| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 
 | 
<!--  This file copyright Persistence of Vision Raytracer Pty. Ltd. 2003-2004  -->
<html> 
<head>
  
<!--  NOTE: In order to users to help find information about POV-Ray using  -->
 
<!--  web search engines, we ask you to *not* let them index documentation  -->
 
<!--  mirrors because effectively, when searching, users will get hundreds  -->
 
<!--  of results containing the same information! For this reason, the two  -->
 
<!--  meta tags below disable archiving and indexing of this page by all  -->
 
<!--  search engines that support these meta tags.  -->
 
 <meta content="noarchive" name="robots">
   
 <meta content="noindex" name="robots">
   
 <meta content="no-cache" http-equiv="Pragma">
   
 <meta content="0" http-equiv="expires">
   
<title>3.7.11 rand.inc</title>
 <link href="povray35.css" rel="stylesheet" type="text/css"> 
</head>
 <body> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_141.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_141.html">3.7.10 metals.inc, golds.inc</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong class="NavBar">POV-Ray 3.6 for UNIX documentation</strong><br> <strong>3.7.11 
   rand.inc</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_143.html">3.7.12 shapes.inc, shapes_old.inc, shapes2.inc, 
   shapesq.inc</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_143.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 
<h3><a name="s03_07_11">3.7.11 </a>rand.inc</h3>
<p>
  A collection of macros for generating random numbers, as well as 4 predefined random number streams: <code>RdmA, 
 RdmB, RdmC,</code> and <code>RdmD</code>. There are macros for creating random numbers in a flat distribution (all 
 numbers equally likely) in various ranges, and a variety of other distributions. 
</p>
<h4><a name="s03_07_11_01">3.7.11.1 </a>Flat Distributions</h4>
<a name="s03_07_11_01_i1"><a name="SRand"></a>
<p>
  <code>SRand(Stream)</code>. "Signed rand()", returns random numbers in the range [-1, 1]. <br>Parameters: 
</p>
<ul>
 
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i2"><a name="RRand"></a>
<p>
  <code>RRand(Min, Max, Stream)</code>. Returns random numbers in the range [Min, Max].<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Min</code> = The lower end of the output range. 
 </li>
 <li>
   <code>Max</code> = The upper end of the output range. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i3"><a name="VRand"></a>
<p>
  <code>VRand(Stream)</code>. Returns random vectors in a box from < 0, 0, 0> to < 1, 1, 1><br> 
 Parameters: 
</p>
<ul>
 
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i4"><a name="VRand_In_Box"></a>
<p>
  <code>VRand_In_Box(PtA, PtB, Stream)</code>. Like VRand(), this macro returns a random vector in a box, but this 
 version lets you specify the two corners of the box.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>PtA</code> = Lower-left-bottom corner of box. 
 </li>
 <li>
   <code>PtB</code> = Upper-right-top corner of box. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i5"><a name="VRand_In_Sphere"></a>
<p>
  <code>VRand_In_Sphere(Stream)</code>. Returns a random vector in a unit-radius sphere located at the origin.<br> 
 Parameters: 
</p>
<ul>
 
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i6"><a name="VRand_On_Sphere"></a>
<p>
  <code>VRand_On_Sphere(Stream)</code>. Returns a random vector on the surface of a unit-radius sphere located at the 
 origin.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_01_i7"><a name="VRand_In_Obj"></a>
<p>
  <code>VRand_In_Obj(Object, Stream)</code> This macro takes a solid object and returns a random point that is inside 
 it. It does this by randomly sampling the bounding box of the object, and can be quite slow if the object occupies a 
 small percentage of the volume of its bounding box (because it will take more attempts to find a point inside the 
 object). This macro is best used on finite, solid objects (non-solid objects, such as meshes and bezier patches, do 
 not have a defined "inside", and will not work).<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Object</code> = The object the macro chooses the points from. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<h4><a name="s03_07_11_02">3.7.11.2 </a>Other Distributions</h4>
<h5><a name="s03_07_11_02_01">3.7.11.2.1 </a>Continuous Symmetric Distributions</h5>
<a name="s03_07_11_02_01_i1"><a name="Rand_Cauchy"></a>
<p>
  <code>Rand_Cauchy(Mu, Sigma, Stream)</code>. Cauchy distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean. 
 </li>
 <li>
   <code>Sigma</code> = Standard deviation. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_01_i2"><a name="Rand_Student"></a>
<p>
  <code>Rand_Student(N, Stream)</code>. Student's-t distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>N</code> = degrees of freedom. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_01_i3"><a name="Rand_Normal"></a>
<p>
  <code>Rand_Normal(Mu, Sigma, Stream)</code>. Normal distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean. 
 </li>
 <li>
   <code>Sigma</code> = Standard deviation. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_01_i4"><a name="Rand_Gauss"></a>
<p>
  <code>Rand_Gauss(Mu, Sigma, Stream)</code>. Gaussian distribution. Like Rand_Normal(), but a bit faster.<br> 
 Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean. 
 </li>
 <li>
   <code>Sigma</code> = Standard deviation. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<h5><a name="s03_07_11_02_02">3.7.11.2.2 </a>Continuous Skewed Distributions</h5>
<a name="s03_07_11_02_02_i1"><a name="Rand_Spline"></a>
<p>
  <code>Rand_Spline(Spline, Stream)</code>. This macro takes a spline describing the desired distribution. The T 
 value of the spline is the output value, and the .y value its chance of occuring.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Spline</code> = A spline determining the distribution. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i2"><a name="Rand_Gamma"></a>
<p>
  <code>Rand_Gamma(Alpha, Beta, Stream)</code>. Gamma distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Alpha</code> = Shape parameter > 0. 
 </li>
 <li>
   <code>Beta</code> = Scale parameter > 0. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i3"><a name="Rand_Beta"></a>
<p>
  <code>Rand_Beta(Alpha, Beta, Stream)</code>. Beta variate.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Alpha</code> = Shape Gamma1. 
 </li>
 <li>
   <code>Beta</code> = Scale Gamma2. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i4"><a name="Rand_Chi_Square"></a>
<p>
  <code>Rand_Chi_Square(N, Stream)</code>. Chi Square random variate.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>N</code> = Degrees of freedom (integer). 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i5"><a name="Rand_F_Dist"></a>
<p>
  <code>Rand_F_Dist(N, M, Stream)</code>. F-distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>N, M</code> = Degrees of freedom. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i6"><a name="Rand_Tri"></a>
<p>
  <code>Rand_Tri(Min, Max, Mode, Stream)</code>. Triangular distribution <br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Min, Max, Mode</code>: Min < Mode < Max. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i7"><a name="Rand_Erlang"></a>
<p>
  <code>Rand_Erlang(Mu, K, Stream)</code>. Erlang variate.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean >= 0. 
 </li>
 <li>
   <code>K</code> = Number of exponential samples. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i8"><a name="Rand_Exp"></a>
<p>
  <code>Rand_Exp(Lambda, Stream)</code>. Exponential distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Lambda</code> = rate = 1/mean. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i9"><a name="Rand_Lognormal"></a>
<p>
  <code>Rand_Lognormal(Mu, Sigma, Stream)</code>. Lognormal distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean. 
 </li>
 <li>
   <code>Sigma</code> = Standard deviation. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i10"><a name="Rand_Pareto"></a>
<p>
  <code>Rand_Pareto(Alpha, Stream)</code>. Pareto distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Alpha</code> = ? 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_02_i11"><a name="Rand_Weibull"></a>
<p>
  <code>Rand_Weibull(Alpha, Beta, Stream)</code>. Weibull distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Alpha</code> = ? 
 </li>
 <li>
   <code>Beta</code> = ? 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<h5><a name="s03_07_11_02_03">3.7.11.2.3 </a>Discrete Distributions </h5>
<a name="s03_07_11_02_03_i1"><a name="Rand_Bernoulli"></a>
<p>
  <code>Rand_Bernoulli(P, Stream)</code> and <code>Prob(P, Stream)</code>. Bernoulli distribution. Output is true 
 with probability equal to the value of P and false with a probability of 1 - P.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>P</code> = probability range (0-1). 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_03_i2"><a name="Rand_Binomial"></a>
<p>
  <code>Rand_Binomial(N, P, Stream)</code>. Binomial distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>N</code> = Number of trials. 
 </li>
 <li>
   <code>P</code> = Probability (0-1) 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_03_i3"><a name="Rand_Geo"></a>
<p>
  <code>Rand_Geo(P, Stream)</code>. Geometric distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>P</code> = Probability (0-1). 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
<a name="s03_07_11_02_03_i4"><a name="Rand_Poisson"></a>
<p>
  <code>Rand_Poisson(Mu, Stream)</code>. Poisson distribution.<br> Parameters: 
</p>
<ul>
 
 <li>
   <code>Mu</code> = Mean. 
 </li>
 <li>
   <code>Stream</code> = Random number stream. 
 </li>
</ul>
 <br> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_141.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_141.html">3.7.10 metals.inc, golds.inc</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong>3.7.11 rand.inc</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_143.html">3.7.12 shapes.inc, shapes_old.inc, shapes2.inc, 
   shapesq.inc</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_143.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 </body> </html>
 |