1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
/*
* contrib/pgcrypto/crypt-sha.c
*
* This implements shacrypt password hash functions and follows the
* public available reference implementation from
*
* https://www.akkadia.org/drepper/SHA-crypt.txt
*
* This code is public domain.
*
* Please see the inline comments for details about the algorithm.
*
* Basically the following code implements password hashing with sha256 and
* sha512 digest via OpenSSL. Additionally, an extended salt generation (see
* crypt-gensalt.c for details) is provided, which generates a salt suitable
* for either sha256crypt and sha512crypt password hash generation.
*
* Official identifiers for suitable password hashes used in salts are
* 5 : sha256crypt and
* 6 : sha512crypt
*
* The hashing code below supports and uses salt length up to 16 bytes. Longer
* input is possible, but any additional byte of the input is disregarded.
* gen_salt(), when called with a sha256crypt or sha512crypt identifier will
* always generate a 16 byte long salt string.
*
* Output is compatible with any sha256crypt and sha512crypt output
* generated by e.g. OpenSSL or libc crypt().
*
* The described algorithm uses default computing rounds of 5000. Currently,
* even when no specific rounds specification is used, we always explicitly
* print out the rounds option flag with the final hash password string.
*
* The length of the specific password hash (without magic bytes and salt
* string) is:
*
* sha256crypt: 43 bytes and
* sha512crypt: 86 bytes.
*
* Overall hashed password length is:
*
* sha256crypt: 80 bytes and
* sha512crypt: 123 bytes
*
*/
#include "postgres.h"
#include "common/string.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "px-crypt.h"
#include "px.h"
typedef enum
{
PGCRYPTO_SHA256CRYPT = 0,
PGCRYPTO_SHA512CRYPT = 1,
PGCRYPTO_SHA_UNKOWN
} PGCRYPTO_SHA_t;
static const char _crypt_itoa64[64 + 1] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/*
* Modern UNIX password, based on SHA crypt hashes
*/
char *
px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
{
static const char rounds_prefix[] = "rounds=";
static const char *magic_bytes[2] = {"$5$", "$6$"};
/* Used to create the password hash string */
StringInfo out_buf = NULL;
PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
PX_MD *digestA = NULL;
PX_MD *digestB = NULL;
int err;
const char *dec_salt_binary; /* pointer into the real salt string */
StringInfo decoded_salt = NULL; /* decoded salt string */
unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
/* temporary buffer for digests */
unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
char rounds_custom = 0;
char *p_bytes = NULL;
char *s_bytes = NULL;
char *cp = NULL;
const char *fp = NULL; /* intermediate pointer within salt string */
const char *ep = NULL; /* holds pointer to the end of the salt string */
size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
unsigned int block; /* number of bytes processed */
uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
unsigned int len,
salt_len = 0;
/* Sanity checks */
if (!passwd)
return NULL;
if (pw == NULL)
elog(ERROR, "null value for password rejected");
if (salt == NULL)
elog(ERROR, "null value for salt rejected");
/*
* Make sure result buffers are large enough.
*/
if (dstlen < PX_SHACRYPT_BUF_LEN)
elog(ERROR, "insufficient result buffer size to encrypt password");
/* Init result buffer */
out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
/* Init contents of buffers properly */
memset(&sha_buf, '\0', sizeof(sha_buf));
memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
/*
* Decode the salt string. We need to know how many rounds and which
* digest we have to use to hash the password.
*/
len = strlen(pw);
dec_salt_binary = salt;
/*
* Analyze and prepare the salt string
*
* The magic string should be specified in the first three bytes of the
* salt string. Do some sanity checks first.
*/
if (strlen(dec_salt_binary) < 3)
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid salt"));
/*
* Check format of magic bytes. These should define either 5=sha256crypt
* or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
*/
if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid format of salt"),
errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
/*
* Check magic byte for supported shacrypt digest.
*
* We're just interested in the very first 3 bytes of the salt string,
* since this defines the digest length to use.
*/
if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
{
type = PGCRYPTO_SHA256CRYPT;
dec_salt_binary += strlen(magic_bytes[0]);
}
else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
{
type = PGCRYPTO_SHA512CRYPT;
dec_salt_binary += strlen(magic_bytes[1]);
}
/*
* dec_salt_binary pointer is positioned after the magic bytes now
*
* We extract any options in the following code branch. The only optional
* setting we need to take care of is the "rounds" option. Note that the
* salt generator already checked for invalid settings before, but we need
* to do it here again to protect against injection of wrong values when
* called without the generator.
*
* If there is any garbage added after the magic byte and the options/salt
* string, we don't treat this special: This is just absorbed as part of
* the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
*
* Unknown magic byte is handled further below.
*/
if (strncmp(dec_salt_binary,
rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
{
const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
char *endp;
int srounds = strtoint(num, &endp, 10);
if (*endp != '$')
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("could not parse salt options"));
dec_salt_binary = endp + 1;
/*
* We violate supported lower or upper bound of rounds, but in this
* case we change this value to the supported lower or upper value. We
* don't do this silently and print a NOTICE in such a case.
*
* Note that a salt string generated with gen_salt() would never
* generated such a salt string, since it would error out.
*
* But Drepper's upstream reference implementation supports this when
* passing the salt string directly, so we maintain compatibility.
*/
if (srounds > PX_SHACRYPT_ROUNDS_MAX)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MAX,
PX_SHACRYPT_ROUNDS_MAX));
srounds = PX_SHACRYPT_ROUNDS_MAX;
}
else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d is below supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MIN,
PX_SHACRYPT_ROUNDS_MIN));
srounds = PX_SHACRYPT_ROUNDS_MIN;
}
rounds = (uint32) srounds;
rounds_custom = 1;
}
/*
* Choose the correct digest length and add the magic bytes to the result
* buffer. Also handle possible invalid magic byte we've extracted above.
*/
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha256", &digestA);
if (err)
goto error;
err = px_find_digest("sha256", &digestB);
if (err)
goto error;
/* digest buffer length is 32 for sha256 */
buf_size = 32;
appendStringInfoString(out_buf, magic_bytes[0]);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha512", &digestA);
if (err)
goto error;
err = px_find_digest("sha512", &digestB);
if (err)
goto error;
buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
appendStringInfoString(out_buf, magic_bytes[1]);
break;
}
case PGCRYPTO_SHA_UNKOWN:
elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
}
if (rounds_custom > 0)
appendStringInfo(out_buf, "rounds=%u$", rounds);
/*
* We need the real decoded salt string from salt input, this is every
* character before the last '$' in the preamble. Append every compatible
* character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
* that depending on the input, there might be no '$' marker after the
* salt, when there is no password hash attached at the end.
*
* We try hard to recognize mistakes, but since we might get an input
* string which might also have the password hash after the salt string
* section we give up as soon we reach the end of the input or if there
* are any bytes consumed for the salt string until we reach the first '$'
* marker thereafter.
*/
for (ep = dec_salt_binary;
*ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
ep++)
{
/*
* Filter out any string which shouldn't be here.
*
* First check for accidentally embedded magic strings here. We don't
* support '$' in salt strings anyways and seeing a magic byte trying
* to identify shacrypt hashes might indicate that something went
* wrong when generating this salt string. Note that we later check
* for non-supported literals anyways, but any '$' here confuses us at
* this point.
*/
fp = strstr(dec_salt_binary, magic_bytes[0]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
fp = strstr(dec_salt_binary, magic_bytes[1]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
/*
* This looks very strict, but we assume the caller did something
* wrong when we see a "rounds=" option here.
*/
fp = strstr(dec_salt_binary, rounds_prefix);
if (fp != NULL)
elog(ERROR, "invalid rounds option specified in salt string");
if (*ep != '$')
{
if (strchr(_crypt_itoa64, *ep) != NULL)
appendStringInfoCharMacro(decoded_salt, *ep);
else
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid character in salt string: \"%.*s\"",
pg_mblen(ep), ep));
}
else
{
/*
* We encountered a '$' marker. Check if we already absorbed some
* bytes from input. If true, we are optimistic and terminate at
* this stage. If not, we try further.
*
* If we already consumed enough bytes for the salt string,
* everything that is after this marker is considered to be part
* of an optionally specified password hash and ignored.
*/
if (decoded_salt->len > 0)
break;
}
}
salt_len = decoded_salt->len;
appendStringInfoString(out_buf, decoded_salt->data);
elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
decoded_salt->data, decoded_salt->len, rounds);
/*
* Sanity check: at this point the salt string buffer must not exceed
* expected size.
*/
if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
elog(ERROR, "unexpected length of salt string");
/*-
* 1. Start digest A
* 2. Add the password string to digest A
* 3. Add the salt to digest A
*/
px_md_update(digestA, (const unsigned char *) pw, len);
px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
/*-
* 4. Create digest B
* 5. Add password to digest B
* 6. Add the salt string to digest B
* 7. Add the password again to digest B
* 8. Finalize digest B
*/
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_finish(digestB, sha_buf);
/*
* 9. For each block (excluding the NULL byte), add digest B to digest A.
*/
for (block = len; block > buf_size; block -= buf_size)
px_md_update(digestA, sha_buf, buf_size);
/*-
* 10. For the remaining N bytes of the password string, add the first N
* bytes of digest B to A.
*/
px_md_update(digestA, sha_buf, block);
/*-
* 11. For each bit of the binary representation of the length of the
* password string up to and including the highest 1-digit, starting from
* to lowest bit position (numeric value 1)
*
* a) for a 1-digit add digest B (sha_buf) to digest A
* b) for a 0-digit add the password string
*/
block = len;
while (block)
{
px_md_update(digestA,
(block & 1) ? sha_buf : (const unsigned char *) pw,
(block & 1) ? buf_size : len);
/* right shift to next byte */
block >>= 1;
}
/* 12. Finalize digest A */
px_md_finish(digestA, sha_buf);
/* 13. Start digest DP */
px_md_reset(digestB);
/*-
* 14 Add every byte of the password string (excluding trailing NULL)
* to the digest DP
*/
for (block = len; block > 0; block--)
px_md_update(digestB, (const unsigned char *) pw, len);
/* 15. Finalize digest DP */
px_md_finish(digestB, sha_buf_tmp);
/*-
* 16. produce byte sequence P with same length as password.
* a) for each block of 32 or 64 bytes of length of the password
* string the entire digest DP is used
* b) for the remaining N (up to 31 or 63) bytes use the
* first N bytes of digest DP
*/
if ((p_bytes = palloc0(len)) == NULL)
{
goto error;
}
/* N step of 16, copy over the bytes from password */
for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/*
* 17. Start digest DS
*/
px_md_reset(digestB);
/*-
* 18. Repeat the following 16+A[0] times, where A[0] represents the first
* byte in digest A interpreted as an 8-bit unsigned value
* add the salt to digest DS
*/
for (block = 16 + sha_buf[0]; block > 0; block--)
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
/*
* 19. Finalize digest DS
*/
px_md_finish(digestB, sha_buf_tmp);
/*-
* 20. Produce byte sequence S of the same length as the salt string where
*
* a) for each block of 32 or 64 bytes of length of the salt string the
* entire digest DS is used
*
* b) for the remaining N (up to 31 or 63) bytes use the first N
* bytes of digest DS
*/
if ((s_bytes = palloc0(salt_len)) == NULL)
goto error;
for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/* Make sure we don't leave something important behind */
px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
/*-
* 21. Repeat a loop according to the number specified in the rounds=<N>
* specification in the salt (or the default value if none is
* present). Each round is numbered, starting with 0 and up to N-1.
*
* The loop uses a digest as input. In the first round it is the
* digest produced in step 12. In the latter steps it is the digest
* produced in step 21.h of the previous round. The following text
* uses the notation "digest A/B" to describe this behavior.
*/
for (block = 0; block < rounds; block++)
{
/*
* Make it possible to abort in case large values for "rounds" are
* specified.
*/
CHECK_FOR_INTERRUPTS();
/* a) start digest B */
px_md_reset(digestB);
/*-
* b) for odd round numbers add the byte sequence P to digest B
* c) for even round numbers add digest A/B
*/
px_md_update(digestB,
(block & 1) ? (const unsigned char *) p_bytes : sha_buf,
(block & 1) ? len : buf_size);
/* d) for all round numbers not divisible by 3 add the byte sequence S */
if ((block % 3) != 0)
px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
/* e) for all round numbers not divisible by 7 add the byte sequence P */
if ((block % 7) != 0)
px_md_update(digestB, (const unsigned char *) p_bytes, len);
/*-
* f) for odd round numbers add digest A/C
* g) for even round numbers add the byte sequence P
*/
px_md_update(digestB,
(block & 1) ? sha_buf : (const unsigned char *) p_bytes,
(block & 1) ? buf_size : len);
/* h) finish digest C. */
px_md_finish(digestB, sha_buf);
}
px_md_free(digestA);
px_md_free(digestB);
digestA = NULL;
digestB = NULL;
pfree(s_bytes);
pfree(p_bytes);
s_bytes = NULL;
p_bytes = NULL;
/* prepare final result buffer */
appendStringInfoCharMacro(out_buf, '$');
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
int i = (N); \
while (i-- > 0) \
{ \
appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
w >>= 6; \
} \
} while (0)
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
b64_from_24bit(0, 0, sha_buf[63], 2);
break;
}
case PGCRYPTO_SHA_UNKOWN:
/* we shouldn't land here ... */
elog(ERROR, "unsupported digest length");
}
/*
* Copy over result to specified buffer.
*
* The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
* allocated, since we checked above if dstlen is smaller than
* PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
*
* In that case we would have failed above already.
*/
memcpy(passwd, out_buf->data, out_buf->len);
/* make sure nothing important is left behind */
px_memset(&sha_buf, 0, sizeof sha_buf);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
/* ...and we're done */
return passwd;
error:
if (digestA != NULL)
px_md_free(digestA);
if (digestB != NULL)
px_md_free(digestB);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
ereport(ERROR,
errcode(ERRCODE_INTERNAL_ERROR),
errmsg("cannot create encrypted password"));
return NULL; /* keep compiler quiet */
}
|