1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
`!mpz` data type
================
The `!mpz` data type can store integer numbers of arbitrary size, up to the
maximum memory allowed by PostgreSQL data types (about 1GB).
Every PostgreSQL integer type (`!int16`, `!int32`, `!int64`) can be converted
to `!mpz`. Not integer types (`!float4`, `!float8`, `!numeric`) are truncated.
Cast from integer types are automatic, whereas non integer require explicit
cast (but are implicitly converted in assignment).
.. code-block:: postgres
SELECT mpz(10000); -- Cast using mpz as a function
SELECT 10000::mpz; -- PostgreSQL-style cast
Casting `!mpz` to PostgreSQL integer types and `!numeric` works as expected
and will overflow if the value is too big for their range. Casting to
`!float4` and `!float8` works as well: in case of overflow the value will be
*Infinity*.
`!mpz` values can be compared using the regular PostgreSQL comparison
operators. Indexes on `!mpz` columns can be created using the *btree* or the
*hash* method.
`!mpz` textual input/output
---------------------------
.. function:: mpz(text)
mpz(text, base)
Convert a textual representation into an `!mpz` number. The form
:samp:`{text}::mpz` is equivalent to :samp:`mpz({text})`.
White space is allowed in the string, and is simply ignored.
The *base* may vary from 2 to 62, or if *base* is 0 or omitted, then the
leading characters are used: ``0x`` and ``0X`` for hexadecimal, ``0b`` and
``0B`` for binary, ``0`` for octal, or decimal otherwise.
For bases up to 36, case is ignored; upper-case and lower-case letters
have the same value. For bases 37 to 62, upper-case letter represent the
usual 10..35 while lower-case letter represent 36..61.
.. code-block:: psql
=# SELECT '0x10'::mpz AS "hex", '10'::mpz AS "dec",
-# '010'::mpz AS "oct", '0b10'::mpz AS "bin";
hex | dec | oct | bin
-----+-----+-----+-----
16 | 10 | 8 | 2
.. note:: The maximum base accepted by GMP 4.1 is 36, not 62.
.. function:: text(z)
text(z, base)
Convert the `!mpz` *z* into a string. The form :samp:`{z}::text` is
equivalent to :samp:`text({z})`.
*base* may vary from 2 to 62 or from -2 to -36. For base in the range
2..36, digits and lower-case letters are used; for -2..-36, digits and
upper-case letters are used; for 37..62, digits, upper-case letters, and
lower-case letters (in that significance order) are used. If *base* is not
specified, 10 is assumed.
.. note:: The maximum base accepted by GMP 4.1 is 36, not 62.
Arithmetic Operators and Functions
----------------------------------
These operators can either work on `!mpz` arguments or take an integer
argument that will be implicitly converted. Operators taking a :math:`2^n`
argument always use an integer as right argument.
.. note::
GMP defines many structures in terms of `!long` or `!unsigned long`, whose
definitions may vary across platforms. PostgreSQL instead offers data
types with a defined number of bytes (e.g. `!int4`, `!int8`). For this
reason, functions taking an integer as argument are defined as `!int8`,
but they may actually fail if the server is 32 bit and the argument
doesn't fit into an `!int4`.
.. table:: Arithmetic operators
=========== =============================== =================== ===========
Operator Description Example Return
=========== =============================== =================== ===========
`!-` Unary minus `!- 5::mpz` -5
`!+` Unary plus `!+ 5::mpz` 5
`!+` Addition `!2::mpz + 3::mpz` 5
`!-` Subtraction `!2::mpz - 3::mpz` -1
`!*` Multiplication `!7::mpz * 3::mpz` 21
`!<<` Multiplication by :math:`2^n` `!3::mpz << 2` 12
`!^` Power (1) `!3::mpz ^ 2` 9
=========== =============================== =================== ===========
Notes:
(1)
See also the `exponentiation functions`_.
.. function:: abs(z)
Return the absolute value of *z*.
.. function:: sgn(z)
Return +1 if *z* > 0, 0 if *z* = 0, and -1 if *z* < 0.
.. function:: odd(z)
even(z)
Return `!true` if *z* is odd or even, respectively, else `!false`.
Division Operators and Functions
--------------------------------
For all the division-related operators :math:`n \oslash d`, :math:`q` and
:math:`r` will satisfy :math:`n = q \cdot d + r`, and :math:`r` will satisfy
:math:`0 \le |r| \lt |d|`.
.. note::
Only the truncating division and reminder (`!/` and `!%`) have the correct
precedence respect to addition, subtraction and multiplication.
See `the PostgreSQL precedence table`__ for further details.
.. __: https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-PRECEDENCE-TABLE
..
note: this table contains non-breaking spaces to align the - signs.
.. table:: Division operators
=========== =============================== ==================== =======
Operator Description Example Return
=========== =============================== ==================== =======
`!/` Division quotient `! 7::mpz / 3::mpz` 2
Rounding towards zero `!-7::mpz / 3::mpz` -2
`!%` Division reminder `! 7::mpz % 3::mpz` 1
Rounding towards zero `!-7::mpz % 3::mpz` -1
`+/` Division quotient `! 7::mpz +/ 3::mpz` 3
Rounding towards +infinity `!-7::mpz +/ 3::mpz` -2
`+%` Division reminder `! 7::mpz +% 3::mpz` -2
Rounding towards +infinity `!-7::mpz +% 3::mpz` -1
`!-/` Division quotient `! 7::mpz -/ 3::mpz` 2
Rounding towards -infinity `!-7::mpz -/ 3::mpz` -3
`!-%` Division reminder `! 7::mpz -% 3::mpz` 1
Rounding towards -infinity `!-7::mpz -% 3::mpz` 2
`/?` Divisible (1) `!21::mpz /? 7::mpz` `!true`
`/!` Exact division (2) `!21::mpz /! 7::mpz` 3
=========== =============================== ==================== =======
Notes:
(1)
See also the function `divisible()`.
(2)
The exact division operator (`!/!`) produces correct results only when it
is known in advance that :math:`d` divides :math:`n`. The operator is
much faster than the other division operators, and is the best choice when
exact division is known to occur, for example reducing a rational to
lowest terms.
..
note: this table contains non-breaking spaces to align the - signs.
.. table:: Division operators for powers of 2
======== ==================================== =================== =======
Operator Description Example Return
======== ==================================== =================== =======
`!>>` Quotient of division by :math:`2^n` `! 1027::mpz >> 3` 128
Rounding towards zero `!-1027::mpz >> 3` -128
`!%>` Remainder of division by :math:`2^n` `! 1027::mpz %> 3` 3
Rounding towards zero `!-1027::mpz %> 3` -3
`!+>>` Quotient of division by :math:`2^n` `! 1027::mpz +>> 3` 129
Rounding towards +infinity `!-1027::mpz +>> 3` -128
`!+%>` Remainder of division by :math:`2^n` `! 1027::mpz +%> 3` -5
Rounding towards +infinity `!-1027::mpz +%> 3` -3
`!->>` Quotient of division by :math:`2^n` `! 1027::mpz ->> 3` 128
Rounding towards -infinity `!-1027::mpz ->> 3` -129
`!-%>` Remainder of division by :math:`2^n` `! 1027::mpz -%> 3` 3
Rounding towards -infinity `!-1027::mpz -%> 3` 5
`>>?` Divisible by :math:`2^n` (1) `!64::mpz >>? 3` `!true`
======== ==================================== =================== =======
(1)
See also the function `divisible_2exp()`.
.. function:: tdiv_qr(n, d)
Return a tuple containing quotient *q* and remainder *r* of the division,
rounding towards 0.
.. function:: cdiv_qr(n, d)
Return a tuple containing quotient *q* and remainder *r* of the division,
rounding towards +infinity (ceil).
.. function:: fdiv_qr(n, d)
Return a tuple containing quotient *q* and remainder *r* of the division,
rounding towards -infinity (floor).
.. function:: divisible(n, d)
divisible_2exp(n, b)
Return `!true` if *n* is exactly divisible by *d*, or in the case of
`!divisible_2exp()` by :math:`2^b`.
:math:`n` is divisible by :math:`d` if there exists an integer :math:`q`
satisfying :math:`n = q \cdot d`. Unlike the other division operators,
*d*\=0 is accepted and following the rule it can be seen that only 0
is considered divisible by 0.
The operators `!/?` and `!>>?` are aliases for `!divisible()` and
`!divisible_2exp()`.
.. function:: congruent(n, c, d)
congruent_2exp(n, c, b)
Return `!true` if *n* is congruent to *c* modulo *d*, or in the case of
`!congruent_2exp()` modulo :math:`2^b`.
:math:`n` is congruent to :math:`c \mod d` if there exists an integer
:math:`q` satisfying :math:`n = c + q \cdot d`. Unlike the other division
operators, *d*\=0 is accepted and following the rule it can be seen that n
and c are considered congruent mod 0 only when exactly equal.
Exponentiation Functions
------------------------
.. function:: pow(base, exp)
Return *base* raised to *exp*.
*exp* is defined as `!int8` but must fit into a `!long` as defined on the
server.
The function is an alias for the `!^` operator.
.. function:: powm(base, exp, mod)
Return (*base* raised to *exp*) modulo *mod*.
Negative *exp* is supported if an inverse *base^-1* mod *mod* exists (see
`invert()` function). If an inverse doesn't exist then a divide by zero is
raised.
Root Extraction Functions
-------------------------
.. function:: root(op, n)
Return the truncated integer part of the *n*\th root of *op*.
*n* is defined as `!int8` but must fit into a `!long` as defined on the
server.
.. function:: rootrem(op, n)
Return a tuple of 2 elements with the truncated integer part of the *n*\th
root of *op* and the remainder (*i.e.* *op* - *root* ^ *n*).
.. code-block:: psql
=# select * from rootrem(28, 3);
root | rem
------+-----
3 | 1
.. note:: The function is not available on GMP version < 4.2.
.. function:: sqrt(op)
Return the truncated integer part of the square root of *op*.
.. function:: sqrtrem(op)
Return a tuple of 2 elements with the truncated integer part of the square
root of *op* and the remainder (*i.e.* *op* - *root* \* *root*).
.. code-block:: psql
=# select * from sqrtrem(83);
root | rem
------+-----
9 | 2
.. function:: perfect_power(op)
Return `!true` if *op* is a perfect power, *i.e.*, if there exist
integers :math:`a` and :math:`b`, with :math:`b>1`, such that *op* equals
:math:`a^b`.
Under this definition both 0 and 1 are considered to be perfect powers.
Negative values of op are accepted, but of course can only be odd perfect
powers.
.. function:: perfect_square(op)
Return `!true` if *op* is a perfect square, *i.e.*, if the square root of
*op* is an integer. Under this definition both 0 and 1 are considered to
be perfect squares.
Number Theoretic Functions
--------------------------
.. function:: probab_prime(n, reps)
Determine whether *n* is prime. Return 2 if *n* is definitely prime,
return 1 if *n* is probably prime (without being certain), or return 0 if
*n* is definitely composite.
This function does some trial divisions, then some `Miller-Rabin
probabilistic primality tests`__. *reps* controls how many such tests are
done, 5 to 10 is a reasonable number, more will reduce the chances of a
composite being returned as "probably prime".
.. __: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
Miller-Rabin and similar tests can be more properly called compositeness
tests. Numbers which fail are known to be composite but those which pass
might be prime or might be composite. Only a few composites pass, hence
those which pass are considered probably prime.
.. seealso:: `Primality test
<https://en.wikipedia.org/wiki/Primality_test>`__
.. function:: nextprime(op)
Return the next prime greater than *op*.
This function uses a probabilistic algorithm to identify primes. For
practical purposes it's adequate, the chance of a composite passing will
be extremely small.
.. function:: gcd(a, b)
Return the greatest common divisor of *a* and *b*. The result is
always positive even if one or both input operands are negative.
.. function:: gcdext(a, b)
Return the greatest common divisor *g* of *a* and *b*, and in addition
coefficients *s* and *t* satisfying :math:`a \cdot s + b \cdot t = g`. The
value *g* is always positive, even if one or both of *a* and *b* are
negative. The values *s* and *t* are chosen such that :math:`|s| \le |b|
\hspace{0em}` and :math:`|t| \le |a| \hspace{0em}`.
..
The \hspace{} are there to avoid the vim rest syntax highlighter to
get crazy.
.. code-block:: psql
=# select * from gcdext(6, 15);
g | s | t
---+----+---
3 | -2 | 1
.. function:: lcm(a, b)
Return the least common multiple of *a* and *b*. The value returned is
always positive, irrespective of the signs of *a* and *b*. The return
will be zero if either *a* or *b* is zero.
.. function:: fac(op)
Return *op*\!, the factorial of *op*.
.. function:: bin(n, k)
Return the `binomial coefficient`__ :math:`{n \choose k}`.
Negative values of *n* are supported, using the identity
:math:`{-n \choose k} = (-1)^k {n+k-1 \choose k}`.
.. __: https://en.wikipedia.org/wiki/Binomial_coefficient
.. function:: fib(n)
fib2(n)
`!fib()` returns :math:`F_n`, the *n*\th `Fibonacci number`__.
`!fib2()` returns :math:`F_n` and :math:`F_{n-1}`.
.. __: https://en.wikipedia.org/wiki/Fibonacci_number
These functions are designed for calculating isolated Fibonacci numbers.
When a sequence of values is wanted it's best to start with `!fib2()`
and iterate the defining :math:`F_{n+1}=F_n+F_{n-1}` or similar.
.. function:: lucnum(n)
lucnum2(n)
`!lucnum()` returns :math:`L_n`, the *n*\th `Lucas number`__.
`!lucnum2()` returns :math:`L_n` and :math:`L_{n-1}`.
.. __: https://en.wikipedia.org/wiki/Lucas_number
These functions are designed for calculating isolated Lucas numbers.
When a sequence of values is wanted it's best to start with `!lucnum2()`
and iterate the defining :math:`L_{n+1}=L_n+L_{n-1}` or similar.
The Fibonacci numbers and Lucas numbers are related sequences, so it's
never necessary to call both `!fib2()` and `!lucnum2()`. The formulas for
going from Fibonacci to Lucas can be found in `Lucas Numbers Algorithm`__,
the reverse is straightforward too.
.. __: https://gmplib.org/manual/Lucas-Numbers-Algorithm.html
.. function:: invert(a, b)
Return the inverse of *a* modulo *b* if exists. The return value *r*
will satisfy :math:`0 \le r \lt b`. If an inverse doesn't exist return
`!NULL`.
.. function:: jacobi(a, b)
Calculate the `Jacobi symbol`__ :math:`(\frac{a}{b})`. This is defined
only for *b* odd.
.. __: https://en.wikipedia.org/wiki/Jacobi_symbol
.. function:: legendre(a, p)
Calculate the `Legendre symbol`__ :math:`(\frac{a}{p})`. This is defined
only for *p* an odd positive prime, and for such *p* it's identical to the
Jacobi symbol.
.. __: https://en.wikipedia.org/wiki/Legendre_symbol
.. function:: kronecker(a, b)
Calculate the Jacobi symbol :math:`(\frac{a}{b})` with the Kronecker
extension :math:`(\frac{a}{2})=(\frac{2}{a})` when *a* odd, or
:math:`(\frac{a}{2})=0` when *a* even.
.. seealso::
Section 1.4.2, Henri Cohen, "A Course in Computational Algebraic
Number Theory", Graduate Texts in Mathematics number 138,
Springer-Verlag, 1993. https://www.math.u-bordeaux.fr/~cohen/
Logical and Bit Manipulation Functions
--------------------------------------
These functions behave as if twos complement arithmetic were used (although
sign-magnitude is the actual implementation). The least significant bit is
number 0.
.. table:: Logical Operators
======== ======================== =================================== ===================
Operator Description Example Return
======== ======================== =================================== ===================
`!&` Bitwise and `!'0b10001'::mpz & '0b01001'::mpz` `!'0b1'::mpz`
`!|` Bitwise inclusive-or `!'0b10001'::mpz | '0b01001'::mpz` `!'0b11001'::mpz`
`!#` Bitwise exclusive-or `!'0b10001'::mpz # '0b01001'::mpz` `!'0b11000'::mpz`
======== ======================== =================================== ===================
.. function:: com(op)
Return the ones' complement of *op*.
.. function:: popcount(op)
If op>=0, return the population count of *op*, which is the number of 1
bits in the binary representation. If op<0, the number of 1s is infinite,
and the return value is the largest possible, represented by
`gmp_max_bitcnt()`.
.. function:: hamdist(op1, op2)
If *op1* and *op2* are both >=0 or both <0, return the `Hamming
distance`__
between the two operands, which is the number of bit positions where *op1*
and *op2* have different bit values. If one operand is >=0 and the other <0
then the number of bits different is infinite, and the return value is the
largest possible, represented by `gmp_max_bitcnt()`.
.. __: https://en.wikipedia.org/wiki/Hamming_distance
.. function:: scan0(op, starting_bit)
scan1(op, starting_bit)
Scan *op*, starting from bit *starting_bit*, towards more significant
bits, until the first 0 or 1 bit (respectively) is found. Return the index
of the found bit.
If the bit at *starting_bit* is already what's sought, then *starting_bit*
is returned.
If there's no bit found, then the largest possible bit count is returned
(represented by `gmp_max_bitcnt()`). This will happen in `!scan0()` past
the end of a negative number, or `!scan1()` past the end of a nonnegative
number.
.. function:: setbit(op, bit_index)
Return *op* with bit *bit_index* set.
.. function:: clrbit(op, bit_index)
Return *op* with bit *bit_index* cleared.
.. function:: combit(op, bit_index)
Return *op* with bit *bit_index* complemented.
.. note:: The function is not available on GMP version < 4.2.
.. function:: tstbit(op, bit_index)
Test bit *bit_index* in *op* and return 0 or 1 accordingly.
Random number functions
-----------------------
Sequences of pseudo-random numbers are generated using an internal per-session
variable, which holds an algorithm selection and a current state. Such a
variable must be initialized by a call to one of the `!randinit*()` functions,
and can be seeded with the `randseed()` function.
.. function:: randinit()
Initialize the session random state with a default algorithm. This will be
a compromise between speed and randomness, and is recommended for
applications with no special requirements. Currently this is
`randinit_mt()`.
.. function:: randinit_mt()
Initialize the session random state for a `Mersenne Twister`__ algorithm.
This algorithm is fast and has good randomness properties.
.. __: https://en.wikipedia.org/wiki/Mersenne_twister
.. note:: The function is not available on GMP version < 4.2.
.. function:: randinit_lc_2exp(a, c, e)
Initialize the session random state with a `linear congruential`__
algorithm :math:`X = (a \cdot X + c) \mod 2^e`.
.. __: https://en.wikipedia.org/wiki/Linear_congruential_generator
The low bits of *X* in this algorithm are not very random. The least
significant bit will have a period no more than 2, and the second bit no
more than 4, etc. For this reason only the high half of each *X* is
actually used.
When a random number of more than :math:`e/2` bits is to be generated,
multiple iterations of the recurrence are used and the results
concatenated.
.. function:: randinit_lc_2exp_size(s)
Initialize the session random state for a linear congruential algorithm as
per `randinit_lc_2exp()`. *a*, *c* and *e* are selected from a table,
chosen so that size bits (or more) of each *X* will be used, ie.
:math:`e/2 \ge s`.
The function fails if *s* is bigger than the table data provides. The
maximum size currently supported is 128.
.. function:: randseed(seed)
Set an initial seed value into session random state.
The size of a seed determines how many different sequences of random
numbers is possible to generate. The "quality" of the seed is the
randomness of a given seed compared to the previous seed used, and this
affects the randomness of separate number sequences. The method for
choosing a seed is critical if the generated numbers are to be used for
important applications, such as generating cryptographic keys.
Traditionally the system time has been used to seed, but care needs to be
taken with this. If an application seeds often and the resolution of the
system clock is low, then the same sequence of numbers might be repeated.
Also, the system time is quite easy to guess, so if unpredictability is
required then it should definitely not be the only source for the seed
value. On some systems there's a special device ``/dev/random`` which
provides random data better suited for use as a seed.
.. function:: urandomb(n)
Generate a uniformly distributed random integer in the range :math:`0` to
:math:`2^n-1`, inclusive.
The session state must be initialized by calling one of the `!randinit()`
functions before invoking this function.
.. function:: urandomm(n)
Generate a uniformly distributed random integer in the range 0 to
*n*\-1, inclusive.
The session state must be initialized by calling one of the `!randinit()`
functions before invoking this function.
.. function:: rrandomb(n)
Generate a random integer with long strings of zeros and ones in the
binary representation. Useful for testing functions and algorithms, since
this kind of random numbers have proven to be more likely to trigger
corner-case bugs. The random number will be in the range :math:`0` to
:math:`2^n-1`, inclusive.
The session state must be initialized by calling one of the `!randinit()`
functions before invoking this function.
Aggregation functions
---------------------
.. function:: sum(z)
Return the sum of *z* across all input values.
.. function:: prod(z)
Return the product of *z* across all input values.
.. function:: max(z)
Return the maximum value of *z* across all input values.
.. function:: min(z)
Return the minimum value of *z* across all input values.
.. function:: bit_and(z)
Return the bitwise and of *z* across all input values.
.. function:: bit_or(z)
Return the bitwise inclusive-or of *z* across all input values.
.. function:: bit_xor(z)
Return the bitwise exclusive-or of *z* across all input values.
|