File: plruby.rb

package info (click to toggle)
postgresql-plruby 0.5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 1,500 kB
  • ctags: 1,259
  • sloc: ansic: 8,272; sql: 1,841; ruby: 882; sh: 62; makefile: 39
file content (1931 lines) | stat: -rw-r--r-- 49,323 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
# = Warning
#
# <em>For documentation purpose, the modules PLRuby, PLRuby::Description
# are defined but don't exist in reality</em>
# 
# = PLRuby
#
# PLRuby is a loadable procedural language for the Postgres database
# system  that enable the Ruby language to create functions and trigger
# procedures
# 
# Functions and triggers are singleton methods of the module PLtemp.
# 
# = WARNING
# 
# <b>if PLRuby was NOT compiled with <em>--enable-conversion</em>
# all arguments (to the function or the triggers) are passed as string 
# values, except for NULL values represented by <em>nil</em>.</b>
# 
# <b>In this case, you must explicitely call a conversion function (like to_i)
# if you want to use an argument as an integer</b>
# 
# = See
#
# * PLRuby::Description::Function
#
#   To create a function 
#
# * PLRuby::Description::Function::SFRM
#
#   To create a function returning SET (SFRM Materialize)
#
# * PLRuby::Description::Function::ExprMultiResult
#
#   To create a function returning SET (ExprMultiResult)
#
# * PLRuby::Description::Trigger
#
#   To define a trigger
#
# * PLRuby::Description::Singleton_method
#
#   To define singleton methods
#
# * PLRuby::Description::Conversion
#
#   What conversions are done when this option is not disabled
#   (<em>--disable-conversion</em>)
#
# = Class hierarchy
#
# * PLRuby::PL
#
# * PLRuby::PL::Plan
#
# * PLRuby::PL::Cursor
#
# * PLRuby::PL::Transaction
#
# * PLRuby::BitString
#
# * PLRuby::Tinterval
#
# * PLRuby::NetAddr
#
# * PLRuby::MacAddr
#
# * PLRuby::Box
#
# * PLRuby::Circle
#
# * PLRuby::Path
#
# * PLRuby::Point
#
# * PLRuby::Polygon
#
# * PLRuby::Segment
#
# Global variable
#
# $Plans:: can be used to store prepared plans. (hash, tainted)
#
# 
module PLRuby
   #
   # Create a new transaction and yield an object <em>PL::Transaction</em>
   #
   # Only available with PostgreSQL >= 8.0
   def transaction()
      yield txn
   end

    # Ruby interface to PostgreSQL elog()
    #
    # Possible value for <tt>level</tt> are <tt>NOTICE</tt>, 
    # <tt>DEBUG</tt> and <tt>NOIND</tt>
    #
    # Use <tt>raise()</tt> if you want to simulate <tt>elog(ERROR, "...")</tt>
    def warn(level = NOTICE, message)
    end
end
#
# Pseudo module to describe the syntax to define function and triggers
#
# There is documentation for
# * PLRuby::Description::Function
#
#   To create a function 
#
# * PLRuby::Description::Function::SFRM
#
#   To create a function returning SET (SFRM Materialize)
#
# * PLRuby::Description::Function::ExprMultiResult
#
#   To create a function returning SET (ExprMultiResult)
#
# * PLRuby::Description::Trigger
#
#   To define a trigger
#
# * PLRuby::Description::Singleton_method
#
#   To define singleton methods
#
# * PLRuby::Description::Conversion
#
#   What conversions are done when this option is not disabled
#   (<em>--disable-conversion</em>)
module PLRuby::Description
end
# 
# To create a function in the PLRuby language use the syntax
# 
#    CREATE FUNCTION funcname(arguments_type) RETURNS type AS '
# 
#     # PLRuby function body
# 
#    ' LANGUAGE 'plruby';
# 
# when calling the function in a query, the arguments are given
# in the array <em>args</em>. To create a little max
# function returning the higher of two int4 values write :
# 
#    CREATE FUNCTION ruby_max(int4, int4) RETURNS int4 AS '
#        if args[0] > args[1]
#            return args[0]
#        else
#            return args[1]
#        end
#    ' LANGUAGE 'plruby';
# 
# 
# Tuple arguments are given as hash. Here is an example that defines
# the overpaid_2 function (as found in the older Postgres documentation)
# in PLRuby.
# 
#    CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS '
#        args[0]["salary"] > 200000 || 
#           (args[0]["salary"] > 100000 && args[0]["age"] < 30)
#    ' LANGUAGE 'plruby';
# 
# 
# === Warning : with PostgreSQL >= 7.4 "array" are given as a ruby Array
# 
# For example to define a function (int4[], int4) and return int4[],
# in version < 7.4 you write
# 
#    CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
#        if /\\{(\\d+),(\\d+)\\}/ =~ args[0]
#            a, b = $1, $2
#            newsum = a + args[1]
#            newcnt = b + 1
#        else
#            raise "unexpected value #{args[0]}"
#        end
#        "{#{newsum},#{newcnt}}"
#    ' LANGUAGE 'plruby';
# 
# This must now (>= 7.4) be written
# 
#    CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
#       a = args[0]
#       [a[0] + args[1], a[1] + 1]
#    ' LANGUAGE 'plruby';
# 
# === Release PostgreSQL 8.0
# 
# With this version, plruby can have named arguments and the previous functions
# can be written
# 
#    CREATE FUNCTION ruby_max(a int4, b int4) RETURNS int4 AS '
#        if a > b
#            a
#        else
#            b
#        end
#    ' LANGUAGE 'plruby';
# 
# 
#    CREATE FUNCTION overpaid_2 (emp EMP) RETURNS bool AS '
#        emp["salary"] > 200000 || 
#           (emp["salary"] > 100000 && emp["age"] < 30)
#    ' LANGUAGE 'plruby';
# 
# With this version, you can also use transaction. For example
# 
#    plruby_test=# create table tu (a int, b int);
#    CREATE TABLE
#    plruby_test=# create or replace function tt(abort bool) returns bool as '
#    plruby_test'#    transaction do |txn|
#    plruby_test'#       PL.exec("insert into tu values (1, 2)")
#    plruby_test'#       transaction do |txn1|
#    plruby_test'#          PL.exec("insert into tu values (3, 4)")
#    plruby_test'#          txn1.abort
#    plruby_test'#       end
#    plruby_test'#       PL.exec("insert into tu values (5, 6)")
#    plruby_test'#       txn.abort if abort
#    plruby_test'#    end
#    plruby_test'#    abort
#    plruby_test'# ' language 'plruby';
#    CREATE FUNCTION
#    plruby_test=# 
#    plruby_test=# select tt(true);
#     tt 
#    ----
#     t
#    (1 row)
#    
#    plruby_test=# select * from tu;
#     a | b 
#    ---+---
#    (0 rows)
#    
#    plruby_test=# select tt(false);
#     tt 
#    ----
#     f
#    (1 row)
#    
#    plruby_test=# select * from tu;
#     a | b 
#    ---+---
#     1 | 2
#     5 | 6
#    (2 rows)
#    
#    plruby_test=# 
# 
# 
module PLRuby::Description::Function
end
# 
# == Function returning SET (SFRM Materialize)
# 
# The return type must be declared as SETOF
# 
# The function must call <em>yield</em> to return rows or return a String
# which must be a valid SELECT statement
# 
# For example to concatenate 2 rows create the function
# 
#    plruby_test=# CREATE FUNCTION tu(varchar) RETURNS setof record
#    plruby_test-# AS '
#    plruby_test'#    size = PL.column_name(args[0]).size
#    plruby_test'#    res = nil
#    plruby_test'#    PL::Plan.new("select * from #{args[0]}", 
#    plruby_test'#                 "block" => 50).each do |row|
#    plruby_test'#       if res.nil?
#    plruby_test'#          res = row.values
#    plruby_test'#       else
#    plruby_test'#          res.concat row.values
#    plruby_test'#          yield res
#    plruby_test'#          res = nil
#    plruby_test'#       end
#    plruby_test'#    end
#    plruby_test'#    if res
#    plruby_test'#       res.concat Array.new(size)
#    plruby_test'#       yield res
#    plruby_test'#    end
#    plruby_test'# ' language 'plruby';
#    CREATE FUNCTION
#    plruby_test=# 
#    plruby_test=# select * from tt;
#     a | b  
#    ---+----
#     1 |  2
#     3 |  4
#     5 |  6
#     7 |  8
#     9 | 10
#    (5 rows)
#    
#    plruby_test=# select * from tu('tt') as tbl(a int, b int, c int, d int);
#     a | b  | c | d 
#    ---+----+---+---
#     1 |  2 | 3 | 4
#     5 |  6 | 7 | 8
#     9 | 10 |   |  
#    (3 rows)
#    
#    plruby_test=# 
# 
class PLRuby::Description::Function::SFRM
end
# == Function returning SET (ExprMultiResult)
# 
# The return type must be declared as SETOF
# 
# The function is called until it returns nil
# 
# The method PL#context and PL#context= give the possibility to store
# information between the call
# 
# For example
# 
#    plruby_test=# create or replace function vv(int) returns setof int as '
#    plruby_test'#    i = PL.context || 0
#    plruby_test'#    if i >= args[0]
#    plruby_test'#       nil
#    plruby_test'#    else
#    plruby_test'#       PL.context = i + 1
#    plruby_test'#    end
#    plruby_test'# ' language plruby;
#    CREATE FUNCTION
#    plruby_test=# 
#    plruby_test=# select * from uu;
#     b 
#    ---
#     2
#    (1 row)
#    
#    plruby_test=# 
#    plruby_test=# select *,vv(3) from uu;
#     b | vv 
#    ---+----
#     2 |  1
#     2 |  2
#     2 |  3
#    (3 rows)
#    
#    plruby_test=# 
# 
class PLRuby::Description::Function::ExprMultiResult
end
# 
# Trigger procedures are defined in Postgres as functions without
# arguments and a return type of trigger. In PLRuby the procedure is
# called with 4 arguments :
# 
# * new (hash, tainted)
#
#   an hash containing the values of the new table row on INSERT/UPDATE
#   actions, or empty on DELETE. 
# * old (hash, tainted)
#
#   an hash containing the values of the old table row on UPDATE/DELETE
#   actions, or empty on INSERT 
# * args (array, tainted, frozen)
#
#   An array of the arguments to the procedure as given in the CREATE
#   TRIGGER statement 
# * tg (hash, tainted, frozen)
#
#   The following keys are defined
#
#   - name
#
#     The name of the trigger from the CREATE TRIGGER statement.
#
#   - relname
#
#     The name of the relation who has fired the trigger
#
#   - relid
#
#     The object ID of the table that caused the trigger procedure to be invoked.
# 
#   - relatts
#
#     An array containing the name of the tables field.
# 
#   - when
#
#     The constant <em>PL::BEFORE</em>, <em>PL::AFTER</em> or
#     <em>PL::UNKNOWN</em> depending on the event of the trigger call.
# 
#   - level
#
#     The constant <em>PL::ROW</em> or <em>PL::STATEMENT</em>
#     depending on the event of the trigger call.
# 
#   - op
#
#     The constant <em>PL::INSERT</em>, <em>PL::UPDATE</em> or 
#     <em>PL::DELETE</em> depending on the event of the trigger call.
# 
# 
# The return value from a trigger procedure is one of the constant
# <em>PL::OK</em> or <em>PL::SKIP</em>, or an hash. If the
# return value is <em>PL::OK</em>, the normal operation
# (INSERT/UPDATE/DELETE) that fired this trigger will take
# place. Obviously, <em>PL::SKIP</em> tells the trigger manager to
# silently suppress the operation. The hash tells
# PLRuby to return a modified row to the trigger manager that will be
# inserted instead of the one given in <em>new</em> (INSERT/UPDATE
# only). Needless to say that all this is only meaningful when the
# trigger is BEFORE and FOR EACH ROW.
# 
# Here's a little example trigger procedure that forces an integer
# value in a table to keep track of the # of updates that are performed
# on the row. For new row's inserted, the value is initialized to 0 and
# then incremented on every update operation :
# 
#     CREATE FUNCTION trigfunc_modcount() RETURNS TRIGGER AS '
#         case tg["op"]
#         when PL::INSERT
#             new[args[0]] = 0
#           when PL::UPDATE
#               new[args[0]] = old[args[0]] + 1
#           else
#               return PL::OK
#           end
#           new
#       ' LANGUAGE 'plruby';
# 
#       CREATE TABLE mytab (num int4, modcnt int4, descr text);
# 
#       CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
#           FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount('modcnt');
# 
# 
# 
# A more complex example (extract from test_setup.sql in the distribution)
# which use the global variable <em>$Plans</em> to store a prepared
# plan
# 
#    create function trig_pkey2_after() returns trigger as '
#       if ! $Plans.key?("plan_dta2_upd")
#           $Plans["plan_dta2_upd"] = 
#                PL::Plan.new("update T_dta2 
#                              set ref1 = $3, ref2 = $4
#                              where ref1 = $1 and ref2 = $2",
#                             ["int4", "varchar", "int4", "varchar" ]).save
#           $Plans["plan_dta2_del"] = 
#                PL::Plan.new("delete from T_dta2 
#                              where ref1 = $1 and ref2 = $2", 
#                             ["int4", "varchar"]).save
#       end
# 
#       old_ref_follow = false
#       old_ref_delete = false
# 
#       case tg["op"]
#       when PL::UPDATE
#           new["key2"] = new["key2"].upcase
#           old_ref_follow = (new["key1"] != old["key1"]) || 
#                            (new["key2"] != old["key2"])
#       when PL::DELETE
#           old_ref_delete = true
#       end
# 
#       if old_ref_follow
#           n = $Plans["plan_dta2_upd"].exec([old["key1"], old["key2"], new["key1"],
#    new["key2"]])
#           warn "updated #{n} entries in T_dta2 for new key in T_pkey2" if n != 0
#       end
# 
#       if old_ref_delete
#           n = $Plans["plan_dta2_del"].exec([old["key1"], old["key2"]])
#           warn "deleted #{n} entries from T_dta2" if n != 0
#       end
# 
#       PL::OK
#    ' language 'plruby';
# 
#    create trigger pkey2_after after update or delete on T_pkey2
#     for each row execute procedure
#     trig_pkey2_after();
# 
#
class PLRuby::Description::Trigger
end 
# == plruby_singleton_methods
# 
# Sometime it can be usefull to define methods (in pure Ruby) which can be
# called from a PLRuby function or a PLRuby trigger.
# 
# In this case, you have 2 possibilities
# 
# * the "stupid" way :-) :-) :-)
# 
# just close the current definition of the function (or trigger) with a
# <em>end</em> and define your singleton method without the final <em>end</em>
# 
# Here a small and useless example
# 
#           plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
#           plruby_test'#     toto(1, 3) + toto(4, 4)
#           plruby_test'# end
#           plruby_test'# 
#           plruby_test'# def PLtemp.toto(a, b)
#           plruby_test'#     a + b
#           plruby_test'# ' LANGUAGE 'plruby';
#           CREATE
#           plruby_test=# select tutu();
#           tutu
#           ----
#             12
#           (1 row)
#           
#           plruby_test=#
# 
# 
# * create a table plruby_singleton_methods with the columns (name, args, body)
# 
# At load time, PLRuby look if it exist a table plruby_singleton_methods 
# and if found try, for each row, to define singleton methods with the 
# template :
# 
#           def PLtemp.#{name}(#{args})
#               #{body}
#           end
# 
# The previous example can be written (you have a more complete example in
# test/plp/test_setup.sql)
# 
#           
#           plruby_test=# SELECT * FROM plruby_singleton_methods;
#           name|args|body 
#           ----+----+-----
#           toto|a, b|a + b
#           (1 row)
#           
#           plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
#           plruby_test'#     toto(1, 3) + toto(4, 4)
#           plruby_test'# ' LANGUAGE 'plruby';
#           CREATE
#           plruby_test=# select tutu();
#           tutu
#           ----
#             12
#           (1 row)
#           
#           plruby_test=#
#
# * Another example, if PLRuby was compiled with --enable-conversion and it 
#   exist  a column with the name '***' then it can create a singleton method
#   from a PLRuby function
# 
# 
#           plruby_test=# select * from plruby_singleton_methods;
#            name | args | body 
#           ------+------+------
#            ***  |      | 
#           (1 row)
#           
#           plruby_test=# create function add_value(int, int) returns int as '
#           plruby_test'# args[0] + args[1]
#           plruby_test'# ' language 'plruby';
#           CREATE FUNCTION
#           plruby_test=# 
#           plruby_test=# select add_value(10, 2);
#            add_value 
#           -----------
#                   12
#           (1 row)
#           
#           plruby_test=# 
#           plruby_test=# create function add_one(int) returns int as '
#           plruby_test'# add_value(args[0], 1)
#           plruby_test'# ' language 'plruby';
#           CREATE FUNCTION
#           plruby_test=# 
#           plruby_test=# select add_one(11);
#            add_one 
#           ---------
#                 12
#           (1 row)
#           
#           plruby_test=# 
# 
# 
# 
class PLRuby::Description::Singleton_method
end
#If the conversions was not disabled (--disable-conversion),  the following
#conversions are made
#
#                  PostgreSQL             Ruby
#                  ----------             ----
#                  OID                    Fixnum
#                  INT2OID                Fixnum
#                  INT4OID                Fixnum
#                  INT8OID                Fixnum (or Bignum)
#                  FLOAT4OID              Float
#                  FLOAT8OID              Float
#                  CASHOID                Float
#                  NUMERICOID             Float
#                  BOOLOID                true, false
#                  ABSTIMEOID             Time
#                  RELTIMEOID             Time
#                  TIMEOID                Time
#                  TIMETZOID              Time
#                  TIMESTAMPOID           Time
#                  TIMESTAMPTZOID         Time
#                  DATEOID                Time
#                  INTERVALOID            Time
#                  TINTERVALOID           Tinterval (new Ruby class)
#                  BITOID                 BitString (new Ruby class)
#                  VARBITOID              BitString (new Ruby class)
#                  INETOID                NetAddr   (new Ruby class)
#                  CIDROID                NetAddr   (new Ruby class)
#                  MACADDROID             MacAddr   (new Ruby class)
#                  POINTOID               Point     (new Ruby class)
#                  LSEGOID                Segment   (new Ruby class)
#                  BOXOID                 Box       (new Ruby class)
#                  PATHOID                Path      (new Ruby class)
#                  POLYGONOID             Polygon   (new Ruby class)
#                  CIRCLEOID              Circle    (new Ruby class)
#
#all others OID are converted to a String object
#
class PLRuby::Description::Conversion
end
#
# general module
# 
module PLRuby::PL
   class << self
   # 
   #Return the type of the arguments given to the function
   #
   def  args_type
   end
   # 
   #Return the name of the columns for the table
   #
   def  column_name(table)
   end
   # 
   #return the type of the columns for the table
   #
   def  column_type(table)
   end
   # 
   #Return the context (or nil) associated with a SETOF function 
   #(ExprMultiResult)
   #
   def  context
   end
   # 
   #Set the context for a SETOF function (ExprMultiResult)
   #
   def  context=
   end
   # 
   # 
   #Duplicates all occurences of single quote and backslash
   #characters. It should be used when variables are used in the query
   #string given to spi_exec or spi_prepare (not for the value list on
   #execp).
   #
   def  quote(string)
   end
   # 
   #Return the name of the columns for a function returning a SETOF
   #
   def  result_name
   end
   # 
   #Return the type of the columns for a function returning a SETOF
   #or the type of the return value
   #
   def  result_type
   end
   # 
   #Return the number of columns  for a function returning a SETOF
   #
   def  result_size
   end
   # 
   #Return the table description given to a function returning a SETOF
   #
   def  result_description
   end
   # 
   #
   #Call parser/planner/optimizer/executor for query. The optional
   #<em>count</em> value tells spi_exec the maximum number of rows to be
   #processed by the query.
   #    
   #* SELECT
   #If the query is a SELECT statement, an array is return (if count is
   #not specified or with a value > 1). Each element of this array is an
   #hash where the key is the column name.
   #    
   #If type is specified it can take the value
   #
   #* "array" return for each column an array with the element
   #["name", "value", "type", "len", "typeid"]
   #* "hash" return for each column an hash with the keys 
   #{"name", "value", "type", "len", "typeid"}
   #* "value" return all values
   #
   #For example this procedure display all rows in the table pg_table.
   #    
   #    CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
   #       res = PL.exec("select * from pg_class")
   #       res.each do |x|
   #          warn "======================"
   #          x.each do |y, z|
   #             warn "name = #{y} -- value = #{z}"
   #         end
   #         warn "======================"
   #       end
   #       return res.size
   #    ' LANGUAGE 'plruby';
   #    
   #A block can be specified, in this case a call to yield() will be
   #made.
   #    
   #If count is specified with the value 1, only the first row (or
   #FALSE if it fail) is returned as a hash. Here a little example :
   #    
   #    
   #    CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
   #       PL.exec("select * from pg_class", 1) { |y, z|
   #          warn "name = #{y} -- value = #{z}"
   #       }
   #       return 1
   #    ' LANGUAGE 'plruby';
   #    
   #Another example with count = 1
   #    
   #    create table T_pkey1 (
   #        skey1        int4,
   #        skey2        varchar(20),
   #        stxt         varchar(40)
   #    );
   #            
   #    create function toto() returns bool as '
   #       warn("=======")
   #       PL.exec("select * from T_pkey1", 1, "hash") do |a|
   #          warn(a.inspect)
   #       end
   #       warn("=======")
   #       PL.exec("select * from T_pkey1", 1, "array") do |a|
   #          warn(a.inspect)
   #       end
   #       warn("=======")
   #       PL.exec("select * from T_pkey1", 1) do |a|
   #          warn(a.inspect)
   #       end
   #       warn("=======")
   #       return true
   #    ' language 'plruby';
   #           
   #    plruby_test=# select toto();
   #    NOTICE:  =======
   #    NOTICE:  {"name"=>"skey1", "typeid"=>23, "type"=>"int4", "value"=>"12", "len"=>4}
   #    NOTICE:  {"name"=>"skey2", "typeid"=>1043, "type"=>"varchar", "value"=>"a", "len"=>20}
   #    NOTICE:  {"name"=>"stxt", "typeid"=>1043, "type"=>"varchar", "value"=>"b", "len"=>40}
   #    NOTICE:  =======
   #    NOTICE:  ["skey1", "12", "int4", 4, 23]
   #    NOTICE:  ["skey2", "a", "varchar", 20, 1043]
   #    NOTICE:  ["stxt", "b", "varchar", 40, 1043]
   #    NOTICE:  =======
   #    NOTICE:  ["skey1", "12"]
   #    NOTICE:  ["skey2", "a"]
   #    NOTICE:  ["stxt", "b"]
   #    NOTICE:  =======
   #     toto 
   #    ------
   #     t
   #    (1 row)
   #      
   #    plruby_test=# 
   #    
   #    
   #* SELECT INTO, INSERT, UPDATE, DELETE
   #return the number of rows insered, updated, deleted, ...
   #    
   #    
   #* UTILITY
   #return TRUE
   #    
   def  exec(string [, count [, type]])
   end
   #same than <em> exec</em>
   def  spi_exec(string [, count [, type]])
   end

   # 
   #
   #Deprecated : See <em>PL::Plan::new</em> and <em>PL::Plan#save</em>
   #
   #Prepares AND SAVES a query plan for later execution. It is a bit
   #different from the C level SPI_prepare in that the plan is
   #automatically copied to the toplevel memory context.
   #
   #If the query references arguments, the type names must be given as a
   #Ruby array of strings. The return value from prepare is a
   #<em>PL::Plan</em> object to be used in subsequent calls to
   #<em>PL::Plan#exec</em>.
   #
   #If the hash given has the keys <em>count</em>, <em>output</em> these values
   #will be given to the subsequent calls to <em>each</em>
   def  prepare(string[, types])
   end
   #same than <em> prepare</em>
   def  spi_prepare(string[, types])
   end
end
#
# class for prepared plan
#
class PL::Plan
   # 
   #
   #Prepares a query plan for later execution.
   #
   #If the query references arguments, the type names must be given as a
   #Ruby array of strings.
   #
   #If the hash given has the keys <em>output</em>, <em>count</em> these values
   #will be given to the subsequent calls to <em>each</em>
   #
   #If <em>"save"</em> as a true value, the plan will be saved 
   #
   #
   def  initialize(string, "types" => types, "count" => count, "output" => type, "save" => false)
   end
   # 
   #
   #Execute a prepared plan from <em>PL::Plan::new</em> with variable
   #substitution. The optional <em>count</em> value tells
   #<em>PL::Plan#exec</em> the maximum number of rows to be processed by the
   #query.
   #
   #If there was a typelist given to <em>PL::Plan::new</em>, an array
   #of <em>values</em> of exactly the same length must be given to
   #<em>PL::Plan#exec</em> as first argument. If the type list on
   #<em>PL::Plan::new</em> was empty, this argument must be omitted.
   #
   #If the query is a SELECT statement, the same as described for
   #<em>PL#exec</em> happens for the loop-body and the variables for
   #the fields selected.
   #
   #If type is specified it can take the values
   #* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
   #* "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
   #* "value" return an array with all values
   #
   #Here's an example for a PLRuby function using a prepared plan : 
   #
   #   CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS '
   #       if ! $Plans.key?("plan")
   #           # prepare the saved plan on the first call
   #           $Plans["plan"] = PL::Plan.new("SELECT count(*) AS cnt FROM t1 
   #                                          WHERE num >= $1 AND num <= $2",
   #                                         ["int4", "int4"]).save
   #       end
   #       n = $Plans["plan"].exec([args[0], args[1]], 1)
   #       n["cnt"]
   #   ' LANGUAGE 'plruby';
   #
   def  exec(values, [count [, type]])
   end
   #same than <em> exec</em>
   def  execp(values, [count [, type]])
   end
   #same than <em> exec</em>
   def  execp("values" => values, "count" => count, "output" => type)
   end
   # 
   # 
   #Create a new object PL::Cursor
   #
   #If output is specified it can take the values
   #* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
   #*  "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
   #* "value" return an array with all values
   #
   #If there was a typelist given to <em>PL::Plan::new</em>, an array
   #of <em>values</em> of exactly the same length must be given to
   #<em>PL::Plan#cursor</em>
   #
   def  cursor(name = nil, "values" => values, "output" => type)
   end
   # 
   #
   #Same then #exec but a call to SPI_cursor_open(), SPI_cursor_fetch() is made.
   #
   #Can be used only with a block and a SELECT statement
   #    
   #   create function toto() returns bool as '
   #          plan = PL::Plan.new("select * from T_pkey1")
   #          warn "=====> ALL"
   #          plan.each do |x|
   #             warn(x.inspect)
   #          end
   #          warn "=====> FIRST 2"
   #          plan.each("count" => 2) do |x|
   #             warn(x.inspect)
   #          end
   #          return true
   #   ' language 'plruby';
   #   
   #   plruby_test=# select * from T_pkey1;
   #    skey1 | skey2 | stxt 
   #   -------+-------+------
   #       12 | a     | b
   #       24 | c     | d
   #       36 | e     | f
   #   (3 rows)
   #   
   #   plruby_test=# 
   #   plruby_test=# select toto();
   #   NOTICE:  =====> ALL
   #   NOTICE:  {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
   #   NOTICE:  {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
   #   NOTICE:  {"skey1"=>"36", "skey2"=>"e", "stxt"=>"f"}
   #   NOTICE:  =====> FIRST 2
   #   NOTICE:  {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
   #   NOTICE:  {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
   #    toto 
   #   ------
   #    t
   #   (1 row)
   #   
   #   plruby_test=# 
   #
   def  each(values, [count [, type ]]) { ... }
   end
   #same than <em> each</em>
   def  fetch(values, [count [, type ]]) { ... }
   end
   #same than <em> each</em>
   def  fetch("values" => values, "count" => count, "output" => type) { ... }
   end
   # 
   #
   #Release a query plan
   #
   def  release
   end
   # 
   #  
   #Save a query plan for later execution. The plan is copied to the
   #toplevel memory context.
   #
   def  save
   end
end
end

#
# A cursor is created with the method PL::Plan#cursor
#
class PLRuby::PL::Cursor
   #Closes a cursor
   #
   def  close
   end
   # 
   # 
   #Iterate over all rows (forward)
   #
   def  each 
      yield row
   end
   # 
   #
   #Fetches some rows from a cursor
   #
   #if count > 0 fetch forward else backward
   #
   def  fetch(count = 1)
   end
   #same than <em> fetch</em>
   def  row(count = 1)
   end
   # 
   #
   #Move a cursor : if count > 0 move forward else backward
   #
   def  move(count)
   end
   # 
   #
   #Iterate over all rows (backward)
   #
   def  reverse_each 
      yield row
   end
end

#
# A transaction is created with the global function #transaction
#
# Only available with PostgreSQL >= 8.0
#
class PLRuby::PL::Transaction

   # abort the transaction
   def abort
   end

   # commit the transaction
   def commit
   end
end
#
# The class PLRuby::BitString implement the PostgreSQL type <em>bit</em>
# and <em>bit varying</em>
#
class PLRuby::BitString
   include Comparable
   include Enumerable

   class << self

      # Convert a <em>String</em> to a <em>BitString</em>
      def from_string(string, length = strlen(string))
      end
   end

   # comparison function for 2 <em>BitString</em> objects
   #
   # All bits are considered and additional zero bits may make one string
   # smaller/larger than the other, even if their zero-padded values would
   # be the same.
   def <=>(other)
   end

   # Concatenate <em>self</em> and <em>other</em>
   def +(other)
   end

   # AND operator
   def &(other)
   end

   # OR operator
   def |(other)
   end

   # XOR operator
   def ^(other)
   end

   # NOT operator
   def ~()
   end

   # LEFT SHIFT operator
   def <<(lshft)
   end

   # RIGHT SHIFT operator
   def >>(rshft)
   end

   # Element reference with the same syntax that for a <em>String</em> object
   #
   # Return a <em>BitString</em> or a <em>Fixnum</em> 0, 1
   #
   #   bitstring[fixnum]
   #   bitstring[fixnum, fixnum]
   #   bitstring[range]
   #   bitstring[regexp]
   #   bitstring[regexp, fixnum]
   #   bitstring[string]
   #   bitstring[other_bitstring]
   def [](*args)
   end

   # Element assignment with the same syntax that for a <em>String</em> object
   #
   #   bitstring[fixnum] = fixnum
   #   bitstring[fixnum] = string_or_bitstring
   #   bitstring[fixnum, fixnum] = string_or_bitstring
   #   bitstring[range] = string_or_bitstring
   #   bitstring[regexp] = string_or_bitstring
   #   bitstring[regexp, fixnum] = string_or_bitstring
   #   bitstring[other_str] = string_or_bitstring
   def []=(*args)
   end

   # append <em>other</em> to <em>self</em>
   def concat(other)
   end

   # iterate other each bit
   def each
   end

   # return <em>true</em> if <em>other</em> is included in <em>self</em>
   def include?(other)
   end

   # return the position of <em>other</em> in <em>self</em>
   #
   # return <em>nil</em> if <em>other</em> is not included in <em>self</em>
   def index(other)
   end

   # create a new <em>BitString</em> object with <em>nbits</em> bits
   #
   # <em>init</em> can be a <em>Fixnum</em> or a <em>String</em>
   #
   # For a <em>String</em> the first character can be 'x', 'X' for and
   # hexadecimal representation, or 'b', 'B' for a binary representation. 
   # The default is a binary representation
   def initialize(init, nbits = -1)
   end

   # return the length of <em>self</em> in bits
   def length
   end

   # return the length of <em>self</em> in octets
   def octet_length
   end

   # append <em>other</em> to <em>self</em>
   def push(other)
   end

   # convert <em>self</em> to a <em>Fixnum</em>
   def to_i
   end

   # convert <em>self</em> to a <em>String</em>
   def to_s
   end

end

#
# The class PLRuby::NetAddr implement the PostgreSQL type <em>inet</em>
# and <em>cidr</em>
#
class PLRuby::NetAddr
   include Comparable

   class << self

      # Convert a <em>String</em> to a <em>NetAddr</em>
      def from_string(string, cidr = false)
      end
   end

   # comparison function for 2 <em>NetAddr</em> objects
   #
   # comparison is first on the common bits of the network part, then on
   # the length of the network part, and then on the whole unmasked address.
   def <=>(other)
   end

   # return the abbreviated display format as a <em>String</em> object
   def abbrev
   end

   # return the broadcast address from the network
   def broadcast
   end

   # return true if <em>other</em> is included in <em>self</em>
   def contain?(other)
   end

   # return true if <em>other</em> is included in <em>self</em>, or equal
   def contain_or_equal?(other)
   end

   # return true if <em>self</em> is included in <em>other</em>
   def contained?(other)
   end

   # return true if <em>self</em> is included in <em>other</em>, or equal
   def contained_or_equal?(other)
   end

   # return the String "AF_INET" or "AF_INET6"
   def family
   end

   # return the first address in the network
   def first
   end

   # extract the IP address and return it as a <em>String</em> 
   def host
   end

   # return the host mask for network
   def hostmask
   end

   # create a <em>NetAddr</em> from a <em>String</em>
   def initialize(string, cidr = false)
   end

   # return the last address in the network
   def last
   end

   # return the length of the netmask
   def masklen
   end

   # return the netmask for the network
   def netmask
   end

   # return the network part of the address
   def network
   end

   # return a new <em>NetAddr</em> with netmask length <em>len</em>
   def set_masklen(len)
   end 

   # return the string representation of the address
   def to_s
   end

end

#
# The class PLRuby::MacAddr implement the PostgreSQL type <em>macaddr</em>
#
class PLRuby::MacAddr
   include Comparable

   class << self

      # Convert a <em>String</em> to a <em>MacAddr</em>
      def from_string(string, cidr = false)
      end
   end

   # comparison function for 2 <em>MacAddr</em> objects
   def <=>(other)
   end

   # create a <em>MacAddr</em> from a <em>String</em>
   def initialize(string)
   end

   # return the string representation of the MAC address
   def to_s
   end

   # return a new object with the last 3 bytes set to zero
   def truncate
   end

end

#
# The class PLRuby::Tinterval implement the PostgreSQL type <em>tinterval</em>
#
class PLRuby::Tinterval
   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Tinterval</em>
      def from_string(string)
      end
   end

   # return a <em>Time</em> which is the high value of the interval
   def high
   end

   # set the high value for the interval
   def high=(time)
   end

   # create a <em>Tinterval</em> with the 2 <em>Time</em> objects
   # <em>low</em> and <em>high</em>
   def initialize(low, high)
   end

   # return a <em>Time</em> which is the low value of the interval
   def low
   end

   # set the low value for the interval
   def low=(time)
   end
 
   # return the string representation of the object
   def to_s
   end

end

#
# The class PLRuby::Box implement the PostgreSQL type <em>box</em>
#
class PLRuby::Box
   include Comparable

   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Box</em> object
      def from_string(string)
      end
   end

   # translate (right, up) <em>self</em>
   def +(point)
   end

   # translate (left, down) <em>self</em>
   def -(point)
   end

   # scale and rotate <em>self</em>
   def *(point)
   end

   # scale and rotate <em>self</em>
   def /(point)
   end

   # return true if the 2 boxes <em>self</em> and <em>other</em> are identical
   def ===(other)
   end

   # comparison operator for 2 Box based on the area of the 2 objects, i.e.
   # self.area <=> box.area
   def <=>(other)
   end

   # return true if  <em>self</em> is above <em>other</em>
   def above?(other)
   end

   # return the area of the Box
   def area
   end

   # return true if  <em>self</em> is below <em>other</em>
   def below?(other)
   end

   # return the center point of the Box
   def center
   end

   # closest point to <em>other</em>
   #
   # <em>other</em> can be a Point, or Segment
   def closest(other)
   end

   # return true if  <em>self</em> contain <em>other</em>
   def contain?(other)
   end

   # return true if  <em>self</em> is contained by <em>other</em>
   def contained?(other)
   end

   # return a line Segment which happens to be the
   # positive-slope diagonal of Box
   def diagonal
   end

   # return the height of the Box (vertical magnitude)
   def height
   end

   # return true if  <em>self</em> is contained by <em>other</em>
   def in?(other)
   end

   # create a new Box object
   #
   # <em>args</em> can be 2 Point objects (low, high) or 4 Float objects
   # (low.x, low.y, high.x, high.y)
   def initialize(*args)
   end

   # returns the overlapping portion of two boxes,
   # or <em>nil</em> if they do not intersect.
   def intersection(other)
   end

   # returns  true if the Segment <em>segment</em>
   # intersect with the Box
   #
   # Segment completely inside box counts as intersection.
   # If you want only segments crossing box boundaries,
   # try converting Box to Path first.
   # 
   def intersect?(segment)
   end

   # return true if <em>self</em> is strictly left of <em>other</em>
   def left?(other)
   end

   # return true if <em>self</em> overlap <em>other</em>
   def overlap?(other)
   end
 
   # return true if the right edge of <em>self</em> is to the left of
   # the right edge of <em>other</em>
   def overleft?(other)
   end

   # return true if the left edge of <em>self</em> is to the right of
   # the left edge of <em>other</em>
   def overright?(other)
   end

   # return true if <em>self</em> is strictly right of <em>other</em>
   def right?(other)
   end

   # return true if the 2 boxes <em>self</em> and <em>other</em> are identical
   def same?(other)
   end

   # convert a Box to a Circle
   def to_circle
   end

   # return the center Point of the Box
   def to_point
   end

   # convert a Box to a Polygon
   def to_polygon
   end

   # return a line Segment which happens to be the
   # positive-slope diagonal of Box
   def to_segment
   end

   # return the width of the Box (horizontal magnitude)
   def width
   end
end

#
# The class PLRuby::Path implement the PostgreSQL type <em>path</em>
#
class PLRuby::Path
   include Comparable

   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Path</em>
      def from_string(string)
      end
   end

   # concatenate the two paths (only if they are both open)
   def <<(path)
   end

   # translate (right, up) <em>self</em>
   def +(point)
   end

   # translate (left, down) <em>self</em>
   def -(point)
   end

   # scale and rotate <em>self</em>
   def *(point)
   end

   # scale and rotate <em>self</em>
   def /(point)
   end

   # comparison function based on the path cardinality, i.e.
   # self.npoints <=> other.npoints
   def <=>(other)
   end

   # make a closed path
   def close
   end

   # return true if <em>self</em> is a closed path
   def closed?
   end

   # concatenate the two paths (only if they are both open)
   def concat(path)
   end

   # create a new Path object from the Array of Point <em>points</em>
   def initialize(points, closed = false)
   end

   # return the length of <em>self</em>
   def length
   end

   # return the path cardinality
   def npoints
   end

   # make an open path
   def open
   end

   # convert <em>self</em> to a Polygon object
   def to_polygon
   end
end
#
# The class PLRuby::Point implement the PostgreSQL type <em>point</em>
#
class PLRuby::Point
   include Comparable

   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Point</em>
      def from_string(string)
      end
   end

   # translate (right, up) <em>self</em>
   def +(point)
   end

   # translate (left, down) <em>self</em>
   def -(point)
   end

   # scale and rotate <em>self</em>
   def *(point)
   end

   # scale and rotate <em>self</em>
   def /(point)
   end

   # return the coordinate
   #
   # <em>indice</em> can have the value 0 or 1
   def [](indice)
   end

   # set the coordinate
   #
   # <em>indice</em> can have the value 0 or 1
   def []=(indice, value)
   end

   # return true if <em>self</em> and <em>other</em> are the same,
   # i.e. self.x == other.x && self.y == other.y
   def ==(other)
   end

   # return true if <em>self</em> is above <em>other</em>,
   # i.e. self.y > other.y
   def above?(other)
   end

   # return true if <em>self</em> is below <em>other</em>,
   # i.e. self.y < other.y
   def below?(other)
   end

   # return true if <em>self</em> is contained in <em>other</em>
   # 
   # <em>other</em> can be Point, Polygon or a Circle object
   def contained?(other)
   end

   # return true if <em>self</em> and <em>other</em> are horizontal,
   # i.e. self.y == other.y
   def horizontal?(other)
   end

   # return true if <em>self</em> is contained in <em>other</em>
   # 
   # <em>other</em> can be Point, Polygon or a Circle object
   def in?(other)
   end

   # create a Point with the 2 Float object (x, y)
   def initialize(x, y)
   end

   # return true if <em>self</em> is at the left of <em>other</em>,
   # i.e. self.x < other.x
   def left?(other)
   end

   # return true if <em>self</em> is on <em>other</em>
   # 
   # <em>other</em> can be Point, Segment, Box or Path object
   def on?(other)
   end

   # return true if <em>self</em> is at the right of <em>other</em>,
   # i.e. self.x > other.x
   def right?(other)
   end

   # return true if <em>self</em> and <em>other</em> are vertical,
   # i.e. self.x == other.x
   def vertical?(other)
   end

   # return <em>x</em> for <em>self</em>
   def x
   end

   # set the <em>x</em> value for <em>self</em>
   def x=(value)
   end

   # return <em>y</em> for <em>self</em>
   def y
   end

   # set the <em>y</em> value for <em>self</em>
   def y=(value)
   end

end

#
# The class PLRuby::Segment implement the PostgreSQL type <em>lseg</em>
#
class PLRuby::Segment
   include Comparable

   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Segment</em>
      def from_string(string)
      end
   end

   # comparison function for the 2 segments, returns
   #
   #  0  if self[0] == other[0] && self[1] == other[1]
   #
   #  1  if distance(self[0], self[1]) > distance(other[0], other[1]) 
   #
   #  -1 if distance(self[0], self[1]) < distance(other[0], other[1]) 
   def <=>(other)
   end

   # return the center of the segment
   def center
   end

   # closest point to other
   #
   # <em>other</em> can be a Point, Segment or Box
   #
   # With a point, take the closest endpoint 
   # if the point is left, right, above, or below the segment, otherwise 
   # find the intersection point of the segment and its perpendicular through
   # the point.
   def closest(other)
   end

   # returns true if <em>self</em> is a horizontal Segment
   def horizontal?
   end

   # create a Segment from the 2 Point p0, p1
   def initialize(point0, point1)
   end

   # returns true if <em>self</em> and <em>other</em> intersect
   def intersect?(other)
   end

   # returns the Point where the 2 Segment <em>self</em> and <em>other</em>
   # intersect or nil
   def intersection(other)
   end

   # return the length of <em>self</em>, i.e. the distnace between the 2 points
   def length
   end

   # return true if <em>self</em> is on <em>other</em>
   #
   # <em>other</em> can be a Segment, or a Box object
   def on?(other)
   end

   # returns true if the 2 Segment <em>self</em> and <em>other</em> 
   # are parallel
   def parallel?(other)
   end

   # returns true if <em>self</em> is perpendicular to <em>other</em>
   def perpendicular?(other)
   end

   # conversion function to a Point, return the center of the segment
   def to_point
   end

   # returns true if <em>self</em> is a vertical Segment
   def vertical?
   end
end
#
# The class PLRuby::Polygon implement the PostgreSQL type <em>polygon</em>
#
class PLRuby::Polygon
   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Polygon</em>
      def from_string(string)
      end
   end

   # return true if <em>self</em> is the same as <em>other</em>, i.e. all
   # the points are the same
   def ==(other)
   end

   # return the center of <em>self</em>, i.e. create a circle and return its 
   # center
   def center
   end

   # return true if <em>self</em> contains <em>other</em>
   #
   # <em>other</em> can be a Point or a Polygon
   def contain?(other)
   end

   # return true if <em>self</em> is contained in <em>other</em> by determining
   # if <em>self</em> bounding box is contained by <em>other</em>'s bounding box.
   def contained?(other)
   end

   # return true if <em>self</em> is contained in <em>other</em> by determining
   # if <em>self</em> bounding box is contained by <em>other</em>'s bounding box.
   def in?(other)
   end

   # create a new Polygon object from the Array of Point <em>points</em>
   def initialize(points, closed = false)
   end

   # return true if <em>self</em> is strictly left of <em>other</em>, i.e.
   # the right most point of <em>self</em> is left of the left
   # most point of <em>other</em>
   def left?(other)
   end

   # return true if <em>self</em> is overlapping or left of <em>other</em>,
   # i.e. the left most point of <em>self</em> is left of the right
   # most point of <em>other</em>
   def overleft?(other)
   end

   # return true if <em>self</em> is overlapping or right of <em>other</em>,
   # i.e. the right most point of <em>self</em> is right of the left
   # most point of <em>other</em>
   def overright?(other)
   end

   # return true if <em>self</em> and <em>other</em> overlap by determining if
   # their bounding boxes overlap.
   def overlap?(other)
   end

   # return the number of points in <em>self</em>
   def npoints
   end

   # return true if <em>self</em> is strictly right of <em>other</em>, i.e.
   # the left most point of <em>self</em> is right of the left
   # most point of <em>other</em>
   def right?(other)
   end

   # return true if <em>self</em> is the same as <em>other</em>, i.e. all 
   # the points are the same
   def same?(other)
   end

   # convert <em>self</em> to a Box
   def to_box
   end

   # convert <em>self</em> to a Circle
   def to_circle
   end

   # convert <em>self</em> to a Path
   def to_path
   end

   # convert <em>self</em> to a Point by returning its center
   def to_point
   end
end

#
# The class PLRuby::Circle implement the PostgreSQL type <em>circle</em>
#
class PLRuby::Circle
   include Comparable

   class << self

      # Convert a <em>String</em> (PostgreSQL representation)
      # to a <em>Circle</em>
      def from_string(string)
      end
   end

   # translate (right, up) <em>self</em>
   def +(point)
   end

   # translate (left, down) <em>self</em>
   def -(point)
   end

   # scale and rotate <em>self</em>
   def *(point)
   end

   # scale and rotate <em>self</em>
   def /(point)
   end

   # comparison function based on area,
   # i.e. self.area <=> other.area
   def <=>(other)
   end

   # return the area
   def area
   end

   # return true if <em>self</em> is entirely above <em>other</em>
   def above?(other)
   end

   # return true if <em>self</em> is entirely below <em>other</em>
   def below?(other)
   end

   # return true if <em>self</em> contain <em>other</em>
   def contain?(other)
   end

   # return true if <em>self</em> is contained in <em>other</em>
   def contained?(other)
   end

   # return the diameter
   def diameter
   end

   # create a Circle object with <em>center</em> and <em>radius</em>
   #
   # <em>center</em> can be a Point or an Array [x, y]
   def initialize(center, radius)
   end

   # return true if <em>self</em> overlap <em>other</em>
   def overlap?(other)
   end

   # return true if the right edge of <em>self</em> is to the left of
   # the right edge of <em>other</em>
   def overleft?(other)
   end

   # return true if <em>self</em> is strictly left of <em>other</em>
   def left?(other)
   end

   # return true if the left edge of <em>self</em> is to the right of
   # the left edge of <em>other</em>
   def overright?(other)
   end

   # return the radius
   def radius
   end

   # return true if <em>self</em> is strictly right of <em>other</em>
   def right?(other)
   end

   # return true if <em>self</em> is the same than <em>other</em>, i.e.
   # self.center == other.center && self.radius == other.radius
   def same?(other)
   end

   # convert <em>self</em> to a Box
   def to_box
   end

   # convert <em>self</em> to a Point by returning its center
   def to_point
   end

   # convert <em>self</em> to a Polygon with <em>npts</em> Points
   def to_polygon(npts)
   end

end