File: s_138.html

package info (click to toggle)
povray 1%3A3.6.1-12
  • links: PTS
  • area: non-free
  • in suites: lenny, squeeze
  • size: 31,084 kB
  • ctags: 20,310
  • sloc: ansic: 110,032; cpp: 86,573; sh: 13,595; pascal: 5,942; asm: 2,994; makefile: 1,753; ada: 1,637
file content (2088 lines) | stat: -rw-r--r-- 57,248 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

<!--  This file copyright Persistence of Vision Raytracer Pty. Ltd. 2003-2004  -->
<html> 
<head>
  
<!--  NOTE: In order to users to help find information about POV-Ray using  -->
 
<!--  web search engines, we ask you to *not* let them index documentation  -->
 
<!--  mirrors because effectively, when searching, users will get hundreds  -->
 
<!--  of results containing the same information! For this reason, the two  -->
 
<!--  meta tags below disable archiving and indexing of this page by all  -->
 
<!--  search engines that support these meta tags.  -->
 
 <meta content="noarchive" name="robots">
   
 <meta content="noindex" name="robots">
   
 <meta content="no-cache" http-equiv="Pragma">
   
 <meta content="0" http-equiv="expires">
   
<title>3.7.7 functions.inc</title>
 <link href="povray35.css" rel="stylesheet" type="text/css"> 
</head>
 <body> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_137.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_137.html">3.7.6 finish.inc</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong class="NavBar">POV-Ray 3.6 for UNIX documentation</strong><br> <strong>3.7.7 
   functions.inc</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_139.html">3.7.8 glass.inc, glass_old.inc</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_139.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 
<h3><a name="s03_07_07">3.7.7 </a>functions.inc</h3>
<a name="s03_07_07_i1">
<p>
  This include file contains interfaces to internal functions as well as several predefined functions. The ID's used 
 to access the internal functions through calls to &quot;internal(XX)&quot;, are not guaranteed to stay the same 
 between POV-Ray versions, so users are encouraged to use the functions declared here. 
</p>

<p>
  The number of required parameters and what they control are also given in the include file, this chapter gives more 
 information. <br>For starter values of the parameters, check the &quot;i_internal.pov&quot; demo file. 
</p>

<p>
  Syntax to be used: 
</p>

<pre>  #include &quot;functions.inc&quot;
  isosurface {
    function { f_torus_gumdrop(x,y,z, P0) }
    ...
  }

  pigment {
    function { f_cross_ellipsoids(x,y,z, P0, P1, P2, P3) }
    COLOR_MAP ...
  )
</pre>

<p>
  Some special parameters are found in several of these functions. These are described in the next section and later 
 referred to as &quot;Cross section type&quot;, &quot;Field Strength&quot;, &quot;Field Limit&quot;, &quot;SOR&quot; 
 parameters. 
</p>

<h4><a name="s03_07_07_01">3.7.7.1 </a>Common Parameters</h4>

<p>
  <strong>Cross Section Type:</strong><a name="s03_07_07_01_i1"><a name="Cross Section Type"></a> <br>In the helixes 
 and spiral functions, the 9th parameter is the cross section type. <br>Some shapes are: 
</p>

<dl>
 
 <dt>
   <code>0</code> : 
 <dd>
   square 
 <dt>
   <code>0.0 to 1.0</code> : 
 <dd>
   rounded squares 
 <dt>
   <code>1</code> : 
 <dd>
   circle 
 <dt>
   <code>1.0 to 2.0</code> : 
 <dd>
   rounded diamonds 
 <dt>
   <code>2</code> : 
 <dd>
   diamond 
 <dt>
   <code>2.0 to 3.0</code> : 
 <dd>
   partially concave diamonds 
 <dt>
   <code>3</code> : 
 <dd>
   concave diamond 
</dl>

<h5><a name="s03_07_07_01_01">3.7.7.1.1 </a>Field Strength</h5>

<p>
  The numerical value at a point in space generated by the function is multiplied by the Field Strength. The set of 
 points where the function evaluates to zero are unaffected by any positive value of this parameter, so if you are just 
 using the function on its own with threshold = 0, the generated surface is still the same. <br>In some cases, the 
 field strength has a considerable effect on the speed and accuracy of rendering the surface. In general, increasing 
 the field strength speeds up the rendering, but if you set the value too high the surface starts to break up and may 
 disappear completely. <br>Setting the field strength to a negative value produces the inverse of the surface, like 
 making the function negative. 
</p>

<h5><a name="s03_07_07_01_02">3.7.7.1.2 </a>Field Limit</h5>

<p>
  This will not make any difference to the generated surface if you are using threshold that is within the field 
 limit (and will kill the surface completely if the threshold is greater than the field limit). However, it may make a 
 huge difference to the rendering times. <br>If you use the function to generate a pigment, then all points that are a 
 long way from the surface will have the same color, the color that corresponds to the numerical value of the field 
 limit. 
</p>

<h5><a name="s03_07_07_01_03">3.7.7.1.3 </a>SOR Switch</h5>

<p>
  If greater than zero, the curve is swept out as a surface of revolution (SOR). <br>If the value is zero or 
 negative, the curve is extruded linearly in the Z direction.<br> 
</p>

<h5><a name="s03_07_07_01_04">3.7.7.1.4 </a>SOR Offset</h5>

<p>
  If the SOR switch is on, then the curve is shifted this distance in the X direction before being swept out. 
</p>

<h5><a name="s03_07_07_01_05">3.7.7.1.5 </a>SOR Angle</h5>

<p>
  If the SOR switch is on, then the curve is rotated this number of degrees about the Z axis before being swept out. 
</p>

<h5><a name="s03_07_07_01_06">3.7.7.1.6 </a>Invert Isosurface</h5>

<p>
  Sometimes, when you render a surface, you may find that you get only the shape of the container. This could be 
 caused by the fact that some of the build in functions are defined inside out. <br>We can invert the isosurface by 
 negating the whole function: <br><code>&nbsp;&nbsp;-(function) - threshold</code> 
</p>

<h4><a name="s03_07_07_02">3.7.7.2 </a>Internal Functions</h4>

<p>
  Here is a list of the internal functions in the order they appear in the &quot;functions.inc&quot; include file<a name="s03_07_07_02_i1"><a name="f_algbr_cyl1"></a> 
 
</p>

<p>
  <code>f_algbr_cyl1(x,y,z, P0, P1, P2, P3, P4)</code>. An algebraic cylinder is what you get if you take any 2d 
 curve and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis. <br>With the 
 SOR Switch switched on, the figure-of-eight curve will be rotated around the Y axis instead of being extruded along 
 the Z axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> 
 </li>

 <li>
   <code>P1</code> : <a href="s_138.html#s03_07_07_01_02">Field Limit</a> 
 </li>

 <li>
   <code>P2</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i2"><a name="f_algbr_cyl2"></a>
<p>
  <code>f_algbr_cyl2(x,y,z, P0, P1, P2, P3, P4)</code>. An algebraic cylinder is what you get if you take any 2d 
 curve and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis. <br>With the 
 SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being extruded along the 
 Z axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : <a href="s_138.html#s03_07_07_01_02">Field Limit</a> 
 </li>

 <li>
   <code>P2</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i3"><a name="f_algbr_cyl3"></a>
<p>
  <code>f_algbr_cyl3(x,y,z, P0, P1, P2, P3, P4)</code>. An algebraic cylinder is what you get if you take any 2d 
 curve and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the Z axis. <br>With the 
 SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being extruded along the 
 Z axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : <a href="s_138.html#s03_07_07_01_02">Field Limit</a> 
 </li>

 <li>
   <code>P2</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i4"><a name="f_algbr_cyl4"></a>
<p>
  <code>f_algbr_cyl4(x,y,z, P0, P1, P2, P3, P4)</code>. An algebraic cylinder is what you get if you take any 2d 
 curve and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis. <br>With the 
 SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being extruded along the 
 Z axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : <a href="s_138.html#s03_07_07_01_02">Field Limit</a> 
 </li>

 <li>
   <code>P2</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i5"><a name="f_bicorn"></a>
<p>
  <code>f_bicorn(x,y,z, P0, P1)</code>. The surface is a surface of revolution. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Scale. The mathematics of this surface suggest that the shape should be different for different 
  values of this parameter. In practice the difference in shape is hard to spot. Setting the scale to 3 gives a surface 
  with a radius of about 1 unit 
 </li>

</ul>
<a name="s03_07_07_02_i6"><a name="f_bifolia"></a>
<p>
  <code>f_bifolia(x,y,z, P0, P1)</code>. The bifolia surface looks something like the top part of a a paraboloid 
 bounded below by another paraboloid. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Scale. The surface is always the same shape. Changing this parameter has the same effect as 
  adding a scale modifier. Setting the scale to 1 gives a surface with a radius of about 1 unit 
 </li>

</ul>
<a name="s03_07_07_02_i7"><a name="f_blob"></a>
<p>
  <code>f_blob(x,y,z, P0, P1, P2, P3, P4)</code>. This function generates blobs that are similar to a CSG blob with 
 two spherical components. This function only seems to work with negative threshold settings. 
</p>

<ul>
 
 <li>
   <code>P0</code> : X distance between the two components 
 </li>

 <li>
   <code>P1</code> : Blob strength of component 1 
 </li>

 <li>
   <code>P2</code> : Inverse blob radius of component 1 
 </li>

 <li>
   <code>P3</code> : Blob strength of component 2 
 </li>

 <li>
   <code>P4</code> : Inverse blob radius of component 2 
 </li>

</ul>
<a name="s03_07_07_02_i8"><a name="f_blob2"></a>
<p>
  <code>f_blob2(x,y,z, P0, P1, P2, P3)</code>. The surface is similar to a CSG blob with two spherical components. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Separation. One blob component is at the origin, and the other is this distance away on the X 
  axis 
 </li>

 <li>
   <code>P1</code> : Inverse size. Increase this to decrease the size of the surface 
 </li>

 <li>
   <code>P2</code> : Blob strength 
 </li>

 <li>
   <code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as 
  setting this parameter to zero and the threshold to -1 
 </li>

</ul>
<a name="s03_07_07_02_i9"><a name="f_boy_surface"></a>
<p>
  <code>f_boy_surface(x,y,z, P0, P1)</code>. For this surface, it helps if the field strength is set low, otherwise 
 the surface has a tendency to break up or disappear entirely. This has the side effect of making the rendering times 
 extremely long. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Scale. The surface is always the same shape. Changing this parameter has the same effect as 
  adding a scale modifier 
 </li>

</ul>
<a name="s03_07_07_02_i10"><a name="f_comma"></a>
<p>
  <code>f_comma(x,y,z, P0)</code>. The 'comma' surface is very much like a comma-shape. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Scale 
 </li>

</ul>
<a name="s03_07_07_02_i11"><a name="f_cross_ellipsoids"></a>
<p>
  <code>f_cross_ellipsoids(x,y,z, P0, P1, P2, P3)</code>. The 'cross ellipsoids' surface is like the union of three 
 crossed ellipsoids, one oriented along each axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids 
  are prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere) 
 </li>

 <li>
   <code>P1</code> : Inverse size. Increase this to decrease the size of the surface 
 </li>

 <li>
   <code>P2</code> : Diameter. Increase this to increase the size of the ellipsoids 
 </li>

 <li>
   <code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as 
  setting this parameter to zero and the threshold to -1 
 </li>

</ul>
<a name="s03_07_07_02_i12"><a name="f_crossed_trough"></a>
<p>
  <code>f_crossed_trough(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i13"><a name="f_cubic_saddle"></a>
<p>
  <code>f_cubic_saddle(x,y,z, P0)</code>. For this surface, it helps if the field strength is set quite low, 
 otherwise the surface has a tendency to break up or disappear entirely. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i14"><a name="f_cushion"></a>
<p>
  <code>f_cushion(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i15"><a name="f_devils_curve"></a>
<p>
  <code>f_devils_curve(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Field Strength (Needs a negative field strength or a negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i16"><a name="f_devils_curve_2d"></a>
<p>
  <code>f_devils_curve_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The <code>f_devils_curve_2d</code> curve can be 
 extruded along the z axis, or using the SOR parameters it can be made into a surface of revolution. The X and Y 
 factors control the size of the central feature. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : X factor 
 </li>

 <li>
   <code>P2</code> : Y factor 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i17"><a name="f_dupin_cyclid"></a>
<p>
  <code>f_dupin_cyclid(x,y,z, P0, P1, P2, P3, P4, P5)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Major radius of torus 
 </li>

 <li>
   <code>P2</code> : Minor radius of torus 
 </li>

 <li>
   <code>P3</code> : X displacement of torus 
 </li>

 <li>
   <code>P4</code> : Y displacement of torus 
 </li>

 <li>
   <code>P5</code> : Radius of inversion 
 </li>

</ul>
<a name="s03_07_07_02_i18"><a name="f_ellipsoid"></a>
<p>
  <code>f_ellipsoid(x,y,z, P0, P1, P2)</code>. <code>f_ellipsoid</code> generates spheres and ellipsoids. Needs 
 &quot;threshold 1&quot;.<br>Setting these scaling parameters to 1/n gives exactly the same effect as performing a 
 scale operation to increase the scaling by n in the corresponding direction. 
</p>

<ul>
 
 <li>
   <code>P0</code> : X scale (inverse) 
 </li>

 <li>
   <code>P1</code> : Y scale (inverse) 
 </li>

 <li>
   <code>P2</code> : Z scale (inverse) 
 </li>

</ul>
<a name="s03_07_07_02_i19"><a name="f_enneper"></a>
<p>
  <code>f_enneper(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i20"><a name="f_flange_cover"></a>
<p>
  <code>f_flange_cover(x,y,z, P0, P1, P2, P3)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere 
 </li>

 <li>
   <code>P1</code> : Inverse size. Increase this to decrease the size of the surface. (The other parameters also 
  drastically affect the size, but this parameter has no other effects) 
 </li>

 <li>
   <code>P2</code> : Flange. Increase this to increase the flanges that appear between the spikes. Set it to 1 for 
  no flanges 
 </li>

 <li>
   <code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as 
  setting this parameter to zero and the threshold to -1 
 </li>

</ul>
<a name="s03_07_07_02_i21"><a name="f_folium_surface"></a>
<p>
  <code>f_folium_surface(x,y,z, P0, P1, P2)</code>. A 'folium surface' looks something like a paraboloid glued to a 
 plane. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Neck width factor - the larger you set this, the narrower the neck where the paraboloid meets 
  the plane 
 </li>

 <li>
   <code>P2</code> : Divergence - the higher you set this value, the wider the paraboloid gets 
 </li>

</ul>
<a name="s03_07_07_02_i22"><a name="f_folium_surface_2d"></a>
<p>
  <code>f_folium_surface_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The <code>f_folium_surface_2d</code> curve can be 
 rotated around the X axis to generate the same 3d surface as the <code>f_folium_surface</code>, or it can be extruded 
 in the Z direction (by switching the SOR switch off) 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Neck width factor - same as the 3d surface if you are revolving it around the Y axis 
 </li>

 <li>
   <code>P2</code> : Divergence - same as the 3d surface if you are revolving it around the Y axis 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i23"><a name="f_glob"></a>
<p>
  <code>f_glob(x,y,z, P0)</code>. One part of this surface would actually go off to infinity if it were not 
 restricted by the contained_by shape. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i24"><a name="f_heart"></a>
<p>
  <code>f_heart(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i25"><a name="f_helical_torus"></a>
<p>
  <code>f_helical_torus(x,y,z, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9)</code>. With some sets of parameters, it looks 
 like a torus with a helical winding around it. The winding optionally has grooves around the outside. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Major radius 
 </li>

 <li>
   <code>P1</code> : Number of winding loops 
 </li>

 <li>
   <code>P2</code> : Twistiness of winding. When zero, each winding loop is separate. When set to one, each loop 
  twists into the next one. When set to two, each loop twists into the one after next 
 </li>

 <li>
   <code>P3</code> : Fatness of winding? 
 </li>

 <li>
   <code>P4</code> : Threshold. Setting this parameter to 1 and the threshold to zero has s similar effect as 
  setting this parameter to zero and the threshold to 1 
 </li>

 <li>
   <code>P5</code> : Negative minor radius? Reducing this parameter increases the minor radius of the central torus. 
  Increasing it can make the torus disappear and be replaced by a vertical column. The value at which the surface 
  switches from one form to the other depends on several other parameters 
 </li>

 <li>
   <code>P6</code> : Another fatness of winding control? 
 </li>

 <li>
   <code>P7</code> : Groove period. Increase this for more grooves 
 </li>

 <li>
   <code>P8</code> : Groove amplitude. Increase this for deeper grooves 
 </li>

 <li>
   <code>P9</code> : Groove phase. Set this to zero for symmetrical grooves 
 </li>

</ul>
<a name="s03_07_07_02_i26"><a name="f_helix1"></a>
<p>
  <code>f_helix1(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Number of helixes - e.g. 2 for a double helix 
 </li>

 <li>
   <code>P1</code> : Period - is related to the number of turns per unit length 
 </li>

 <li>
   <code>P2</code> : Minor radius (major radius &gt; minor radius) 
 </li>

 <li>
   <code>P3</code> : Major radius 
 </li>

 <li>
   <code>P4</code> : Shape parameter. If this is greater than 1 then the tube becomes fatter in the y direction 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01">Cross section type</a> 
 </li>

 <li>
   <code>P6</code> : Cross section rotation angle (degrees) 
 </li>

</ul>
<a name="s03_07_07_02_i27"><a name="f_helix2"></a>
<p>
  <code>f_helix2(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>. Needs a negated function 
</p>

<ul>
 
 <li>
   <code>P0</code> : Not used 
 </li>

 <li>
   <code>P1</code> : Period - is related to the number of turns per unit length 
 </li>

 <li>
   <code>P2</code> : Minor radius (minor radius &gt; major radius) 
 </li>

 <li>
   <code>P3</code> : Major radius 
 </li>

 <li>
   <code>P4</code> : Not used 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01">Cross section type</a> 
 </li>

 <li>
   <code>P6</code> : Cross section rotation angle (degrees) 
 </li>

</ul>
<a name="s03_07_07_02_i28"><a name="f_hex_x"></a>
<p>
  <code>f_hex_x(x,y,z, P0)</code>. This creates a grid of hexagonal cylinders stretching along the z-axis. The 
 fatness is controlled by the threshold value. When this value equals 0.8660254 or cos(30) the sides will touch, 
 because this is the distance between centers. Negating the function will inverse the surface and create a honey-comb 
 structure. This function is also useful as pigment function. 
</p>

<ul>
 
 <li>
   <code>P0</code> : No effect (but the syntax requires at least one parameter) 
 </li>

</ul>
<a name="s03_07_07_02_i29"><a name="f_hex_y"></a>
<p>
  <code>f_hex_y(x,y,z, P0)</code>. This is function forms a lattice of infinite boxes stretching along the z-axis. 
 The fatness is controlled by the threshold value. These boxes are rotated 60 degrees around centers, which are 
 0.8660254 or cos(30) away from each other. This function is also useful as pigment function. 
</p>

<ul>
 
 <li>
   <code>P0</code> : No effect (but the syntax requires at least one parameter) 
 </li>

</ul>
<a name="s03_07_07_02_i30"><a name="f_hetero_mf"></a>
<p>
  <code>f_hetero_mf(x,y,z, P0, P1, P2, P3, P4, P5)</code>. <code>f_hetero_mf (x,0,z)</code> makes multifractal height 
 fields and patterns of '1/f' noise <br>'Multifractal' refers to their characteristic of having a fractal dimension 
 which varies with altitude. Built from summing noise of a number of frequencies, the hetero_mf parameters determine 
 how many, and which frequencies are to be summed. <br>An advantage to using these instead of a height_field {} from an 
 image (a number of height field programs output multifractal types of images) is that the hetero_mf function domain 
 extends arbitrarily far in the x and z directions so huge landscapes can be made without losing resolution or having 
 to tile a height field. Other functions of interest are <code>f_ridged_mf</code> and <code>f_ridge</code>. 
</p>

<ul>
 
 <li>
   <code>P0</code> : H is the negative of the exponent of the basis noise frequencies used in building these 
  functions (each frequency f's amplitude is weighted by the factor f- H ). In landscapes, and many natural forms, the 
  amplitude of high frequency contributions are usually less than the lower frequencies. <br>When H is 1, the 
  fractalization is relatively smooth (&quot;1/f noise&quot;). <br>As H nears 0, the high frequencies contribute 
  equally with low frequencies as in &quot;white noise&quot;. 
 </li>

 <li>
   <code>P1</code> : Lacunarity' is the multiplier used to get from one 'octave' to the next. This parameter affects 
  the size of the frequency gaps in the pattern. Make this greater than 1.0 
 </li>

 <li>
   <code>P2</code> : Octaves is the number of different frequencies added to the fractal. Each 'Octave' frequency is 
  the previous one multiplied by 'Lacunarity', so that using a large number of octaves can get into very high 
  frequencies very quickly. 
 </li>

 <li>
   <code>P3</code> : Offset is the 'base altitude' (sea level) used for the heterogeneous scaling 
 </li>

 <li>
   <code>P4</code> : T scales the 'heterogeneity' of the fractal. T=0 gives 'straight 1/f' (no heterogeneous 
  scaling). T=1 suppresses higher frequencies at lower altitudes 
 </li>

 <li>
   <code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values. 
 </li>

</ul>
<a name="s03_07_07_02_i31"><a name="f_hunt_surface"></a>
<p>
  <code>f_hunt_surface(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i32"><a name="f_hyperbolic_torus"></a>
<p>
  <code>f_hyperbolic_torus(x,y,z, P0, P1, P2)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Major radius: separation between the centers of the tubes at the closest point 
 </li>

 <li>
   <code>P2</code> : Minor radius: thickness of the tubes at the closest point 
 </li>

</ul>
<a name="s03_07_07_02_i33"><a name="f_isect_ellipsoids"></a>
<p>
  <code>f_isect_ellipsoids(x,y,z, P0, P1, P2, P3)</code>. The 'isect ellipsoids' surface is like the intersection of 
 three crossed ellipsoids, one oriented along each axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids 
  are prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere) 
 </li>

 <li>
   <code>P1</code> : Inverse size. Increase this to decrease the size of the surface 
 </li>

 <li>
   <code>P2</code> : Diameter. Increase this to increase the size of the ellipsoids 
 </li>

 <li>
   <code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as 
  setting this parameter to zero and the threshold to -1 
 </li>

</ul>
<a name="s03_07_07_02_i34"><a name="f_kampyle_of_eudoxus"></a>
<p>
  <code>f_kampyle_of_eudoxus(x,y,z, P0, P1, P2)</code>. The 'kampyle of eudoxus' is like two infinite planes with a 
 dimple at the center. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values 
  give less dimpling 
 </li>

 <li>
   <code>P2</code> : Closeness: Higher values make the two planes become closer 
 </li>

</ul>
<a name="s03_07_07_02_i35"><a name="f_kampyle_of_eudoxus_2d"></a>
<p>
  <code>f_kampyle_of_eudoxus_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>The 2d curve that generates the above surface 
 can be extruded in the Z direction or rotated about various axes by using the SOR parameters. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero values 
  give less dimpling 
 </li>

 <li>
   <code>P2</code> : Closeness: Higher values make the two planes become closer 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i36"><a name="f_klein_bottle"></a>
<p>
  <code>f_klein_bottle(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i37"><a name="f_kummer_surface_v1"></a>
<p>
  <code>f_kummer_surface_v1(x,y,z, P0)</code>. The Kummer surface consists of a collection of radiating rods. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i38"><a name="f_kummer_surface_v2"></a>
<p>
  <code>f_kummer_surface_v2(x,y,z, P0, P1, P2, P3)</code>. Version 2 of the kummer surface only looks like radiating 
 rods when the parameters are set to particular negative values. For positive values it tends to look rather like a 
 superellipsoid. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Rod width (negative): Setting this parameter to larger negative values increases the diameter 
  of the rods 
 </li>

 <li>
   <code>P2</code> : Divergence (negative): Setting this number to -1 causes the rods to become approximately 
  cylindrical. Larger negative values cause the rods to become fatter further from the origin. Smaller negative numbers 
  cause the rods to become narrower away from the origin, and have a finite length 
 </li>

 <li>
   <code>P3</code> : Influences the length of half of the rods. Changing the sign affects the other half of the 
  rods. 0 has no effect 
 </li>

</ul>
<a name="s03_07_07_02_i39"><a name="f_lemniscate_of_gerono"></a>
<p>
  <code>f_lemniscate_of_gerono(x,y,z, P0)</code>. The &quot;Lemniscate of Gerono&quot; surface is an hourglass shape. 
 Two teardrops with their ends connected. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i40"><a name="f_lemniscate_of_gerono_2d"></a>
<p>
  <code>f_lemniscate_of_gerono_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The 2d version of the Lemniscate can be 
 extruded in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version, or 
 revolved in different ways. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Size: increasing this makes the 2d curve larger and less rounded 
 </li>

 <li>
   <code>P2</code> : Width: increasing this makes the 2d curve fatter 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i41"><a name="f_mesh1"></a>
<p>
  <code>f_mesh1(x,y,z, P0, P1, P2, P3, P4)</code> The overall thickness of the threads is controlled by the 
 isosurface threshold, not by a parameter. If you render a mesh1 with zero threshold, the threads have zero thickness 
 and are therefore invisible. Parameters P2 and P4 control the shape of the thread relative to this threshold 
 parameter. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Distance between neighboring threads in the x direction 
 </li>

 <li>
   <code>P1</code> : Distance between neighboring threads in the z direction 
 </li>

 <li>
   <code>P2</code> : Relative thickness in the x and z directions 
 </li>

 <li>
   <code>P3</code> : Amplitude of the weaving effect. Set to zero for a flat grid 
 </li>

 <li>
   <code>P4</code> : Relative thickness in the y direction 
 </li>

</ul>
<a name="s03_07_07_02_i42"><a name="f_mitre"></a>
<p>
  <code>f_mitre(x,y,z, P0)</code>. The 'Mitre' surface looks a bit like an ellipsoid which has been nipped at each 
 end with a pair of sharp nosed pliers. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i43"><a name="f_nodal_cubic"></a>
<p>
  <code>f_nodal_cubic(x,y,z, P0)</code>. The 'Nodal Cubic' is something like what you would get if you were to 
 extrude the Stophid2D curve along the X axis and then lean it over. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i44"><a name="f_noise3d"></a>
<p>
  <code>f_noise3d(x,y,z)</code><a name="s03_07_07_02_i45"><a name="f_noise_generator"></a> 
</p>

<p>
  <code>f_noise_generator(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Noise generator number 
 </li>

</ul>
<a name="s03_07_07_02_i46"><a name="f_odd"></a>
<p>
  <code>f_odd(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i47"><a name="f_ovals_of_cassini"></a>
<p>
  <code>f_ovals_of_cassini(x,y,z, P0, P1, P2, P3)</code>. The Ovals of Cassini are a generalization of the torus 
 shape. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Major radius - like the major radius of a torus 
 </li>

 <li>
   <code>P2</code> : Filling. Set this to zero, and you get a torus. Set this to a higher value and the hole in the 
  middle starts to heal up. Set it even higher and you get an ellipsoid with a dimple 
 </li>

 <li>
   <code>P3</code> : Thickness. The higher you set this value, the plumper is the result 
 </li>

</ul>
<a name="s03_07_07_02_i48"><a name="f_paraboloid"></a>
<p>
  <code>f_paraboloid(x,y,z, P0)</code>. This paraboloid is the surface of revolution that you get if you rotate a 
 parabola about the Y axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i49"><a name="f_parabolic_torus"></a>
<p>
  <code>f_parabolic_torus(x,y,z, P0, P1, P2)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Major radius 
 </li>

 <li>
   <code>P2</code> : Minor radius 
 </li>

</ul>
<a name="s03_07_07_02_i50"><a name="f_ph"></a>
<p>
  <code>f_ph(x,y,z)</code> = atan2( sqrt( x*x + z*z ), y ) <br>When used alone, the &quot;PH&quot; function gives a 
 surface that consists of all points that are at a particular latitude, i.e. a cone. If you use a threshold of zero 
 (the default) this gives a cone of width zero, which is invisible. Also look at <code>f_th</code> and <code>f_r</code> <a name="s03_07_07_02_i51"><a name="f_pillow"></a> 
 
</p>

<p>
  <code>f_pillow(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> 
 </li>

</ul>
<a name="s03_07_07_02_i52"><a name="f_piriform"></a>
<p>
  <code>f_piriform(x,y,z, P0)</code>. The piriform surface looks rather like half a lemniscate. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> 
 </li>

</ul>
<a name="s03_07_07_02_i53"><a name="f_piriform_2d"></a>
<p>
  <code>f_piriform_2d(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>. The 2d version of the &quot;Piriform&quot; can be 
 extruded in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Size factor 1: increasing this makes the curve larger 
 </li>

 <li>
   <code>P2</code> : Size factor 2: making this less negative makes the curve larger but also thinner 
 </li>

 <li>
   <code>P3</code> : Fatness: increasing this makes the curve fatter 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P6</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i54"><a name="f_poly4"></a>
<p>
  <code>f_poly4(x,y,z, P0, P1, P2, P3, P4)</code>. This <code>f_poly4</code> can be used to generate the surface of 
 revolution of any polynomial up to degree 4.<br>To put it another way: If we call the parameters A, B, C, D, E; then 
 this function generates the surface of revolution formed by revolving &quot;x = A + By + Cy2 + Dy3 + Ey4&quot; around 
 the Y axis. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Constant 
 </li>

 <li>
   <code>P1</code> : Y coefficient 
 </li>

 <li>
   <code>P2</code> : Y2 coefficient 
 </li>

 <li>
   <code>P3</code> : Y3 coefficient 
 </li>

 <li>
   <code>P4</code> : Y4 coefficient 
 </li>

</ul>
<a name="s03_07_07_02_i55"><a name="f_polytubes"></a>
<p>
  <code>f_polytubes(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The 'Polytubes' surface consists of a number of tubes. 
 Each tube follows a 2d curve which is specified by a polynomial of degree 4 or less. If we look at the parameters, 
 then this function generates &quot;P0&quot; tubes which all follow the equation &quot; x = P1 + P2y + P3y2 + P4y3 + 
 P5y4 &quot; arranged around the Y axis. <br>This function needs a positive threshold (fatness of the tubes). 
</p>

<ul>
 
 <li>
   <code>P0</code> : Number of tubes 
 </li>

 <li>
   <code>P1</code> : Constant 
 </li>

 <li>
   <code>P2</code> : Y coefficient 
 </li>

 <li>
   <code>P3</code> : Y2 coefficient 
 </li>

 <li>
   <code>P4</code> : Y3 coefficient 
 </li>

 <li>
   <code>P5</code> : Y4 coefficient 
 </li>

</ul>
<a name="s03_07_07_02_i56"><a name="f_quantum"></a>
<p>
  <code>f_quantum(x,y,z, P0)</code>. It resembles the shape of the electron density cloud for one of the d orbitals. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Not used, but required 
 </li>

</ul>
<a name="s03_07_07_02_i57"><a name="f_quartic_paraboloid"></a>
<p>
  <code>f_quartic_paraboloid(x,y,z, P0)</code>. The 'Quartic Paraboloid' is similar to a paraboloid, but has a 
 squarer shape. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i58"><a name="f_quartic_saddle"></a>
<p>
  <code>f_quartic_saddle(x,y,z, P0)</code>. The 'Quartic saddle' is similar to a saddle, but has a squarer shape. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> 
 </li>

</ul>
<a name="s03_07_07_02_i59"><a name="f_quartic_cylinder"></a>
<p>
  <code>f_quartic_cylinder(x,y,z, P0, P1, P2)</code>. The 'Quartic cylinder' looks a bit like a cylinder that is 
 swallowed an egg. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Diameter of the &quot;egg&quot; 
 </li>

 <li>
   <code>P2</code> : Controls the width of the tube and the vertical scale of the &quot;egg&quot; 
 </li>

</ul>
<a name="s03_07_07_02_i60"><a name="f_r"></a>
<p>
  <code>f_r(x,y,z)</code> = sqrt( x*x + y*y + z*z ) <br>When used alone, the &quot;R&quot; function gives a surface 
 that consists of all the points that are a specific distance (threshold value) from the origin, i.e. a sphere. Also 
 look at <code>f_ph</code> and <code>f_th</code> <a name="s03_07_07_02_i61"><a name="f_ridge"></a> 
</p>

<p>
  <code>f_ridge(x,y,z, P0, P1, P2, P3, P4, P5)</code>. This function is mainly intended for modifying other surfaces 
 as you might use a height field or to use as pigment function. Other functions of interest are <code>f_hetero_mf</code> 
 and <code>f_ridged_mf</code>. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Lambda 
 </li>

 <li>
   <code>P1</code> : Octaves 
 </li>

 <li>
   <code>P2</code> : Omega 
 </li>

 <li>
   <code>P3</code> : Offset 
 </li>

 <li>
   <code>P4</code> : Ridge 
 </li>

 <li>
   <code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values. 
 </li>

</ul>
<a name="s03_07_07_02_i62"><a name="f_ridged_mf"></a>
<p>
  <code>f_ridged_mf(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The &quot;Ridged Multifractal&quot; surface can be used to 
 create multifractal height fields and patterns. 'Multifractal' refers to their characteristic of having a fractal 
 dimension which varies with altitude. They are built from summing noise of a number of frequencies. The f_ridged_mf 
 parameters determine how many, and which frequencies are to be summed, and how the different frequencies are weighted 
 in the sum. <br>An advantage to using these instead of a <code>height_field{}</code> from an image is that the 
 ridged_mf function domain extends arbitrarily far in the x and z directions so huge landscapes can be made without 
 losing resolution or having to tile a height field. Other functions of interest are <code>f_hetero_mf</code> and <code>f_ridge</code>. 
 
</p>

<ul>
 
 <li>
   <code>P0</code> : H is the negative of the exponent of the basis noise frequencies used in building these 
  functions (each frequency f's amplitude is weighted by the factor fE- H ). When H is 1, the fractalization is 
  relatively smooth. As H nears 0, the high frequencies contribute equally with low frequencies 
 </li>

 <li>
   <code>P1</code> : Lacunarity is the multiplier used to get from one &quot;octave&quot; to the next in the 
  &quot;fractalization&quot;. <br>This parameter affects the size of the frequency gaps in the pattern. (Use values 
  greater than 1.0) 
 </li>

 <li>
   <code>P2</code> : Octaves is the number of different frequencies added to the fractal. Each octave frequency is 
  the previous one multiplied by &quot;Lacunarity&quot;. So, using a large number of octaves can get into very high 
  frequencies very quickly 
 </li>

 <li>
   <code>P3</code> : Offset gives a fractal whose fractal dimension changes from altitude to altitude. The high 
  frequencies at low altitudes are more damped than at higher altitudes, so that lower altitudes are smoother than 
  higher areas 
 </li>

 <li>
   <code>P4</code> : Gain weights the successive contributions to the accumulated fractal result to make creases 
  stick up as ridges 
 </li>

 <li>
   <code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values. 
 </li>

</ul>
<a name="s03_07_07_02_i63"><a name="f_rounded_box"></a>
<p>
  <code>f_rounded_box(x,y,z, P0, P1, P2, P3)</code>. The Rounded Box is defined in a cube from &lt;-1, -1, -1&gt; to 
 &lt;1, 1, 1&gt;. By changing the &quot; Scale&quot; parameters, the size can be adjusted, without affecting the Radius 
 of curvature. 
</p>

<ul>
 
 <li>
   <code>P0</code> : Radius of curvature. Zero gives square corners, 0.1 gives corners that match &quot;sphere {0, 
  0.1}&quot; 
 </li>

 <li>
   <code>P1</code> : Scale x 
 </li>

 <li>
   <code>P2</code> : Scale y 
 </li>

 <li>
   <code>P3</code> : Scale z 
 </li>

</ul>
<a name="s03_07_07_02_i64"><a name="f_sphere"></a>
<p>
  <code>f_sphere(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code>: radius of the sphere 
 </li>

</ul>
<a name="s03_07_07_02_i65"><a name="f_spikes"></a>
<p>
  <code>f_spikes(x,y,z, P0, P1, P2, P3, P4)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere 
 </li>

 <li>
   <code>P1</code> : Hollowness. Increasing this causes the sides to bend in more 
 </li>

 <li>
   <code>P2</code> : Size. Increasing this increases the size of the object 
 </li>

 <li>
   <code>P3</code> : Roundness. This parameter has a subtle effect on the roundness of the spikes 
 </li>

 <li>
   <code>P4</code> : Fatness. Increasing this makes the spikes fatter 
 </li>

</ul>
<a name="s03_07_07_02_i66"><a name="f_spikes_2d"></a>
<p>
  <code>f_spikes_2d(x,y,z, P0, P1, P2, P3)</code> =2-D function : f = f( x, z ) - y 
</p>

<ul>
 
 <li>
   <code>P0</code> : Height of central spike 
 </li>

 <li>
   <code>P1</code> : Frequency of spikes in the X direction 
 </li>

 <li>
   <code>P2</code> : Frequency of spikes in the Z direction 
 </li>

 <li>
   <code>P3</code> : Rate at which the spikes reduce as you move away from the center 
 </li>

</ul>
<a name="s03_07_07_02_i67"><a name="f_spiral"></a>
<p>
  <code>f_spiral(x,y,z, P0, P1, P2, P3, P4, P5)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Distance between windings 
 </li>

 <li>
   <code>P1</code> : Thickness 
 </li>

 <li>
   <code>P2</code> : Outer diameter of the spiral. The surface behaves as if it is contained_by a sphere of this 
  diameter 
 </li>

 <li>
   <code>P3</code> : Not used 
 </li>

 <li>
   <code>P4</code> : Not used 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01">Cross section type</a> 
 </li>

</ul>
<a name="s03_07_07_02_i68"><a name="f_steiners_roman"></a>
<p>
  <code>f_steiners_roman(x,y,z, P0)</code>. The &quot;Steiners Roman&quot; is composed of four identical triangular 
 pads which together make up a sort of rounded tetrahedron. There are creases along the X, Y and Z axes where the pads 
 meet. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i69"><a name="f_strophoid"></a>
<p>
  <code>f_strophoid(x,y,z, P0, P1, P2, P3)</code>. The &quot;Strophoid&quot; is like an infinite plane with a bulb 
 sticking out of it. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of 
  the plane 
 </li>

 <li>
   <code>P2</code> : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, 
  there is a crossover point. When negative the bulb simply bulges out of the plane like a pimple 
 </li>

 <li>
   <code>P3</code> : Flatness. Higher values make the top end of the bulb fatter 
 </li>

</ul>
<a name="s03_07_07_02_i70"><a name="f_strophoid_2d"></a>
<p>
  <code>f_strophoid_2d(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>. The 2d strophoid curve can be extruded in the Z 
 direction or rotated about various axes by using the SOR parameters. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> 
 </li>

 <li>
   <code>P1</code> : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of 
  the plane 
 </li>

 <li>
   <code>P2</code> : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, 
  there is a crossover point. When negative the bulb simply bulges out of the plane like a pimple 
 </li>

 <li>
   <code>P3</code> : Fatness. Higher values make the top end of the bulb fatter 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P6</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>
<a name="s03_07_07_02_i71"><a name="f_superellipsoid"></a>
<p>
  <code>f_superellipsoid(x,y,z, P0, P1)</code>. Needs a negative field strength or a negated function. 
</p>

<ul>
 
 <li>
   <code>P0</code> : east-west exponentx 
 </li>

 <li>
   <code>P1</code> : north-south exponent 
 </li>

</ul>
<a name="s03_07_07_02_i72"><a name="f_th"></a>
<p>
  <code>f_th(x,y,z)</code> = atan2( x, z ) <br><code>f_th()</code> is a function that is only useful when combined 
 with other surfaces. <br>It produces a value which is equal to the &quot;theta&quot; angle, in radians, at any point. 
 The theta angle is like the longitude coordinate on the Earth. It stays the same as you move north or south, but 
 varies from east to west. Also look at <code>f_ph</code> and <code>f_r</code> <a name="s03_07_07_02_i73"><a name="f_torus"></a> 
 
</p>

<p>
  <code>f_torus(x,y,z, P0, P1)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : Major radius 
 </li>

 <li>
   <code>P1</code> : Minor radius 
 </li>

</ul>
<a name="s03_07_07_02_i74"><a name="f_torus2"></a>
<p>
  <code>f_torus2(x,y,z, P0, P1, P2)</code>. This is different from the f_torus function which just has the major and 
 minor radii as parameters. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Major radius 
 </li>

 <li>
   <code>P2</code> : Minor radius 
 </li>

</ul>
<a name="s03_07_07_02_i75"><a name="f_torus_gumdrop"></a>
<p>
  <code>f_torus_gumdrop(x,y,z, P0)</code>. The &quot;Torus Gumdrop&quot; surface is something like a torus with a 
 couple of gumdrops hanging off the end. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i76"><a name="f_umbrella"></a>
<p>
  <code>f_umbrella(x,y,z, P0)</code> 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

</ul>
<a name="s03_07_07_02_i77"><a name="f_witch_of_agnesi"></a>
<p>
  <code>f_witch_of_agnesi(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The &quot;Witch of Agnesi&quot; surface looks 
 something like a witches hat. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Controls the width of the spike. The height of the spike is always about 1 unit 
 </li>

</ul>
<a name="s03_07_07_02_i78"><a name="f_witch_of_agnesi_2d"></a>
<p>
  <code>f_witch_of_agnesi_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>. The 2d version of the &quot;Witch of Agnesi&quot; 
 curve can be extruded in the Z direction or rotated about various axes by use of the SOR parameters. 
</p>

<ul>
 
 <li>
   <code>P0</code> : <a href="s_138.html#s03_07_07_01_01">Field Strength</a> (Needs a negative field strength or a 
  negated function) 
 </li>

 <li>
   <code>P1</code> : Controls the size of the spike 
 </li>

 <li>
   <code>P2</code> : Controls the height of the spike 
 </li>

 <li>
   <code>P3</code> : <a href="s_138.html#s03_07_07_01_03">SOR Switch</a> 
 </li>

 <li>
   <code>P4</code> : <a href="s_138.html#s03_07_07_01_04">SOR Offset</a> 
 </li>

 <li>
   <code>P5</code> : <a href="s_138.html#s03_07_07_01_05">SOR Angle</a> 
 </li>

</ul>

<h4><a name="s03_07_07_03">3.7.7.3 </a>Pre defined functions</h4>
<a name="s03_07_07_03_i1"><a name="eval_pigment"></a>
<p>
  <code>eval_pigment(Pigm, Vect)</code>, This macro evaluates the color of a pigment at a specific point. Some 
 pigments require more information than simply a point, slope pattern based pigments for example, and will not work 
 with this macro. However, most pigments will work fine.<br> Parameters: 
</p>

<ul>
 
 <li>
   <code>Vect</code> = The point at which to evaluate the pigment. 
 </li>

 <li>
   <code>Pigm</code> = The pigment to evaluate. 
 </li>

</ul>
<a name="s03_07_07_03_i2"><a name="f_snoise3d"></a>
<p>
  <code>f_snoise3d(x, y, z)</code>. Just like f_noise3d(), but returns values in the range [-1, 1]. <a name="s03_07_07_03_i3"><a name="f_sine_wave"></a> 
 
</p>

<p>
  <code>f_sine_wave(val, amplitude, frequency)</code>. Turns a ramping waveform into a sine waveform. <a name="s03_07_07_03_i4"><a name="f_scallop_wave"></a> 
 
</p>

<p>
  <code>f_scallop_wave(val, amplitude, frequency)</code>. Turns a ramping waveform into a &quot;scallop_wave&quot; 
 waveform. 
</p>

<h5><a name="s03_07_07_03_01">3.7.7.3.1 </a>Pattern functions</h5>

<p>
  Predefined pattern functions, useful for building custom function patterns or performing &quot;displacement 
 mapping&quot; on isosurfaces. Many of them are not really useful for these purposes, they are simply included for 
 completeness. 
</p>

<p>
  Some are not implemented at all because they require special parameters that must be specified in the definition, 
 or information that is not available to pattern functions. For this reason, you probably would want to define your own 
 versions of these functions. 
</p>

<p>
  All of these functions take three parameters, the XYZ coordinates of the point to evaluate the pattern at. 
</p>

<dl>
 
 <dt>
   <code>f_agate(x, y, z)</code> 
 <dt>
   <code>f_boxed(x, y, z)</code> 
 <dt>
   <code>f_bozo(x, y, z)</code> 
 <dt>
   <code>f_brick(x, y, z)</code> 
 <dt>
   <code>f_bumps(x, y, z)</code> 
 <dt>
   <code>f_checker(x, y, z)</code> 
 <dt>
   <code>f_crackle(x, y, z)</code> 
 <dd>
   This pattern has many more options, this function uses the defaults. 
 <dt>
   <code>f_cylindrical(x, y, z)</code> 
 <dt>
   <code>f_dents(x, y, z)</code> 
 <dt>
   <code>f_gradientX(x, y, z)</code> 
 <dt>
   <code>f_gradientY(x, y, z)</code> 
 <dt>
   <code>f_gradientZ(x, y, z)</code> 
 <dt>
   <code>f_granite(x, y, z)</code> 
 <dt>
   <code>f_hexagon(x, y, z)</code> 
 <dt>
   <code>f_leopard(x, y, z)</code> 
 <dt>
   <code>f_mandel(x, y, z)</code> 
 <dd>
   Only the basic mandel pattern is implemented, its variants and the other fractal patterns are not implemented. 
 <dt>
   <code>f_marble(x, y, z)</code> 
 <dt>
   <code>f_onion(x, y, z)</code> 
 <dt>
   <code>f_planar(x, y, z)</code> 
 <dt>
   <code>f_radial(x, y, z)</code> 
 <dt>
   <code>f_ripples(x, y, z)</code> 
 <dt>
   <code>f_spherical(x, y, z)</code> 
 <dt>
   <code>f_spiral1(x, y, z)</code> 
 <dt>
   <code>f_spiral2(x, y, z)</code> 
 <dt>
   <code>f_spotted(x, y, z)</code> 
 <dt>
   <code>f_waves(x, y, z)</code> 
 <dt>
   <code>f_wood(x, y, z)</code> 
 <dt>
   <code>f_wrinkles(x, y, z)</code> 
</dl>
 <br> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_137.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_137.html">3.7.6 finish.inc</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong>3.7.7 functions.inc</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_139.html">3.7.8 glass.inc, glass_old.inc</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_139.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 </body> </html>