1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
|
# = Warning
#
# <em>For documentation purpose, the modules PLRuby, PLRuby::Description
# are defined but don't exist in reality</em>
#
# = PLRuby
#
# PLRuby is a loadable procedural language for the Postgres database
# system that enable the Ruby language to create functions and trigger
# procedures
#
# Functions and triggers are singleton methods of the module PLtemp.
#
# = WARNING
#
# <b>if PLRuby was NOT compiled with <em>--enable-conversion</em>
# all arguments (to the function or the triggers) are passed as string
# values, except for NULL values represented by <em>nil</em>.</b>
#
# <b>In this case, you must explicitely call a conversion function (like to_i)
# if you want to use an argument as an integer</b>
#
# = See
#
# * PLRuby::Description::Function
#
# To create a function
#
# * PLRuby::Description::Function::SFRM
#
# To create a function returning SET (SFRM Materialize)
#
# * PLRuby::Description::Function::ExprMultiResult
#
# To create a function returning SET (ExprMultiResult)
#
# * PLRuby::Description::Trigger
#
# To define a trigger
#
# * PLRuby::Description::Singleton_method
#
# To define singleton methods
#
# * PLRuby::Description::Conversion
#
# What conversions are done when this option is not disabled
# (<em>--disable-conversion</em>)
#
# = Class hierarchy
#
# * PLRuby::PL
#
# * PLRuby::PL::Plan
#
# * PLRuby::PL::Cursor
#
# * PLRuby::PL::Transaction
#
# * PLRuby::BitString
#
# * PLRuby::Tinterval
#
# * PLRuby::NetAddr
#
# * PLRuby::MacAddr
#
# * PLRuby::Box
#
# * PLRuby::Circle
#
# * PLRuby::Path
#
# * PLRuby::Point
#
# * PLRuby::Polygon
#
# * PLRuby::Segment
#
# Global variable
#
# $Plans:: can be used to store prepared plans. (hash, tainted)
#
#
module PLRuby
#
# Create a new transaction and yield an object <em>PL::Transaction</em>
#
# Only available with PostgreSQL >= 8.0
def transaction()
yield txn
end
# Ruby interface to PostgreSQL elog()
#
# Possible value for <tt>level</tt> are <tt>NOTICE</tt>,
# <tt>DEBUG</tt> and <tt>NOIND</tt>
#
# Use <tt>raise()</tt> if you want to simulate <tt>elog(ERROR, "...")</tt>
def warn(level = NOTICE, message)
end
end
#
# Pseudo module to describe the syntax to define function and triggers
#
# There is documentation for
# * PLRuby::Description::Function
#
# To create a function
#
# * PLRuby::Description::Function::SFRM
#
# To create a function returning SET (SFRM Materialize)
#
# * PLRuby::Description::Function::ExprMultiResult
#
# To create a function returning SET (ExprMultiResult)
#
# * PLRuby::Description::Trigger
#
# To define a trigger
#
# * PLRuby::Description::Singleton_method
#
# To define singleton methods
#
# * PLRuby::Description::Conversion
#
# What conversions are done when this option is not disabled
# (<em>--disable-conversion</em>)
module PLRuby::Description
end
#
# To create a function in the PLRuby language use the syntax
#
# CREATE FUNCTION funcname(arguments_type) RETURNS type AS '
#
# # PLRuby function body
#
# ' LANGUAGE 'plruby';
#
# when calling the function in a query, the arguments are given
# in the array <em>args</em>. To create a little max
# function returning the higher of two int4 values write :
#
# CREATE FUNCTION ruby_max(int4, int4) RETURNS int4 AS '
# if args[0] > args[1]
# return args[0]
# else
# return args[1]
# end
# ' LANGUAGE 'plruby';
#
#
# Tuple arguments are given as hash. Here is an example that defines
# the overpaid_2 function (as found in the older Postgres documentation)
# in PLRuby.
#
# CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS '
# args[0]["salary"] > 200000 ||
# (args[0]["salary"] > 100000 && args[0]["age"] < 30)
# ' LANGUAGE 'plruby';
#
#
# === Warning : with PostgreSQL >= 7.4 "array" are given as a ruby Array
#
# For example to define a function (int4[], int4) and return int4[],
# in version < 7.4 you write
#
# CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
# if /\\{(\\d+),(\\d+)\\}/ =~ args[0]
# a, b = $1, $2
# newsum = a + args[1]
# newcnt = b + 1
# else
# raise "unexpected value #{args[0]}"
# end
# "{#{newsum},#{newcnt}}"
# ' LANGUAGE 'plruby';
#
# This must now (>= 7.4) be written
#
# CREATE FUNCTION ruby_int4_accum(_int4, int4) RETURNS _int4 AS '
# a = args[0]
# [a[0] + args[1], a[1] + 1]
# ' LANGUAGE 'plruby';
#
# === Release PostgreSQL 8.0
#
# With this version, plruby can have named arguments and the previous functions
# can be written
#
# CREATE FUNCTION ruby_max(a int4, b int4) RETURNS int4 AS '
# if a > b
# a
# else
# b
# end
# ' LANGUAGE 'plruby';
#
#
# CREATE FUNCTION overpaid_2 (emp EMP) RETURNS bool AS '
# emp["salary"] > 200000 ||
# (emp["salary"] > 100000 && emp["age"] < 30)
# ' LANGUAGE 'plruby';
#
# With this version, you can also use transaction. For example
#
# plruby_test=# create table tu (a int, b int);
# CREATE TABLE
# plruby_test=# create or replace function tt(abort bool) returns bool as '
# plruby_test'# transaction do |txn|
# plruby_test'# PL.exec("insert into tu values (1, 2)")
# plruby_test'# transaction do |txn1|
# plruby_test'# PL.exec("insert into tu values (3, 4)")
# plruby_test'# txn1.abort
# plruby_test'# end
# plruby_test'# PL.exec("insert into tu values (5, 6)")
# plruby_test'# txn.abort if abort
# plruby_test'# end
# plruby_test'# abort
# plruby_test'# ' language 'plruby';
# CREATE FUNCTION
# plruby_test=#
# plruby_test=# select tt(true);
# tt
# ----
# t
# (1 row)
#
# plruby_test=# select * from tu;
# a | b
# ---+---
# (0 rows)
#
# plruby_test=# select tt(false);
# tt
# ----
# f
# (1 row)
#
# plruby_test=# select * from tu;
# a | b
# ---+---
# 1 | 2
# 5 | 6
# (2 rows)
#
# plruby_test=#
#
#
module PLRuby::Description::Function
end
#
# == Function returning SET (SFRM Materialize)
#
# The return type must be declared as SETOF
#
# The function must call <em>yield</em> to return rows or return a String
# which must be a valid SELECT statement
#
# For example to concatenate 2 rows create the function
#
# plruby_test=# CREATE FUNCTION tu(varchar) RETURNS setof record
# plruby_test-# AS '
# plruby_test'# size = PL.column_name(args[0]).size
# plruby_test'# res = nil
# plruby_test'# PL::Plan.new("select * from #{args[0]}",
# plruby_test'# "block" => 50).each do |row|
# plruby_test'# if res.nil?
# plruby_test'# res = row.values
# plruby_test'# else
# plruby_test'# res.concat row.values
# plruby_test'# yield res
# plruby_test'# res = nil
# plruby_test'# end
# plruby_test'# end
# plruby_test'# if res
# plruby_test'# res.concat Array.new(size)
# plruby_test'# yield res
# plruby_test'# end
# plruby_test'# ' language 'plruby';
# CREATE FUNCTION
# plruby_test=#
# plruby_test=# select * from tt;
# a | b
# ---+----
# 1 | 2
# 3 | 4
# 5 | 6
# 7 | 8
# 9 | 10
# (5 rows)
#
# plruby_test=# select * from tu('tt') as tbl(a int, b int, c int, d int);
# a | b | c | d
# ---+----+---+---
# 1 | 2 | 3 | 4
# 5 | 6 | 7 | 8
# 9 | 10 | |
# (3 rows)
#
# plruby_test=#
#
class PLRuby::Description::Function::SFRM
end
# == Function returning SET (ExprMultiResult)
#
# The return type must be declared as SETOF
#
# The function is called until it returns nil
#
# The method PL#context and PL#context= give the possibility to store
# information between the call
#
# For example
#
# plruby_test=# create or replace function vv(int) returns setof int as '
# plruby_test'# i = PL.context || 0
# plruby_test'# if i >= args[0]
# plruby_test'# nil
# plruby_test'# else
# plruby_test'# PL.context = i + 1
# plruby_test'# end
# plruby_test'# ' language plruby;
# CREATE FUNCTION
# plruby_test=#
# plruby_test=# select * from uu;
# b
# ---
# 2
# (1 row)
#
# plruby_test=#
# plruby_test=# select *,vv(3) from uu;
# b | vv
# ---+----
# 2 | 1
# 2 | 2
# 2 | 3
# (3 rows)
#
# plruby_test=#
#
class PLRuby::Description::Function::ExprMultiResult
end
#
# Trigger procedures are defined in Postgres as functions without
# arguments and a return type of trigger. In PLRuby the procedure is
# called with 4 arguments :
#
# * new (hash, tainted)
#
# an hash containing the values of the new table row on INSERT/UPDATE
# actions, or empty on DELETE.
# * old (hash, tainted)
#
# an hash containing the values of the old table row on UPDATE/DELETE
# actions, or empty on INSERT
# * args (array, tainted, frozen)
#
# An array of the arguments to the procedure as given in the CREATE
# TRIGGER statement
# * tg (hash, tainted, frozen)
#
# The following keys are defined
#
# - name
#
# The name of the trigger from the CREATE TRIGGER statement.
#
# - relname
#
# The name of the relation who has fired the trigger
#
# - relid
#
# The object ID of the table that caused the trigger procedure to be invoked.
#
# - relatts
#
# An array containing the name of the tables field.
#
# - when
#
# The constant <em>PL::BEFORE</em>, <em>PL::AFTER</em> or
# <em>PL::UNKNOWN</em> depending on the event of the trigger call.
#
# - level
#
# The constant <em>PL::ROW</em> or <em>PL::STATEMENT</em>
# depending on the event of the trigger call.
#
# - op
#
# The constant <em>PL::INSERT</em>, <em>PL::UPDATE</em> or
# <em>PL::DELETE</em> depending on the event of the trigger call.
#
#
# The return value from a trigger procedure is one of the constant
# <em>PL::OK</em> or <em>PL::SKIP</em>, or an hash. If the
# return value is <em>PL::OK</em>, the normal operation
# (INSERT/UPDATE/DELETE) that fired this trigger will take
# place. Obviously, <em>PL::SKIP</em> tells the trigger manager to
# silently suppress the operation. The hash tells
# PLRuby to return a modified row to the trigger manager that will be
# inserted instead of the one given in <em>new</em> (INSERT/UPDATE
# only). Needless to say that all this is only meaningful when the
# trigger is BEFORE and FOR EACH ROW.
#
# Here's a little example trigger procedure that forces an integer
# value in a table to keep track of the # of updates that are performed
# on the row. For new row's inserted, the value is initialized to 0 and
# then incremented on every update operation :
#
# CREATE FUNCTION trigfunc_modcount() RETURNS TRIGGER AS '
# case tg["op"]
# when PL::INSERT
# new[args[0]] = 0
# when PL::UPDATE
# new[args[0]] = old[args[0]] + 1
# else
# return PL::OK
# end
# new
# ' LANGUAGE 'plruby';
#
# CREATE TABLE mytab (num int4, modcnt int4, descr text);
#
# CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
# FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount('modcnt');
#
#
#
# A more complex example (extract from test_setup.sql in the distribution)
# which use the global variable <em>$Plans</em> to store a prepared
# plan
#
# create function trig_pkey2_after() returns trigger as '
# if ! $Plans.key?("plan_dta2_upd")
# $Plans["plan_dta2_upd"] =
# PL::Plan.new("update T_dta2
# set ref1 = $3, ref2 = $4
# where ref1 = $1 and ref2 = $2",
# ["int4", "varchar", "int4", "varchar" ]).save
# $Plans["plan_dta2_del"] =
# PL::Plan.new("delete from T_dta2
# where ref1 = $1 and ref2 = $2",
# ["int4", "varchar"]).save
# end
#
# old_ref_follow = false
# old_ref_delete = false
#
# case tg["op"]
# when PL::UPDATE
# new["key2"] = new["key2"].upcase
# old_ref_follow = (new["key1"] != old["key1"]) ||
# (new["key2"] != old["key2"])
# when PL::DELETE
# old_ref_delete = true
# end
#
# if old_ref_follow
# n = $Plans["plan_dta2_upd"].exec([old["key1"], old["key2"], new["key1"],
# new["key2"]])
# warn "updated #{n} entries in T_dta2 for new key in T_pkey2" if n != 0
# end
#
# if old_ref_delete
# n = $Plans["plan_dta2_del"].exec([old["key1"], old["key2"]])
# warn "deleted #{n} entries from T_dta2" if n != 0
# end
#
# PL::OK
# ' language 'plruby';
#
# create trigger pkey2_after after update or delete on T_pkey2
# for each row execute procedure
# trig_pkey2_after();
#
#
class PLRuby::Description::Trigger
end
# == plruby_singleton_methods
#
# Sometime it can be usefull to define methods (in pure Ruby) which can be
# called from a PLRuby function or a PLRuby trigger.
#
# In this case, you have 2 possibilities
#
# * the "stupid" way :-) :-) :-)
#
# just close the current definition of the function (or trigger) with a
# <em>end</em> and define your singleton method without the final <em>end</em>
#
# Here a small and useless example
#
# plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
# plruby_test'# toto(1, 3) + toto(4, 4)
# plruby_test'# end
# plruby_test'#
# plruby_test'# def PLtemp.toto(a, b)
# plruby_test'# a + b
# plruby_test'# ' LANGUAGE 'plruby';
# CREATE
# plruby_test=# select tutu();
# tutu
# ----
# 12
# (1 row)
#
# plruby_test=#
#
#
# * create a table plruby_singleton_methods with the columns (name, args, body)
#
# At load time, PLRuby look if it exist a table plruby_singleton_methods
# and if found try, for each row, to define singleton methods with the
# template :
#
# def PLtemp.#{name}(#{args})
# #{body}
# end
#
# The previous example can be written (you have a more complete example in
# test/plp/test_setup.sql)
#
#
# plruby_test=# SELECT * FROM plruby_singleton_methods;
# name|args|body
# ----+----+-----
# toto|a, b|a + b
# (1 row)
#
# plruby_test=# CREATE FUNCTION tutu() RETURNS int4 AS '
# plruby_test'# toto(1, 3) + toto(4, 4)
# plruby_test'# ' LANGUAGE 'plruby';
# CREATE
# plruby_test=# select tutu();
# tutu
# ----
# 12
# (1 row)
#
# plruby_test=#
#
# * Another example, if PLRuby was compiled with --enable-conversion and it
# exist a column with the name '***' then it can create a singleton method
# from a PLRuby function
#
#
# plruby_test=# select * from plruby_singleton_methods;
# name | args | body
# ------+------+------
# *** | |
# (1 row)
#
# plruby_test=# create function add_value(int, int) returns int as '
# plruby_test'# args[0] + args[1]
# plruby_test'# ' language 'plruby';
# CREATE FUNCTION
# plruby_test=#
# plruby_test=# select add_value(10, 2);
# add_value
# -----------
# 12
# (1 row)
#
# plruby_test=#
# plruby_test=# create function add_one(int) returns int as '
# plruby_test'# add_value(args[0], 1)
# plruby_test'# ' language 'plruby';
# CREATE FUNCTION
# plruby_test=#
# plruby_test=# select add_one(11);
# add_one
# ---------
# 12
# (1 row)
#
# plruby_test=#
#
#
#
class PLRuby::Description::Singleton_method
end
#If the conversions was not disabled (--disable-conversion), the following
#conversions are made
#
# PostgreSQL Ruby
# ---------- ----
# OID Fixnum
# INT2OID Fixnum
# INT4OID Fixnum
# INT8OID Fixnum (or Bignum)
# FLOAT4OID Float
# FLOAT8OID Float
# CASHOID Float
# NUMERICOID Float
# BOOLOID true, false
# ABSTIMEOID Time
# RELTIMEOID Time
# TIMEOID Time
# TIMETZOID Time
# TIMESTAMPOID Time
# TIMESTAMPTZOID Time
# DATEOID Time
# INTERVALOID Time
# TINTERVALOID Tinterval (new Ruby class)
# BITOID BitString (new Ruby class)
# VARBITOID BitString (new Ruby class)
# INETOID NetAddr (new Ruby class)
# CIDROID NetAddr (new Ruby class)
# MACADDROID MacAddr (new Ruby class)
# POINTOID Point (new Ruby class)
# LSEGOID Segment (new Ruby class)
# BOXOID Box (new Ruby class)
# PATHOID Path (new Ruby class)
# POLYGONOID Polygon (new Ruby class)
# CIRCLEOID Circle (new Ruby class)
#
#all others OID are converted to a String object
#
class PLRuby::Description::Conversion
end
#
# general module
#
module PLRuby::PL
class << self
#
#Return the type of the arguments given to the function
#
def args_type
end
#
#Return the name of the columns for the table
#
def column_name(table)
end
#
#return the type of the columns for the table
#
def column_type(table)
end
#
#Return the context (or nil) associated with a SETOF function
#(ExprMultiResult)
#
def context
end
#
#Set the context for a SETOF function (ExprMultiResult)
#
def context=
end
#
#
#Duplicates all occurences of single quote and backslash
#characters. It should be used when variables are used in the query
#string given to spi_exec or spi_prepare (not for the value list on
#execp).
#
def quote(string)
end
#
#Return the name of the columns for a function returning a SETOF
#
def result_name
end
#
#Return the type of the columns for a function returning a SETOF
#or the type of the return value
#
def result_type
end
#
#Return the number of columns for a function returning a SETOF
#
def result_size
end
#
#Return the table description given to a function returning a SETOF
#
def result_description
end
#
#
#Call parser/planner/optimizer/executor for query. The optional
#<em>count</em> value tells spi_exec the maximum number of rows to be
#processed by the query.
#
#* SELECT
#If the query is a SELECT statement, an array is return (if count is
#not specified or with a value > 1). Each element of this array is an
#hash where the key is the column name.
#
#If type is specified it can take the value
#
#* "array" return for each column an array with the element
#["name", "value", "type", "len", "typeid"]
#* "hash" return for each column an hash with the keys
#{"name", "value", "type", "len", "typeid"}
#* "value" return all values
#
#For example this procedure display all rows in the table pg_table.
#
# CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
# res = PL.exec("select * from pg_class")
# res.each do |x|
# warn "======================"
# x.each do |y, z|
# warn "name = #{y} -- value = #{z}"
# end
# warn "======================"
# end
# return res.size
# ' LANGUAGE 'plruby';
#
#A block can be specified, in this case a call to yield() will be
#made.
#
#If count is specified with the value 1, only the first row (or
#FALSE if it fail) is returned as a hash. Here a little example :
#
#
# CREATE FUNCTION pg_table_dis() RETURNS int4 AS '
# PL.exec("select * from pg_class", 1) { |y, z|
# warn "name = #{y} -- value = #{z}"
# }
# return 1
# ' LANGUAGE 'plruby';
#
#Another example with count = 1
#
# create table T_pkey1 (
# skey1 int4,
# skey2 varchar(20),
# stxt varchar(40)
# );
#
# create function toto() returns bool as '
# warn("=======")
# PL.exec("select * from T_pkey1", 1, "hash") do |a|
# warn(a.inspect)
# end
# warn("=======")
# PL.exec("select * from T_pkey1", 1, "array") do |a|
# warn(a.inspect)
# end
# warn("=======")
# PL.exec("select * from T_pkey1", 1) do |a|
# warn(a.inspect)
# end
# warn("=======")
# return true
# ' language 'plruby';
#
# plruby_test=# select toto();
# NOTICE: =======
# NOTICE: {"name"=>"skey1", "typeid"=>23, "type"=>"int4", "value"=>"12", "len"=>4}
# NOTICE: {"name"=>"skey2", "typeid"=>1043, "type"=>"varchar", "value"=>"a", "len"=>20}
# NOTICE: {"name"=>"stxt", "typeid"=>1043, "type"=>"varchar", "value"=>"b", "len"=>40}
# NOTICE: =======
# NOTICE: ["skey1", "12", "int4", 4, 23]
# NOTICE: ["skey2", "a", "varchar", 20, 1043]
# NOTICE: ["stxt", "b", "varchar", 40, 1043]
# NOTICE: =======
# NOTICE: ["skey1", "12"]
# NOTICE: ["skey2", "a"]
# NOTICE: ["stxt", "b"]
# NOTICE: =======
# toto
# ------
# t
# (1 row)
#
# plruby_test=#
#
#
#* SELECT INTO, INSERT, UPDATE, DELETE
#return the number of rows insered, updated, deleted, ...
#
#
#* UTILITY
#return TRUE
#
def exec(string [, count [, type]])
end
#same than <em> exec</em>
def spi_exec(string [, count [, type]])
end
#
#
#Deprecated : See <em>PL::Plan::new</em> and <em>PL::Plan#save</em>
#
#Prepares AND SAVES a query plan for later execution. It is a bit
#different from the C level SPI_prepare in that the plan is
#automatically copied to the toplevel memory context.
#
#If the query references arguments, the type names must be given as a
#Ruby array of strings. The return value from prepare is a
#<em>PL::Plan</em> object to be used in subsequent calls to
#<em>PL::Plan#exec</em>.
#
#If the hash given has the keys <em>count</em>, <em>output</em> these values
#will be given to the subsequent calls to <em>each</em>
def prepare(string[, types])
end
#same than <em> prepare</em>
def spi_prepare(string[, types])
end
end
#
# class for prepared plan
#
class PL::Plan
#
#
#Prepares a query plan for later execution.
#
#If the query references arguments, the type names must be given as a
#Ruby array of strings.
#
#If the hash given has the keys <em>output</em>, <em>count</em> these values
#will be given to the subsequent calls to <em>each</em>
#
#If <em>"save"</em> as a true value, the plan will be saved
#
#
def initialize(string, "types" => types, "count" => count, "output" => type, "save" => false)
end
#
#
#Execute a prepared plan from <em>PL::Plan::new</em> with variable
#substitution. The optional <em>count</em> value tells
#<em>PL::Plan#exec</em> the maximum number of rows to be processed by the
#query.
#
#If there was a typelist given to <em>PL::Plan::new</em>, an array
#of <em>values</em> of exactly the same length must be given to
#<em>PL::Plan#exec</em> as first argument. If the type list on
#<em>PL::Plan::new</em> was empty, this argument must be omitted.
#
#If the query is a SELECT statement, the same as described for
#<em>PL#exec</em> happens for the loop-body and the variables for
#the fields selected.
#
#If type is specified it can take the values
#* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
#* "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
#* "value" return an array with all values
#
#Here's an example for a PLRuby function using a prepared plan :
#
# CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS '
# if ! $Plans.key?("plan")
# # prepare the saved plan on the first call
# $Plans["plan"] = PL::Plan.new("SELECT count(*) AS cnt FROM t1
# WHERE num >= $1 AND num <= $2",
# ["int4", "int4"]).save
# end
# n = $Plans["plan"].exec([args[0], args[1]], 1)
# n["cnt"]
# ' LANGUAGE 'plruby';
#
def exec(values, [count [, type]])
end
#same than <em> exec</em>
def execp(values, [count [, type]])
end
#same than <em> exec</em>
def execp("values" => values, "count" => count, "output" => type)
end
#
#
#Create a new object PL::Cursor
#
#If output is specified it can take the values
#* "array" return an array with the element ["name", "value", "type", "len", "typeid"]
#* "hash" return an hash with the keys {"name", "value", "type", "len", "typeid"}
#* "value" return an array with all values
#
#If there was a typelist given to <em>PL::Plan::new</em>, an array
#of <em>values</em> of exactly the same length must be given to
#<em>PL::Plan#cursor</em>
#
def cursor(name = nil, "values" => values, "output" => type)
end
#
#
#Same then #exec but a call to SPI_cursor_open(), SPI_cursor_fetch() is made.
#
#Can be used only with a block and a SELECT statement
#
# create function toto() returns bool as '
# plan = PL::Plan.new("select * from T_pkey1")
# warn "=====> ALL"
# plan.each do |x|
# warn(x.inspect)
# end
# warn "=====> FIRST 2"
# plan.each("count" => 2) do |x|
# warn(x.inspect)
# end
# return true
# ' language 'plruby';
#
# plruby_test=# select * from T_pkey1;
# skey1 | skey2 | stxt
# -------+-------+------
# 12 | a | b
# 24 | c | d
# 36 | e | f
# (3 rows)
#
# plruby_test=#
# plruby_test=# select toto();
# NOTICE: =====> ALL
# NOTICE: {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
# NOTICE: {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
# NOTICE: {"skey1"=>"36", "skey2"=>"e", "stxt"=>"f"}
# NOTICE: =====> FIRST 2
# NOTICE: {"skey1"=>"12", "skey2"=>"a", "stxt"=>"b"}
# NOTICE: {"skey1"=>"24", "skey2"=>"c", "stxt"=>"d"}
# toto
# ------
# t
# (1 row)
#
# plruby_test=#
#
def each(values, [count [, type ]]) { ... }
end
#same than <em> each</em>
def fetch(values, [count [, type ]]) { ... }
end
#same than <em> each</em>
def fetch("values" => values, "count" => count, "output" => type) { ... }
end
#
#
#Release a query plan
#
def release
end
#
#
#Save a query plan for later execution. The plan is copied to the
#toplevel memory context.
#
def save
end
end
end
#
# A cursor is created with the method PL::Plan#cursor
#
class PLRuby::PL::Cursor
#Closes a cursor
#
def close
end
#
#
#Iterate over all rows (forward)
#
def each
yield row
end
#
#
#Fetches some rows from a cursor
#
#if count > 0 fetch forward else backward
#
def fetch(count = 1)
end
#same than <em> fetch</em>
def row(count = 1)
end
#
#
#Move a cursor : if count > 0 move forward else backward
#
def move(count)
end
#
#
#Iterate over all rows (backward)
#
def reverse_each
yield row
end
end
#
# A transaction is created with the global function #transaction
#
# Only available with PostgreSQL >= 8.0
#
class PLRuby::PL::Transaction
# abort the transaction
def abort
end
# commit the transaction
def commit
end
end
#
# The class PLRuby::BitString implement the PostgreSQL type <em>bit</em>
# and <em>bit varying</em>
#
class PLRuby::BitString
include Comparable
include Enumerable
class << self
# Convert a <em>String</em> to a <em>BitString</em>
def from_string(string, length = strlen(string))
end
end
# comparison function for 2 <em>BitString</em> objects
#
# All bits are considered and additional zero bits may make one string
# smaller/larger than the other, even if their zero-padded values would
# be the same.
def <=>(other)
end
# Concatenate <em>self</em> and <em>other</em>
def +(other)
end
# AND operator
def &(other)
end
# OR operator
def |(other)
end
# XOR operator
def ^(other)
end
# NOT operator
def ~()
end
# LEFT SHIFT operator
def <<(lshft)
end
# RIGHT SHIFT operator
def >>(rshft)
end
# Element reference with the same syntax that for a <em>String</em> object
#
# Return a <em>BitString</em> or a <em>Fixnum</em> 0, 1
#
# bitstring[fixnum]
# bitstring[fixnum, fixnum]
# bitstring[range]
# bitstring[regexp]
# bitstring[regexp, fixnum]
# bitstring[string]
# bitstring[other_bitstring]
def [](*args)
end
# Element assignment with the same syntax that for a <em>String</em> object
#
# bitstring[fixnum] = fixnum
# bitstring[fixnum] = string_or_bitstring
# bitstring[fixnum, fixnum] = string_or_bitstring
# bitstring[range] = string_or_bitstring
# bitstring[regexp] = string_or_bitstring
# bitstring[regexp, fixnum] = string_or_bitstring
# bitstring[other_str] = string_or_bitstring
def []=(*args)
end
# append <em>other</em> to <em>self</em>
def concat(other)
end
# iterate other each bit
def each
end
# return <em>true</em> if <em>other</em> is included in <em>self</em>
def include?(other)
end
# return the position of <em>other</em> in <em>self</em>
#
# return <em>nil</em> if <em>other</em> is not included in <em>self</em>
def index(other)
end
# create a new <em>BitString</em> object with <em>nbits</em> bits
#
# <em>init</em> can be a <em>Fixnum</em> or a <em>String</em>
#
# For a <em>String</em> the first character can be 'x', 'X' for and
# hexadecimal representation, or 'b', 'B' for a binary representation.
# The default is a binary representation
def initialize(init, nbits = -1)
end
# return the length of <em>self</em> in bits
def length
end
# return the length of <em>self</em> in octets
def octet_length
end
# append <em>other</em> to <em>self</em>
def push(other)
end
# convert <em>self</em> to a <em>Fixnum</em>
def to_i
end
# convert <em>self</em> to a <em>String</em>
def to_s
end
end
#
# The class PLRuby::NetAddr implement the PostgreSQL type <em>inet</em>
# and <em>cidr</em>
#
class PLRuby::NetAddr
include Comparable
class << self
# Convert a <em>String</em> to a <em>NetAddr</em>
def from_string(string, cidr = false)
end
end
# comparison function for 2 <em>NetAddr</em> objects
#
# comparison is first on the common bits of the network part, then on
# the length of the network part, and then on the whole unmasked address.
def <=>(other)
end
# return the abbreviated display format as a <em>String</em> object
def abbrev
end
# return the broadcast address from the network
def broadcast
end
# return true if <em>other</em> is included in <em>self</em>
def contain?(other)
end
# return true if <em>other</em> is included in <em>self</em>, or equal
def contain_or_equal?(other)
end
# return true if <em>self</em> is included in <em>other</em>
def contained?(other)
end
# return true if <em>self</em> is included in <em>other</em>, or equal
def contained_or_equal?(other)
end
# return the String "AF_INET" or "AF_INET6"
def family
end
# return the first address in the network
def first
end
# extract the IP address and return it as a <em>String</em>
def host
end
# return the host mask for network
def hostmask
end
# create a <em>NetAddr</em> from a <em>String</em>
def initialize(string, cidr = false)
end
# return the last address in the network
def last
end
# return the length of the netmask
def masklen
end
# return the netmask for the network
def netmask
end
# return the network part of the address
def network
end
# return a new <em>NetAddr</em> with netmask length <em>len</em>
def set_masklen(len)
end
# return the string representation of the address
def to_s
end
end
#
# The class PLRuby::MacAddr implement the PostgreSQL type <em>macaddr</em>
#
class PLRuby::MacAddr
include Comparable
class << self
# Convert a <em>String</em> to a <em>MacAddr</em>
def from_string(string, cidr = false)
end
end
# comparison function for 2 <em>MacAddr</em> objects
def <=>(other)
end
# create a <em>MacAddr</em> from a <em>String</em>
def initialize(string)
end
# return the string representation of the MAC address
def to_s
end
# return a new object with the last 3 bytes set to zero
def truncate
end
end
#
# The class PLRuby::Tinterval implement the PostgreSQL type <em>tinterval</em>
#
class PLRuby::Tinterval
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Tinterval</em>
def from_string(string)
end
end
# return a <em>Time</em> which is the high value of the interval
def high
end
# set the high value for the interval
def high=(time)
end
# create a <em>Tinterval</em> with the 2 <em>Time</em> objects
# <em>low</em> and <em>high</em>
def initialize(low, high)
end
# return a <em>Time</em> which is the low value of the interval
def low
end
# set the low value for the interval
def low=(time)
end
# return the string representation of the object
def to_s
end
end
#
# The class PLRuby::Box implement the PostgreSQL type <em>box</em>
#
class PLRuby::Box
include Comparable
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Box</em> object
def from_string(string)
end
end
# translate (right, up) <em>self</em>
def +(point)
end
# translate (left, down) <em>self</em>
def -(point)
end
# scale and rotate <em>self</em>
def *(point)
end
# scale and rotate <em>self</em>
def /(point)
end
# return true if the 2 boxes <em>self</em> and <em>other</em> are identical
def ===(other)
end
# comparison operator for 2 Box based on the area of the 2 objects, i.e.
# self.area <=> box.area
def <=>(other)
end
# return true if <em>self</em> is above <em>other</em>
def above?(other)
end
# return the area of the Box
def area
end
# return true if <em>self</em> is below <em>other</em>
def below?(other)
end
# return the center point of the Box
def center
end
# closest point to <em>other</em>
#
# <em>other</em> can be a Point, or Segment
def closest(other)
end
# return true if <em>self</em> contain <em>other</em>
def contain?(other)
end
# return true if <em>self</em> is contained by <em>other</em>
def contained?(other)
end
# return a line Segment which happens to be the
# positive-slope diagonal of Box
def diagonal
end
# return the height of the Box (vertical magnitude)
def height
end
# return true if <em>self</em> is contained by <em>other</em>
def in?(other)
end
# create a new Box object
#
# <em>args</em> can be 2 Point objects (low, high) or 4 Float objects
# (low.x, low.y, high.x, high.y)
def initialize(*args)
end
# returns the overlapping portion of two boxes,
# or <em>nil</em> if they do not intersect.
def intersection(other)
end
# returns true if the Segment <em>segment</em>
# intersect with the Box
#
# Segment completely inside box counts as intersection.
# If you want only segments crossing box boundaries,
# try converting Box to Path first.
#
def intersect?(segment)
end
# return true if <em>self</em> is strictly left of <em>other</em>
def left?(other)
end
# return true if <em>self</em> overlap <em>other</em>
def overlap?(other)
end
# return true if the right edge of <em>self</em> is to the left of
# the right edge of <em>other</em>
def overleft?(other)
end
# return true if the left edge of <em>self</em> is to the right of
# the left edge of <em>other</em>
def overright?(other)
end
# return true if <em>self</em> is strictly right of <em>other</em>
def right?(other)
end
# return true if the 2 boxes <em>self</em> and <em>other</em> are identical
def same?(other)
end
# convert a Box to a Circle
def to_circle
end
# return the center Point of the Box
def to_point
end
# convert a Box to a Polygon
def to_polygon
end
# return a line Segment which happens to be the
# positive-slope diagonal of Box
def to_segment
end
# return the width of the Box (horizontal magnitude)
def width
end
end
#
# The class PLRuby::Path implement the PostgreSQL type <em>path</em>
#
class PLRuby::Path
include Comparable
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Path</em>
def from_string(string)
end
end
# concatenate the two paths (only if they are both open)
def <<(path)
end
# translate (right, up) <em>self</em>
def +(point)
end
# translate (left, down) <em>self</em>
def -(point)
end
# scale and rotate <em>self</em>
def *(point)
end
# scale and rotate <em>self</em>
def /(point)
end
# comparison function based on the path cardinality, i.e.
# self.npoints <=> other.npoints
def <=>(other)
end
# make a closed path
def close
end
# return true if <em>self</em> is a closed path
def closed?
end
# concatenate the two paths (only if they are both open)
def concat(path)
end
# create a new Path object from the Array of Point <em>points</em>
def initialize(points, closed = false)
end
# return the length of <em>self</em>
def length
end
# return the path cardinality
def npoints
end
# make an open path
def open
end
# convert <em>self</em> to a Polygon object
def to_polygon
end
end
#
# The class PLRuby::Point implement the PostgreSQL type <em>point</em>
#
class PLRuby::Point
include Comparable
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Point</em>
def from_string(string)
end
end
# translate (right, up) <em>self</em>
def +(point)
end
# translate (left, down) <em>self</em>
def -(point)
end
# scale and rotate <em>self</em>
def *(point)
end
# scale and rotate <em>self</em>
def /(point)
end
# return the coordinate
#
# <em>indice</em> can have the value 0 or 1
def [](indice)
end
# set the coordinate
#
# <em>indice</em> can have the value 0 or 1
def []=(indice, value)
end
# return true if <em>self</em> and <em>other</em> are the same,
# i.e. self.x == other.x && self.y == other.y
def ==(other)
end
# return true if <em>self</em> is above <em>other</em>,
# i.e. self.y > other.y
def above?(other)
end
# return true if <em>self</em> is below <em>other</em>,
# i.e. self.y < other.y
def below?(other)
end
# return true if <em>self</em> is contained in <em>other</em>
#
# <em>other</em> can be Point, Polygon or a Circle object
def contained?(other)
end
# return true if <em>self</em> and <em>other</em> are horizontal,
# i.e. self.y == other.y
def horizontal?(other)
end
# return true if <em>self</em> is contained in <em>other</em>
#
# <em>other</em> can be Point, Polygon or a Circle object
def in?(other)
end
# create a Point with the 2 Float object (x, y)
def initialize(x, y)
end
# return true if <em>self</em> is at the left of <em>other</em>,
# i.e. self.x < other.x
def left?(other)
end
# return true if <em>self</em> is on <em>other</em>
#
# <em>other</em> can be Point, Segment, Box or Path object
def on?(other)
end
# return true if <em>self</em> is at the right of <em>other</em>,
# i.e. self.x > other.x
def right?(other)
end
# return true if <em>self</em> and <em>other</em> are vertical,
# i.e. self.x == other.x
def vertical?(other)
end
# return <em>x</em> for <em>self</em>
def x
end
# set the <em>x</em> value for <em>self</em>
def x=(value)
end
# return <em>y</em> for <em>self</em>
def y
end
# set the <em>y</em> value for <em>self</em>
def y=(value)
end
end
#
# The class PLRuby::Segment implement the PostgreSQL type <em>lseg</em>
#
class PLRuby::Segment
include Comparable
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Segment</em>
def from_string(string)
end
end
# comparison function for the 2 segments, returns
#
# 0 if self[0] == other[0] && self[1] == other[1]
#
# 1 if distance(self[0], self[1]) > distance(other[0], other[1])
#
# -1 if distance(self[0], self[1]) < distance(other[0], other[1])
def <=>(other)
end
# return the center of the segment
def center
end
# closest point to other
#
# <em>other</em> can be a Point, Segment or Box
#
# With a point, take the closest endpoint
# if the point is left, right, above, or below the segment, otherwise
# find the intersection point of the segment and its perpendicular through
# the point.
def closest(other)
end
# returns true if <em>self</em> is a horizontal Segment
def horizontal?
end
# create a Segment from the 2 Point p0, p1
def initialize(point0, point1)
end
# returns true if <em>self</em> and <em>other</em> intersect
def intersect?(other)
end
# returns the Point where the 2 Segment <em>self</em> and <em>other</em>
# intersect or nil
def intersection(other)
end
# return the length of <em>self</em>, i.e. the distnace between the 2 points
def length
end
# return true if <em>self</em> is on <em>other</em>
#
# <em>other</em> can be a Segment, or a Box object
def on?(other)
end
# returns true if the 2 Segment <em>self</em> and <em>other</em>
# are parallel
def parallel?(other)
end
# returns true if <em>self</em> is perpendicular to <em>other</em>
def perpendicular?(other)
end
# conversion function to a Point, return the center of the segment
def to_point
end
# returns true if <em>self</em> is a vertical Segment
def vertical?
end
end
#
# The class PLRuby::Polygon implement the PostgreSQL type <em>polygon</em>
#
class PLRuby::Polygon
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Polygon</em>
def from_string(string)
end
end
# return true if <em>self</em> is the same as <em>other</em>, i.e. all
# the points are the same
def ==(other)
end
# return the center of <em>self</em>, i.e. create a circle and return its
# center
def center
end
# return true if <em>self</em> contains <em>other</em>
#
# <em>other</em> can be a Point or a Polygon
def contain?(other)
end
# return true if <em>self</em> is contained in <em>other</em> by determining
# if <em>self</em> bounding box is contained by <em>other</em>'s bounding box.
def contained?(other)
end
# return true if <em>self</em> is contained in <em>other</em> by determining
# if <em>self</em> bounding box is contained by <em>other</em>'s bounding box.
def in?(other)
end
# create a new Polygon object from the Array of Point <em>points</em>
def initialize(points, closed = false)
end
# return true if <em>self</em> is strictly left of <em>other</em>, i.e.
# the right most point of <em>self</em> is left of the left
# most point of <em>other</em>
def left?(other)
end
# return true if <em>self</em> is overlapping or left of <em>other</em>,
# i.e. the left most point of <em>self</em> is left of the right
# most point of <em>other</em>
def overleft?(other)
end
# return true if <em>self</em> is overlapping or right of <em>other</em>,
# i.e. the right most point of <em>self</em> is right of the left
# most point of <em>other</em>
def overright?(other)
end
# return true if <em>self</em> and <em>other</em> overlap by determining if
# their bounding boxes overlap.
def overlap?(other)
end
# return the number of points in <em>self</em>
def npoints
end
# return true if <em>self</em> is strictly right of <em>other</em>, i.e.
# the left most point of <em>self</em> is right of the left
# most point of <em>other</em>
def right?(other)
end
# return true if <em>self</em> is the same as <em>other</em>, i.e. all
# the points are the same
def same?(other)
end
# convert <em>self</em> to a Box
def to_box
end
# convert <em>self</em> to a Circle
def to_circle
end
# convert <em>self</em> to a Path
def to_path
end
# convert <em>self</em> to a Point by returning its center
def to_point
end
end
#
# The class PLRuby::Circle implement the PostgreSQL type <em>circle</em>
#
class PLRuby::Circle
include Comparable
class << self
# Convert a <em>String</em> (PostgreSQL representation)
# to a <em>Circle</em>
def from_string(string)
end
end
# translate (right, up) <em>self</em>
def +(point)
end
# translate (left, down) <em>self</em>
def -(point)
end
# scale and rotate <em>self</em>
def *(point)
end
# scale and rotate <em>self</em>
def /(point)
end
# comparison function based on area,
# i.e. self.area <=> other.area
def <=>(other)
end
# return the area
def area
end
# return true if <em>self</em> is entirely above <em>other</em>
def above?(other)
end
# return true if <em>self</em> is entirely below <em>other</em>
def below?(other)
end
# return true if <em>self</em> contain <em>other</em>
def contain?(other)
end
# return true if <em>self</em> is contained in <em>other</em>
def contained?(other)
end
# return the diameter
def diameter
end
# create a Circle object with <em>center</em> and <em>radius</em>
#
# <em>center</em> can be a Point or an Array [x, y]
def initialize(center, radius)
end
# return true if <em>self</em> overlap <em>other</em>
def overlap?(other)
end
# return true if the right edge of <em>self</em> is to the left of
# the right edge of <em>other</em>
def overleft?(other)
end
# return true if <em>self</em> is strictly left of <em>other</em>
def left?(other)
end
# return true if the left edge of <em>self</em> is to the right of
# the left edge of <em>other</em>
def overright?(other)
end
# return the radius
def radius
end
# return true if <em>self</em> is strictly right of <em>other</em>
def right?(other)
end
# return true if <em>self</em> is the same than <em>other</em>, i.e.
# self.center == other.center && self.radius == other.radius
def same?(other)
end
# convert <em>self</em> to a Box
def to_box
end
# convert <em>self</em> to a Point by returning its center
def to_point
end
# convert <em>self</em> to a Polygon with <em>npts</em> Points
def to_polygon(npts)
end
end
|