygons)
or <xref linkend="ST_IsSimple"/> (lines),
but to become invalid if one of its vertices is moved by a small distance.
This can happen due to loss of precision during conversion to text formats (such as WKT, KML, GML, GeoJSON),
or binary formats that do not use double-precision floating point coordinates (e.g. MapInfo TAB).
</para>
<para>
The minimum clearance is a quantitative measure of a geometry's robustness to change in coordinate precision.
It is the largest distance by which vertices of the geometry can be moved without creating an invalid geometry.
Larger values of minimum clearance indicate greater robustness.
</para>
<para>
If a geometry has a minimum clearance of <varname>e</varname>, then:
<itemizedlist>
<listitem>
<para>
No two distinct vertices in the geometry are closer than the distance <varname>e</varname>.
</para>
</listitem>
<listitem>
<para>
No vertex is closer than <varname>e</varname> to a line segment of which it is not an endpoint.
</para>
</listitem>
</itemizedlist>
</para>
<para>
If no minimum clearance exists for a geometry (e.g. a single point, or a MultiPoint whose points are identical),
the return value is <varname>Infinity</varname>.
</para>
<para>
To avoid validity issues caused by precision loss,
<xref linkend="ST_ReducePrecision"/> can reduce coordinate precision
while ensuring that polygonal geometry remains valid.
</para>
<para role="availability" conformance="2.3.0">Availability: 2.3.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
SELECT ST_MinimumClearance('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))');
st_minimumclearance
---------------------
0.00032
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para>
<xref linkend="ST_MinimumClearanceLine"/>,
<xref linkend="ST_IsSimple"/>,
<xref linkend="ST_IsValid"/>,
<xref linkend="ST_ReducePrecision"/>
</para>
</refsection>
</refentry>
<refentry xml:id="ST_MinimumClearanceLine">
<refnamediv>
<refname>ST_MinimumClearanceLine</refname>
<refpurpose>Returns the two-point LineString spanning a geometry's minimum clearance.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>Geometry <function>ST_MinimumClearanceLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>
Returns the two-point LineString spanning a geometry's minimum clearance.
If the geometry does not have a minimum
clearance, <varname>LINESTRING EMPTY</varname> is returned.
</para>
<para>Performed by the GEOS module.</para>
<para role="availability" conformance="2.3.0">Availability: 2.3.0 - requires GEOS >= 3.6.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
-------------------------------
LINESTRING(0.5 0.00032,0.5 0)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MinimumClearance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Perimeter">
<refnamediv>
<refname>ST_Perimeter</refname>
<refpurpose>Returns the length of the boundary of a polygonal geometry or geography.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Perimeter</function></funcdef>
<paramdef><type>geometry </type><parameter>g1</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Perimeter</function></funcdef>
<paramdef><type>geography </type><parameter>geog</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type><parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for
non-areal geometries. For linear geometries use <xref linkend="ST_Length"/>. For geometry types, units for perimeter measures are specified by the
spatial reference system of the geometry.</para>
<para>For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters.
If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
If <varname>use_spheroid = false</varname>, then calculations will approximate a sphere instead of a spheroid.</para>
<para>Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.</para>
<para>&sfs_compliant; s2.1.5.1</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.3, 9.5.4</para>
<para role="availability" conformance="2.0.0">Availability 2.0.0: Support for geography was introduced</para>
</refsection>
<refsection>
<title>Examples: Geometry</title>
<para>Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is
Massachusetts State Plane Feet</para>
<programlisting>
SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter
---------
122.630744000095
(1 row)
SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter
---------
845.227713366825
(1 row)
</programlisting>
</refsection>
<refsection>
<title>Examples: Geography</title>
<para>Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)</para>
<programlisting>
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;
per_meters | per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949
-- MultiPolygon example --
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;
per_meters | per_sphere_meters | per_ft
------------------+-------------------+------------------
257.634283683311 | 257.412311446337 | 845.256836231335
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeogFromText"/>, <xref linkend="ST_GeomFromText"/>, <xref linkend="ST_Length"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_Perimeter2D">
<refnamediv>
<refname>ST_Perimeter2D</refname>
<refpurpose>Returns the 2D perimeter of a polygonal geometry.
Alias for <varname>ST_Perimeter</varname>.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Perimeter2D</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional perimeter of a polygonal geometry. </para>
<!-- optionally mention that this function uses indexes if appropriate -->
<note>
<para> This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration</para>
</note>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Perimeter"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DPerimeter">
<refnamediv>
<refname>ST_3DPerimeter</refname>
<refpurpose>Returns the 3D perimeter of a polygonal geometry.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_3DPerimeter</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon. If the geometry is 2-dimensional, then the 2-dimensional perimeter is returned. </para>
<para>&Z_support;</para>
<para>&sqlmm_compliant; SQL-MM ISO/IEC 13249-3: 8.1, 10.5</para>
<para role="changed" conformance="2.0.0">Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet</para>
<programlisting>SELECT ST_3DPerimeter(geom), ST_Perimeter2d(geom), ST_Perimeter(geom) FROM
(SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As geom) As foo;
ST_3DPerimeter | st_perimeter2d | st_perimeter
------------------+------------------+------------------
105.465793597674 | 105.432997272188 | 105.432997272188
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeomFromEWKT"/>, <xref linkend="ST_Perimeter"/>, <xref linkend="ST_Perimeter2D"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_ShortestLine">
<refnamediv>
<refname>ST_ShortestLine</refname>
<refpurpose>Returns the 2D shortest line between two geometries</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_ShortestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geom1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geom2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>geography <function>ST_ShortestLine</function></funcdef>
<paramdef><type>geography </type>
<parameter>geom1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>geom2</parameter></paramdef>
<paramdef choice="opt"><type>boolean </type><parameter>use_spheroid = true</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional shortest line between two geometries.
The line returned starts in <varname>geom1</varname> and ends in <varname>geom2</varname>.
If <varname>geom1</varname> and <varname>geom2</varname> intersect
the result is a line with start and end at an intersection point.
The length of the line is the same as <xref linkend="ST_Distance"/> returns for g1 and g2.
</para>
<para role="enhanced" conformance="3.4.0">Enhanced: 3.4.0 - support for geography.</para>
<para role="availability" conformance="1.5.0">Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_shortestline01.png"/>
</imageobject>
<caption><para>Shortest line between Point and LineString</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_ShortestLine(
'POINT (160 40)',
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)')
) As sline;
---------------------------------------------------------
LINESTRING(160 40,125.75342465753425 115.34246575342466)
</programlisting>
</para>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_shortestline02.png"/>
</imageobject>
<caption><para>Shortest line between Polygons</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText( ST_ShortestLine(
'POLYGON ((190 150, 20 10, 160 70, 190 150))',
ST_Buffer('POINT(80 160)', 30)
) ) AS llinewkt;
-----------------
LINESTRING(131.59149149528952 101.89887534906197,101.21320343559644 138.78679656440357)
</programlisting>
</para>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_ClosestPoint"/>, <xref linkend="ST_Distance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_MaxDistance"/></para>
</refsection>
</refentry>
<refentry xml:id="ST_3DShortestLine">
<refnamediv>
<refname>ST_3DShortestLine</refname>
<refpurpose>Returns the 3D shortest line between two geometries</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_3DShortestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional shortest line between two geometries. The function will
only return the first shortest line if more than one, that the function finds.
If g1 and g2 intersects in just one point the function will return a line with both start
and end in that intersection-point.
If g1 and g2 are intersecting with more than one point the function will return a line with start
and end in the same point but it can be any of the intersecting points.
The line returned will always start in g1 and end in g2.
The 3D length of the line this function returns will always be the same as <xref linkend="ST_3DDistance"/> returns for g1 and g2.
</para>
<para role="availability" conformance="2.0.0">Availability: 2.0.0</para>
<para role="changed" conformance="2.2.0">Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.</para>
<para>&Z_support;</para>
<!-- Optionally mention supports Polyhedral Surface -->
<para>&P_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<informaltable>
<tgroup cols="1">
<tbody>
<row>
<entry><para>linestring and point -- both 3d and 2d shortest line
<programlisting>
SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;
shl3d_line_pt | shl2d_line_pt
----------------------------------------------------------------------------+------------------------------------------------------
LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(73.0769230769231 115.384615384615,100 100)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>linestring and multipoint -- both 3d and 2d shortest line
<programlisting>SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;
shl3d_line_pt | shl2d_line_pt
---------------------------------------------------------------------------+------------------------
LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(50 75,50 74)
</programlisting>
</para></entry>
</row>
<row>
<entry><para>MultiLineString and polygon both 3d and 2d shortest line
<programlisting>SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) As shl3d,
ST_AsEWKT(ST_ShortestLine(poly, mline)) As shl2d
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
(1 10 2, 5 20 1))') As mline ) As foo;
shl3d | shl2d
---------------------------------------------------------------------------------------------------+------------------------
LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 5.03423778139177) | LINESTRING(20 40,20 40)
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_3DClosestPoint"/>, <xref linkend="ST_3DDistance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_ShortestLine"/>, <xref linkend="ST_3DMaxDistance"/></para>
</refsection>
</refentry>
</section>
|