1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
/*-------------------------------------------------------------------------
*
* pg_buffercache_pages.c
* display some contents of the buffer cache
*
* contrib/pg_buffercache/pg_buffercache_pages.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/relation.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "port/pg_numa.h"
#include "storage/buf_internals.h"
#include "storage/bufmgr.h"
#include "utils/rel.h"
#define NUM_BUFFERCACHE_PAGES_MIN_ELEM 8
#define NUM_BUFFERCACHE_PAGES_ELEM 9
#define NUM_BUFFERCACHE_SUMMARY_ELEM 5
#define NUM_BUFFERCACHE_USAGE_COUNTS_ELEM 4
#define NUM_BUFFERCACHE_EVICT_ELEM 2
#define NUM_BUFFERCACHE_EVICT_RELATION_ELEM 3
#define NUM_BUFFERCACHE_EVICT_ALL_ELEM 3
#define NUM_BUFFERCACHE_NUMA_ELEM 3
PG_MODULE_MAGIC_EXT(
.name = "pg_buffercache",
.version = PG_VERSION
);
/*
* Record structure holding the to be exposed cache data.
*/
typedef struct
{
uint32 bufferid;
RelFileNumber relfilenumber;
Oid reltablespace;
Oid reldatabase;
ForkNumber forknum;
BlockNumber blocknum;
bool isvalid;
bool isdirty;
uint16 usagecount;
/*
* An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
* being pinned by too many backends and each backend will only pin once
* because of bufmgr.c's PrivateRefCount infrastructure.
*/
int32 pinning_backends;
} BufferCachePagesRec;
/*
* Function context for data persisting over repeated calls.
*/
typedef struct
{
TupleDesc tupdesc;
BufferCachePagesRec *record;
} BufferCachePagesContext;
/*
* Record structure holding the to be exposed cache data.
*/
typedef struct
{
uint32 bufferid;
int64 page_num;
int32 numa_node;
} BufferCacheNumaRec;
/*
* Function context for data persisting over repeated calls.
*/
typedef struct
{
TupleDesc tupdesc;
int buffers_per_page;
int pages_per_buffer;
int os_page_size;
BufferCacheNumaRec *record;
} BufferCacheNumaContext;
/*
* Function returning data from the shared buffer cache - buffer number,
* relation node/tablespace/database/blocknum and dirty indicator.
*/
PG_FUNCTION_INFO_V1(pg_buffercache_pages);
PG_FUNCTION_INFO_V1(pg_buffercache_numa_pages);
PG_FUNCTION_INFO_V1(pg_buffercache_summary);
PG_FUNCTION_INFO_V1(pg_buffercache_usage_counts);
PG_FUNCTION_INFO_V1(pg_buffercache_evict);
PG_FUNCTION_INFO_V1(pg_buffercache_evict_relation);
PG_FUNCTION_INFO_V1(pg_buffercache_evict_all);
/* Only need to touch memory once per backend process lifetime */
static bool firstNumaTouch = true;
Datum
pg_buffercache_pages(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
Datum result;
MemoryContext oldcontext;
BufferCachePagesContext *fctx; /* User function context. */
TupleDesc tupledesc;
TupleDesc expected_tupledesc;
HeapTuple tuple;
if (SRF_IS_FIRSTCALL())
{
int i;
funcctx = SRF_FIRSTCALL_INIT();
/* Switch context when allocating stuff to be used in later calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Create a user function context for cross-call persistence */
fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
/*
* To smoothly support upgrades from version 1.0 of this extension
* transparently handle the (non-)existence of the pinning_backends
* column. We unfortunately have to get the result type for that... -
* we can't use the result type determined by the function definition
* without potentially crashing when somebody uses the old (or even
* wrong) function definition though.
*/
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
elog(ERROR, "incorrect number of output arguments");
/* Construct a tuple descriptor for the result rows. */
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
INT4OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
INT2OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
INT8OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
BOOLOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
INT2OID, -1, 0);
if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
INT4OID, -1, 0);
fctx->tupdesc = BlessTupleDesc(tupledesc);
/* Allocate NBuffers worth of BufferCachePagesRec records. */
fctx->record = (BufferCachePagesRec *)
MemoryContextAllocHuge(CurrentMemoryContext,
sizeof(BufferCachePagesRec) * NBuffers);
/* Set max calls and remember the user function context. */
funcctx->max_calls = NBuffers;
funcctx->user_fctx = fctx;
/* Return to original context when allocating transient memory */
MemoryContextSwitchTo(oldcontext);
/*
* Scan through all the buffers, saving the relevant fields in the
* fctx->record structure.
*
* We don't hold the partition locks, so we don't get a consistent
* snapshot across all buffers, but we do grab the buffer header
* locks, so the information of each buffer is self-consistent.
*/
for (i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
bufHdr = GetBufferDescriptor(i);
/* Lock each buffer header before inspecting. */
buf_state = LockBufHdr(bufHdr);
fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
fctx->record[i].relfilenumber = BufTagGetRelNumber(&bufHdr->tag);
fctx->record[i].reltablespace = bufHdr->tag.spcOid;
fctx->record[i].reldatabase = bufHdr->tag.dbOid;
fctx->record[i].forknum = BufTagGetForkNum(&bufHdr->tag);
fctx->record[i].blocknum = bufHdr->tag.blockNum;
fctx->record[i].usagecount = BUF_STATE_GET_USAGECOUNT(buf_state);
fctx->record[i].pinning_backends = BUF_STATE_GET_REFCOUNT(buf_state);
if (buf_state & BM_DIRTY)
fctx->record[i].isdirty = true;
else
fctx->record[i].isdirty = false;
/* Note if the buffer is valid, and has storage created */
if ((buf_state & BM_VALID) && (buf_state & BM_TAG_VALID))
fctx->record[i].isvalid = true;
else
fctx->record[i].isvalid = false;
UnlockBufHdr(bufHdr, buf_state);
}
}
funcctx = SRF_PERCALL_SETUP();
/* Get the saved state */
fctx = funcctx->user_fctx;
if (funcctx->call_cntr < funcctx->max_calls)
{
uint32 i = funcctx->call_cntr;
Datum values[NUM_BUFFERCACHE_PAGES_ELEM];
bool nulls[NUM_BUFFERCACHE_PAGES_ELEM];
values[0] = Int32GetDatum(fctx->record[i].bufferid);
nulls[0] = false;
/*
* Set all fields except the bufferid to null if the buffer is unused
* or not valid.
*/
if (fctx->record[i].blocknum == InvalidBlockNumber ||
fctx->record[i].isvalid == false)
{
nulls[1] = true;
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
/* unused for v1.0 callers, but the array is always long enough */
nulls[8] = true;
}
else
{
values[1] = ObjectIdGetDatum(fctx->record[i].relfilenumber);
nulls[1] = false;
values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
nulls[2] = false;
values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
nulls[3] = false;
values[4] = ObjectIdGetDatum(fctx->record[i].forknum);
nulls[4] = false;
values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
nulls[5] = false;
values[6] = BoolGetDatum(fctx->record[i].isdirty);
nulls[6] = false;
values[7] = Int16GetDatum(fctx->record[i].usagecount);
nulls[7] = false;
/* unused for v1.0 callers, but the array is always long enough */
values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
nulls[8] = false;
}
/* Build and return the tuple. */
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else
SRF_RETURN_DONE(funcctx);
}
/*
* Inquire about NUMA memory mappings for shared buffers.
*
* Returns NUMA node ID for each memory page used by the buffer. Buffers may
* be smaller or larger than OS memory pages. For each buffer we return one
* entry for each memory page used by the buffer (if the buffer is smaller,
* it only uses a part of one memory page).
*
* We expect both sizes (for buffers and memory pages) to be a power-of-2, so
* one is always a multiple of the other.
*
* In order to get reliable results we also need to touch memory pages, so
* that the inquiry about NUMA memory node doesn't return -2 (which indicates
* unmapped/unallocated pages).
*/
Datum
pg_buffercache_numa_pages(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
MemoryContext oldcontext;
BufferCacheNumaContext *fctx; /* User function context. */
TupleDesc tupledesc;
TupleDesc expected_tupledesc;
HeapTuple tuple;
Datum result;
if (SRF_IS_FIRSTCALL())
{
int i,
idx;
Size os_page_size;
void **os_page_ptrs;
int *os_page_status;
uint64 os_page_count;
int pages_per_buffer;
int max_entries;
char *startptr,
*endptr;
if (pg_numa_init() == -1)
elog(ERROR, "libnuma initialization failed or NUMA is not supported on this platform");
/*
* The database block size and OS memory page size are unlikely to be
* the same. The block size is 1-32KB, the memory page size depends on
* platform. On x86 it's usually 4KB, on ARM it's 4KB or 64KB, but
* there are also features like THP etc. Moreover, we don't quite know
* how the pages and buffers "align" in memory - the buffers may be
* shifted in some way, using more memory pages than necessary.
*
* So we need to be careful about mapping buffers to memory pages. We
* calculate the maximum number of pages a buffer might use, so that
* we allocate enough space for the entries. And then we count the
* actual number of entries as we scan the buffers.
*
* This information is needed before calling move_pages() for NUMA
* node id inquiry.
*/
os_page_size = pg_get_shmem_pagesize();
/*
* The pages and block size is expected to be 2^k, so one divides the
* other (we don't know in which direction). This does not say
* anything about relative alignment of pages/buffers.
*/
Assert((os_page_size % BLCKSZ == 0) || (BLCKSZ % os_page_size == 0));
/*
* How many addresses we are going to query? Simply get the page for
* the first buffer, and first page after the last buffer, and count
* the pages from that.
*/
startptr = (char *) TYPEALIGN_DOWN(os_page_size,
BufferGetBlock(1));
endptr = (char *) TYPEALIGN(os_page_size,
(char *) BufferGetBlock(NBuffers) + BLCKSZ);
os_page_count = (endptr - startptr) / os_page_size;
/* Used to determine the NUMA node for all OS pages at once */
os_page_ptrs = palloc0(sizeof(void *) * os_page_count);
os_page_status = palloc(sizeof(uint64) * os_page_count);
/* Fill pointers for all the memory pages. */
idx = 0;
for (char *ptr = startptr; ptr < endptr; ptr += os_page_size)
{
os_page_ptrs[idx++] = ptr;
/* Only need to touch memory once per backend process lifetime */
if (firstNumaTouch)
pg_numa_touch_mem_if_required(ptr);
}
Assert(idx == os_page_count);
elog(DEBUG1, "NUMA: NBuffers=%d os_page_count=" UINT64_FORMAT " "
"os_page_size=%zu", NBuffers, os_page_count, os_page_size);
/*
* If we ever get 0xff back from kernel inquiry, then we probably have
* bug in our buffers to OS page mapping code here.
*/
memset(os_page_status, 0xff, sizeof(int) * os_page_count);
/* Query NUMA status for all the pointers */
#define NUMA_QUERY_CHUNK_SIZE 16 /* has to be <= DO_PAGES_STAT_CHUNK_NR (do_pages_stat())*/
for (uint64 chunk_start = 0; chunk_start < os_page_count; chunk_start += NUMA_QUERY_CHUNK_SIZE) {
uint64 chunk_size = Min(NUMA_QUERY_CHUNK_SIZE, os_page_count - chunk_start);
if (pg_numa_query_pages(0, chunk_size, &os_page_ptrs[chunk_start],
&os_page_status[chunk_start]) == -1)
elog(ERROR, "failed NUMA pages inquiry status: %m");
}
#undef NUMA_QUERY_CHUNK_SIZE
/* Initialize the multi-call context, load entries about buffers */
funcctx = SRF_FIRSTCALL_INIT();
/* Switch context when allocating stuff to be used in later calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Create a user function context for cross-call persistence */
fctx = (BufferCacheNumaContext *) palloc(sizeof(BufferCacheNumaContext));
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
if (expected_tupledesc->natts != NUM_BUFFERCACHE_NUMA_ELEM)
elog(ERROR, "incorrect number of output arguments");
/* Construct a tuple descriptor for the result rows. */
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
INT4OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "os_page_num",
INT8OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "numa_node",
INT4OID, -1, 0);
fctx->tupdesc = BlessTupleDesc(tupledesc);
/*
* Each buffer needs at least one entry, but it might be offset in
* some way, and use one extra entry. So we allocate space for the
* maximum number of entries we might need, and then count the exact
* number as we're walking buffers. That way we can do it in one pass,
* without reallocating memory.
*/
pages_per_buffer = Max(1, BLCKSZ / os_page_size) + 1;
max_entries = NBuffers * pages_per_buffer;
/* Allocate entries for BufferCachePagesRec records. */
fctx->record = (BufferCacheNumaRec *)
MemoryContextAllocHuge(CurrentMemoryContext,
sizeof(BufferCacheNumaRec) * max_entries);
/* Return to original context when allocating transient memory */
MemoryContextSwitchTo(oldcontext);
if (firstNumaTouch)
elog(DEBUG1, "NUMA: page-faulting the buffercache for proper NUMA readouts");
/*
* Scan through all the buffers, saving the relevant fields in the
* fctx->record structure.
*
* We don't hold the partition locks, so we don't get a consistent
* snapshot across all buffers, but we do grab the buffer header
* locks, so the information of each buffer is self-consistent.
*
* This loop touches and stores addresses into os_page_ptrs[] as input
* to one big move_pages(2) inquiry system call. Basically we ask for
* all memory pages for NBuffers.
*/
startptr = (char *) TYPEALIGN_DOWN(os_page_size, (char *) BufferGetBlock(1));
idx = 0;
for (i = 0; i < NBuffers; i++)
{
char *buffptr = (char *) BufferGetBlock(i + 1);
BufferDesc *bufHdr;
uint32 buf_state;
uint32 bufferid;
int32 page_num;
char *startptr_buff,
*endptr_buff;
CHECK_FOR_INTERRUPTS();
bufHdr = GetBufferDescriptor(i);
/* Lock each buffer header before inspecting. */
buf_state = LockBufHdr(bufHdr);
bufferid = BufferDescriptorGetBuffer(bufHdr);
UnlockBufHdr(bufHdr, buf_state);
/* start of the first page of this buffer */
startptr_buff = (char *) TYPEALIGN_DOWN(os_page_size, buffptr);
/* end of the buffer (no need to align to memory page) */
endptr_buff = buffptr + BLCKSZ;
Assert(startptr_buff < endptr_buff);
/* calculate ID of the first page for this buffer */
page_num = (startptr_buff - startptr) / os_page_size;
/* Add an entry for each OS page overlapping with this buffer. */
for (char *ptr = startptr_buff; ptr < endptr_buff; ptr += os_page_size)
{
fctx->record[idx].bufferid = bufferid;
fctx->record[idx].page_num = page_num;
fctx->record[idx].numa_node = os_page_status[page_num];
/* advance to the next entry/page */
++idx;
++page_num;
}
}
Assert((idx >= os_page_count) && (idx <= max_entries));
/* Set max calls and remember the user function context. */
funcctx->max_calls = idx;
funcctx->user_fctx = fctx;
/* Remember this backend touched the pages */
firstNumaTouch = false;
}
funcctx = SRF_PERCALL_SETUP();
/* Get the saved state */
fctx = funcctx->user_fctx;
if (funcctx->call_cntr < funcctx->max_calls)
{
uint32 i = funcctx->call_cntr;
Datum values[NUM_BUFFERCACHE_NUMA_ELEM];
bool nulls[NUM_BUFFERCACHE_NUMA_ELEM];
values[0] = Int32GetDatum(fctx->record[i].bufferid);
nulls[0] = false;
values[1] = Int64GetDatum(fctx->record[i].page_num);
nulls[1] = false;
values[2] = Int32GetDatum(fctx->record[i].numa_node);
nulls[2] = false;
/* Build and return the tuple. */
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else
SRF_RETURN_DONE(funcctx);
}
Datum
pg_buffercache_summary(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_SUMMARY_ELEM];
bool nulls[NUM_BUFFERCACHE_SUMMARY_ELEM];
int32 buffers_used = 0;
int32 buffers_unused = 0;
int32 buffers_dirty = 0;
int32 buffers_pinned = 0;
int64 usagecount_total = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
/*
* This function summarizes the state of all headers. Locking the
* buffer headers wouldn't provide an improved result as the state of
* the buffer can still change after we release the lock and it'd
* noticeably increase the cost of the function.
*/
bufHdr = GetBufferDescriptor(i);
buf_state = pg_atomic_read_u32(&bufHdr->state);
if (buf_state & BM_VALID)
{
buffers_used++;
usagecount_total += BUF_STATE_GET_USAGECOUNT(buf_state);
if (buf_state & BM_DIRTY)
buffers_dirty++;
}
else
buffers_unused++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
buffers_pinned++;
}
memset(nulls, 0, sizeof(nulls));
values[0] = Int32GetDatum(buffers_used);
values[1] = Int32GetDatum(buffers_unused);
values[2] = Int32GetDatum(buffers_dirty);
values[3] = Int32GetDatum(buffers_pinned);
if (buffers_used != 0)
values[4] = Float8GetDatum((double) usagecount_total / buffers_used);
else
nulls[4] = true;
/* Build and return the tuple. */
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
Datum
pg_buffercache_usage_counts(PG_FUNCTION_ARGS)
{
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
int usage_counts[BM_MAX_USAGE_COUNT + 1] = {0};
int dirty[BM_MAX_USAGE_COUNT + 1] = {0};
int pinned[BM_MAX_USAGE_COUNT + 1] = {0};
Datum values[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM];
bool nulls[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM] = {0};
InitMaterializedSRF(fcinfo, 0);
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr = GetBufferDescriptor(i);
uint32 buf_state = pg_atomic_read_u32(&bufHdr->state);
int usage_count;
usage_count = BUF_STATE_GET_USAGECOUNT(buf_state);
usage_counts[usage_count]++;
if (buf_state & BM_DIRTY)
dirty[usage_count]++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
pinned[usage_count]++;
}
for (int i = 0; i < BM_MAX_USAGE_COUNT + 1; i++)
{
values[0] = Int32GetDatum(i);
values[1] = Int32GetDatum(usage_counts[i]);
values[2] = Int32GetDatum(dirty[i]);
values[3] = Int32GetDatum(pinned[i]);
tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
}
return (Datum) 0;
}
/*
* Helper function to check if the user has superuser privileges.
*/
static void
pg_buffercache_superuser_check(char *func_name)
{
if (!superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be superuser to use %s()",
func_name)));
}
/*
* Try to evict a shared buffer.
*/
Datum
pg_buffercache_evict(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_ELEM] = {0};
Buffer buf = PG_GETARG_INT32(0);
bool buffer_flushed;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict");
if (buf < 1 || buf > NBuffers)
elog(ERROR, "bad buffer ID: %d", buf);
values[0] = BoolGetDatum(EvictUnpinnedBuffer(buf, &buffer_flushed));
values[1] = BoolGetDatum(buffer_flushed);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
/*
* Try to evict specified relation.
*/
Datum
pg_buffercache_evict_relation(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_RELATION_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_RELATION_ELEM] = {0};
Oid relOid;
Relation rel;
int32 buffers_evicted = 0;
int32 buffers_flushed = 0;
int32 buffers_skipped = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict_relation");
relOid = PG_GETARG_OID(0);
rel = relation_open(relOid, AccessShareLock);
if (RelationUsesLocalBuffers(rel))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
"pg_buffercache_evict_relation")));
EvictRelUnpinnedBuffers(rel, &buffers_evicted, &buffers_flushed,
&buffers_skipped);
relation_close(rel, AccessShareLock);
values[0] = Int32GetDatum(buffers_evicted);
values[1] = Int32GetDatum(buffers_flushed);
values[2] = Int32GetDatum(buffers_skipped);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
/*
* Try to evict all shared buffers.
*/
Datum
pg_buffercache_evict_all(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_EVICT_ALL_ELEM];
bool nulls[NUM_BUFFERCACHE_EVICT_ALL_ELEM] = {0};
int32 buffers_evicted = 0;
int32 buffers_flushed = 0;
int32 buffers_skipped = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
pg_buffercache_superuser_check("pg_buffercache_evict_all");
EvictAllUnpinnedBuffers(&buffers_evicted, &buffers_flushed,
&buffers_skipped);
values[0] = Int32GetDatum(buffers_evicted);
values[1] = Int32GetDatum(buffers_flushed);
values[2] = Int32GetDatum(buffers_skipped);
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
|