| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 
 | 
<!--  This file copyright Persistence of Vision Raytracer Pty. Ltd. 2003-2004  -->
<html> 
<head>
  
<!--  NOTE: In order to users to help find information about POV-Ray using  -->
 
<!--  web search engines, we ask you to *not* let them index documentation  -->
 
<!--  mirrors because effectively, when searching, users will get hundreds  -->
 
<!--  of results containing the same information! For this reason, the two  -->
 
<!--  meta tags below disable archiving and indexing of this page by all  -->
 
<!--  search engines that support these meta tags.  -->
 
 <meta content="noarchive" name="robots">
   
 <meta content="noindex" name="robots">
   
 <meta content="no-cache" http-equiv="Pragma">
   
 <meta content="0" http-equiv="expires">
   
<title>2.3.3 Other Shapes</title>
 <link href="povray35.css" rel="stylesheet" type="text/css"> 
</head>
 <body> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_67.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_67.html">2.3.2 Polygon Based Shapes</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong class="NavBar">POV-Ray 3.6 for UNIX documentation</strong><br> <strong>2.3.3 
   Other Shapes</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_69.html">2.3.4 Advanced Texture Options</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_69.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 
<h3><a name="s02_03_03">2.3.3 </a>Other Shapes</h3>
<a name="s02_03_03_i1">
<h4><a name="s02_03_03_01">2.3.3.1 </a>Blob Object</h4>
<p>
  Blobs are described as spheres and cylinders covered with "goo" which stretches to smoothly join them 
 (see section "<a href="s_105.html#s03_04_01_01">Blob</a>"). 
</p>
<p>
  Ideal for modeling atoms and molecules, blobs are also powerful tools for creating many smooth flowing 
 "organic" shapes. 
</p>
<p>
  A slightly more mathematical way of describing a blob would be to say that it is one object made up of two or more 
 component pieces. Each piece is really an invisible field of force which starts out at a particular strength and falls 
 off smoothly to zero at a given radius. Where ever these components overlap in space, their field strength gets added 
 together (and yes, we can have negative strength which gets subtracted out of the total as well). We could have just 
 one component in a blob, but except for seeing what it looks like there is little point, since the real beauty of 
 blobs is the way the components interact with one another. 
</p>
<p>
  Let us take a simple example blob to start. Now, in fact there are a couple different types of components but we 
 will look at them a little later. For the sake of a simple first example, let us just talk about spherical components. 
 Here is a sample POV-Ray code showing a basic camera, light, and a simple two component blob: 
</p>
<pre>
  #include "colors.inc"
  background{White}
  camera {
    angle 15
    location <0,2,-10>
    look_at <0,0,0>
  }
  light_source { <10, 20, -10> color White }
  blob {
    threshold .65
    sphere { <.5,0,0>, .8, 1 pigment {Blue} }
    sphere { <-.5,0,0>,.8, 1 pigment {Pink} }
    finish { phong 1 }
  }
</pre>
<p>
  <img alt="A simple, two-part blob." src="images/tutorial/simpblob.png"> 
</p>
<p>
  The threshold is simply the overall strength value at which the blob becomes visible. Any points within the blob 
 where the strength matches the threshold exactly form the surface of the blob shape. Those less than the threshold are <em>outside</em> 
 and those greater than are <em>inside</em> the blob. 
</p>
<p>
  We note that the spherical component looks a lot like a simple sphere object. We have the sphere keyword, the 
 vector representing the location of the center of the sphere and the float representing the radius of the sphere. But 
 what is that last float value? That is the individual strength of that component. In a spherical component, that is 
 how strong the component's field is at the center of the sphere. It will fall off in a linear progression until it 
 reaches exactly zero at the radius of the sphere. 
</p>
<p>
  Before we render this test image, we note that we have given each component a different pigment. POV-Ray allows 
 blob components to be given separate textures. We have done this here to make it clearer which parts of the blob are 
 which. We can also texture the whole blob as one, like the finish statement at the end, which applies to all 
 components since it appears at the end, outside of all the components. We render the scene and get a basic kissing 
 spheres type blob. 
</p>
<p>
  The image we see shows the spheres on either side, but they are smoothly joined by that bridge section in the 
 center. This bridge represents where the two fields overlap, and therefore stay above the threshold for longer than 
 elsewhere in the blob. If that is not totally clear, we add the following two objects to our scene and re-render. We 
 note that these are meant to be entered as separate sphere objects, not more components in the blob. 
</p>
<pre>
  sphere { <.5,0,0>, .8
    pigment { Yellow transmit .75 }
  }
  sphere { <-.5,0,0>, .8
    pigment { Green transmit .75 }
  }
</pre>
<p>
  <img alt="The spherical components made visible." src="images/tutorial/sphblob.png"> 
</p>
<p>
  Now the secrets of the kissing spheres are laid bare. These semi-transparent spheres show where the components of 
 the blob actually are. If we have not worked with blobs before, we might be surprised to see that the spheres we just 
 added extend way farther out than the spheres that actually show up on the blobs. That of course is because our 
 spheres have been assigned a starting strength of one, which gradually fades to zero as we move away from the sphere's 
 center. When the strength drops below the threshold (in this case 0.65) the rest of the sphere becomes part of the 
 outside of the blob and therefore is not visible. 
</p>
<p>
  See the part where the two transparent spheres overlap? We note that it exactly corresponds to the bridge between 
 the two spheres. That is the region where the two components are both contributing to the overall strength of the blob 
 at that point. That is why the bridge appears: that region has a high enough strength to stay over the threshold, due 
 to the fact that the combined strength of two spherical components is overlapping there. 
</p>
<h5><a name="s02_03_03_01_01">2.3.3.1.1 </a>Component Types and Other New Features</h5>
<a name="s02_03_03_01_01_i1">
<p>
  The shape shown so far is interesting, but limited. POV-Ray has a few extra tricks that extend its range of 
 usefulness however. For example, as we have seen, we can assign individual textures to blob components, we can also 
 apply individual transformations (translate, rotate and scale) to stretch, twist, and squash pieces of the blob as we 
 require. And perhaps most interestingly, the blob code has been extended to allow cylindrical components. 
</p>
<p>
  Before we move on to cylinders, it should perhaps be mentioned that the old style of components used in previous 
 versions of POV-Ray still work. Back then, all components were spheres, so it was not necessary to say sphere or 
 cylinder. An old style component had the form: 
</p>
<p>
  component Strength, Radius, <Center> 
</p>
<p>
  This has the same effect as a spherical component, just as we already saw above. This is only useful for backwards 
 compatibility. If we already have POV-Ray files with blobs from earlier versions, this is when we would need to 
 recognize these components. We note that the old style components did not put braces around the strength, radius and 
 center, and of course, we cannot independently transform or texture them. Therefore if we are modifying an older work 
 into a new version, it may arguably be of benefit to convert old style components into spherical components anyway. 
</p>
<p>
  Now for something new and different: cylindrical components. It could be argued that all we ever needed to do to 
 make a roughly cylindrical portion of a blob was string a line of spherical components together along a straight line. 
 Which is fine, if we like having extra to type, and also assuming that the cylinder was oriented along an axis. If 
 not, we would have to work out the mathematical position of each component to keep it is a straight line. But no more! 
 Cylindrical components have arrived. 
</p>
<p>
  We replace the blob in our last example with the following and re-render. We can get rid of the transparent spheres 
 too, by the way. 
</p>
<pre>
  blob {
    threshold .65
    cylinder { <-.75,-.75,0>, <.75,.75,0>, .5, 1 }
    pigment { Blue }
    finish { phong 1 }
  }
</pre>
<p>
  We only have one component so that we can see the basic shape of the cylindrical component. It is not quite a true 
 cylinder - more of a sausage shape, being a cylinder capped by two hemispheres. We think of it as if it were an array 
 of spherical components all closely strung along a straight line. 
</p>
<p>
  As for the component declaration itself: simple, logical, exactly as we would expect it to look (assuming we have 
 been awake so far): it looks pretty much like the declaration of a cylinder object, with vectors specifying the two 
 endpoints and a float giving the radius of the cylinder. The last float, of course, is the strength of the component. 
 Just as with spherical components, the strength will determine the nature and degree of this component's interaction 
 with its fellow components. In fact, next let us give this fellow something to interact with, shall we? 
</p>
<h5><a name="s02_03_03_01_02">2.3.3.1.2 </a>Complex Blob Constructs and Negative Strength</h5>
<a name="s02_03_03_01_02_i1"><a name="s02_03_03_01_02_i2">
<p>
  Beginning a new POV-Ray file, we enter this somewhat more complex example: 
</p>
<pre>
#include "colors.inc"
background{White}
camera {
  angle 20
  location<0,2,-10>
  look_at<0,0,0>
}
light_source { <10, 20, -10> color White }
blob {
  threshold .65
  sphere{<-.23,-.32,0>,.43, 1 scale <1.95,1.05,.8>}   //palm
  sphere{<+.12,-.41,0>,.43, 1 scale <1.95,1.075,.8>}  //palm
  sphere{<-.23,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
  sphere{<+.19,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
  sphere{<-.22,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
  sphere{<+.19,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
  cylinder{<-.65,-.28,0>, <-.65,.28,-.05>, .26, 1}    //lower pinky
  cylinder{<-.65,.28,-.05>, <-.65, .68,-.2>, .26, 1}  //upper pinky
  cylinder{<-.3,-.28,0>, <-.3,.44,-.05>, .26, 1}      //lower ring
  cylinder{<-.3,.44,-.05>, <-.3, .9,-.2>, .26, 1}     //upper ring
  cylinder{<.05,-.28,0>, <.05, .49,-.05>, .26, 1}     //lower middle
  cylinder{<.05,.49,-.05>, <.05, .95,-.2>, .26, 1}    //upper middle
  cylinder{<.4,-.4,0>, <.4, .512, -.05>, .26, 1}      //lower index
  cylinder{<.4,.512,-.05>, <.4, .85, -.2>, .26, 1}    //upper index
  cylinder{<.41, -.95,0>, <.85, -.68, -.05>, .25, 1}  //lower thumb
  cylinder{<.85,-.68,-.05>, <1.2, -.4, -.2>, .25, 1}  //upper thumb
  pigment{ Flesh }
}
</pre>
<p>
  <img alt="A hand made with blobs." src="images/tutorial/blobhand.png"> 
</p>
<p>
  As we can guess from the comments, we are building a hand here. After we render this image, we can see there are a 
 few problems with it. The palm and heel of the hand would look more realistic if we used a couple dozen smaller 
 components rather than the half dozen larger ones we have used, and each finger should have three segments instead of 
 two, but for the sake of a simplified demonstration, we can overlook these points. But there is one thing we really 
 need to address here: This poor fellow appears to have horrible painful swelling of the joints! 
</p>
<p>
  A review of what we know of blobs will quickly reveal what went wrong. The joints are places where the blob 
 components overlap, therefore the combined strength of both components at that point causes the surface to extend 
 further out, since it stays over the threshold longer. To fix this, what we need are components corresponding to the 
 overlap region which have a negative strength to counteract part of the combined field strength. We add the following 
 components to our blob. 
</p>
<pre>
sphere{<-.65,.28,-.05>, .26, -1} //counteract pinky knucklebulge
sphere{<-.65,-.28,0>, .26, -1}   //counteract pinky palm bulge
sphere{<-.3,.44,-.05>, .26, -1}  //counteract ring knuckle bulge
sphere{<-.3,-.28,0>, .26, -1}    //counteract ring palm bulge
sphere{<.05,.49,-.05>, .26, -1}  //counteract middle knuckle bulge
sphere{<.05,-.28,0>, .26, -1}    //counteract middle palm bulge
sphere{<.4,.512,-.05>, .26, -1}  //counteract index knuckle bulge
sphere{<.4,-.4,0>, .26, -1}      //counteract index palm bulge
sphere{<.85,-.68,-.05>, .25, -1} //counteract thumb knuckle bulge
sphere{<.41,-.7,0>, .25, -.89}   //counteract thumb heel bulge
</pre>
<p>
  <img alt="The hand without the swollen joints." src="images/tutorial/imprhand.png"> 
</p>
<p>
  Much better! The negative strength of the spherical components counteracts approximately half of the field strength 
 at the points where to components overlap, so the ugly, unrealistic (and painful looking) bulging is cut out making 
 our hand considerably improved. While we could probably make a yet more realistic hand with a couple dozen additional 
 components, what we get this time is a considerable improvement. Any by now, we have enough basic knowledge of blob 
 mechanics to make a wide array of smooth, flowing organic shapes! 
</p>
<h4><a name="s02_03_03_02">2.3.3.2 </a>Height Field Object</h4>
<a name="s02_03_03_02_i1">
<p>
  A <code>height_field</code> is an object that has a surface that is determined by the color value or palette index 
 number of an image designed for that purpose. With height fields, realistic mountains and other types of terrain can 
 easily be made. First, we need an image from which to create the height field. It just so happens that POV-Ray is 
 ideal for creating such an image. 
</p>
<p>
  We make a new file called <code>image.pov</code> and edit it to contain the following: 
</p>
<pre>
  #include "colors.inc"
  global_settings {
    assumed_gamma 2.2
    hf_gray_16
  }
</pre>
<p>
  The <code><a href="s_102.html#s03_03_03_04">hf_gray_16</a></code> keyword causes the output to be in a special 16 
 bit grayscale that is perfect for generating height fields. The normal 8 bit output will lead to less smooth surfaces. 
</p>
<p>
  Now we create a camera positioned so that it points directly down the z-axis at the origin. 
</p>
<pre>
  camera {
    location <0, 0, -10>
    look_at 0
  }
</pre>
<p>
  We then create a plane positioned like a wall at z=0. This plane will completely fill the screen. It will be 
 colored with white and gray wrinkles. 
</p>
<pre>
  plane { z, 10
    pigment {
      wrinkles
      color_map {
       [0 0.3*White]
       [1 White]
      }
    }
  }
</pre>
<p>
  Finally, create a light source. 
</p>
<pre>
  light_source { <0, 20, -100> color White }
</pre>
<p>
  We render this scene at 640x480 <code>+A0.1</code> <code>+FT</code>. We will get an image that will produce an 
 excellent height field. We create a new file called <code>hfdemo.pov</code> and edit it as follows: 
</p>
<p class="Note">
  <strong>Note:</strong> Windows users, unless you specify <code>+FT</code> as above, you will get a 
 .BMP file (which is the default Windows version output). In this case you will need to use <code>sys</code> instead of <code>tga</code> 
 in the <code>height_field</code> statement below. 
</p>
<pre>
  #include "colors.inc"
</pre>
<p>
  We add a camera that is two units above the origin and ten units back ... 
</p>
<pre>
  camera{
    location <0, 2, -10>
    look_at 0
    angle 30
  }
</pre>
<p>
  ... and a light source. 
</p>
<pre>
  light_source{ <1000,1000,-1000> White }
</pre>
<p>
  Now we add the height field. In the following syntax, a Targa image file is specified, the height field is 
 smoothed, it is given a simple white pigment, it is translated to center it around the origin and it is scaled so that 
 it resembles mountains and fills the screen. 
</p>
<pre>
  height_field {
    tga "image.tga"
    smooth
    pigment { White }
    translate <-.5, -.5, -.5>
    scale <17, 1.75, 17>
  }
</pre>
<p>
  We save the file and render it at 320x240 <code>-A</code>. Later, when we are satisfied that the height field is 
 the way we want it, we render it at a higher resolution with anti-aliasing. 
</p>
<p>
  <img alt="A height field created completely with POV-Ray." src="images/tutorial/pvhfield.png"> 
</p>
<p>
  Wow! The Himalayas have come to our computer screen! 
</p>
<h4><a name="s02_03_03_03">2.3.3.3 </a>Isosurface Object</h4>
<a name="s02_03_03_03_i1"><a name="isosurface, tutorial"></a>
<dl class="famousquote">
 
 <dt>
   <em>You know you have been raytracing too long when ...<br> ... You find yourself wishing you'd paid attention in 
  math class to all those formulae you thought you'd never have any use for in real life.</em> 
 <dd>
   <em>-- Jeff Lee</em> 
</dl>
<p>
  Isosurfaces are shapes described by mathematical functions. 
</p>
<p>
  In contrast to the other mathematically based shapes in POV-Ray, isosurfaces are approximated during rendering and 
 therefore they are sometimes more difficult to handle. However, they offer many interesting possibilities, like real 
 deformations and surface displacements 
</p>
<p>
  Some knowledge about mathematical functions and geometry is useful, but not necessarily required to work with 
 isosurfaces. 
</p>
<h5><a name="s02_03_03_03_01">2.3.3.3.1 </a>Simple functions</h5>
<p>
  For the start we will choose a most simple function: <code>x</code> The value of this function is exactly the 
 current x-coordinate. 
</p>
<p>
  The isosurface object takes this function as a <a href="s_97.html#s03_02_01_06">user defined function</a>: 
</p>
<pre>
  isosurface {
    function { x }
    contained_by { box { -2, 2 } }
  }
</pre>
<p>
  <img alt="Isosurface sample (function { x })" src="images/tutorial/iso_01.png"> 
</p>
<p>
  the resulting shape is fairly simple: a box. 
</p>
<p>
  The fact that it is a box is only caused by the container object which is required for an isosurface. You can 
 either use a box or a sphere for this purpose. 
</p>
<p>
  So only one side of the box is made by the function in fact. This surface is where the x-coordinate is 0 since 0 is 
 the default threshold. There usually is no reason to change this, since it is the most common and most suggestive 
 value, but you can specify something different by adding 
</p>
<p>
  <code> threshold 1</code> 
</p>
<p>
  to the isosurface definition. 
</p>
<p>
  <img alt="Isosurface sample (function { x }, threshold 1)" src="images/tutorial/iso_02.png"> 
</p>
<p>
  As you can see, the surface is now at x-coordinate 1. 
</p>
<p>
  We can also remove the visible surfaces of the container object by adding the word 'open' to the isosurface 
 definition. 
</p>
<p>
  <img alt="Isosurface sample (function { x }, open)" src="images/tutorial/iso_03.png"> 
</p>
<p>
  For making it clearer what surfaces are the actual isosurface and what are caused by the container object, the 
 color will be different in all the following pictures. 
</p>
<p>
  Now we replace the used function with something different: 
</p>
<p>
  <code> function { x+y }</code> 
</p>
<p>
  <img alt="Isosurface sample (plane function)" src="images/tutorial/iso_04.png"> 
</p>
<p>
  <code> function { x+y+z }</code> 
</p>
<p>
  <img alt="Isosurface sample (plane function)" src="images/tutorial/iso_05.png"> 
</p>
<p class="Note">
  <strong>Note:</strong> 'max_gradient 4' is added to the isosurface definition here, this will be 
 explained later on. 
</p>
<p>
  All these functions describe planes going through the origin. The function just describes the normal vector of this 
 plane. 
</p>
<h5><a name="s02_03_03_03_02">2.3.3.3.2 </a>Several surfaces</h5>
<p>
  The following two functions lead to identical results: 
</p>
<p>
  <code> function { abs(x)-1 }</code> 
</p>
<p>
  <code> function { sqrt(x*x)-1 }</code> 
</p>
<p>
  <img alt="Isosurface sample (function { abs(x)-1 }, open)" src="images/tutorial/iso_06.png"> 
</p>
<p>
  You can see that there are two planes now. The reason is that both formulas have the same two solutions (where the 
 function value is 0), namely <code>x=-1</code> and <code>x=1</code>. 
</p>
<p>
  We can now mix all these elements in different combinations, the results always consist of plane surfaces: 
</p>
<p>
  <code> function { abs(x)-1+y }</code> 
</p>
<p>
  <img alt="Isosurface sample (combined linear functions)" src="images/tutorial/iso_07.png"> 
</p>
<p>
  <code> function { abs(x)+abs(y)+abs(z)-2 }</code> 
</p>
<p>
  <img alt="Isosurface sample (combined linear functions)" src="images/tutorial/iso_08.png"> 
</p>
<h5><a name="s02_03_03_03_03">2.3.3.3.3 </a>Non-linear functions</h5>
<p>
  Curved surfaces of many different kinds can be achieved with non-linear functions. 
</p>
<p>
  <code> function { pow(x,2) + y }</code> 
</p>
<p>
  <img alt="Isosurface sample (non-linear function)" src="images/tutorial/iso_09.png"> 
</p>
<p>
  You can see the parabolic shape caused by the square function. 
</p>
<p>
  To get a cylindrical surface we can use the following function. 
</p>
<p>
  <code> function { sqrt(pow(x,2) + pow(z,2)) - 1 }</code> 
</p>
<p>
  In 2 dimensions it describes a circle, since it is constant in the 3rd dimension, we get a cylinder: 
</p>
<p>
  <img alt="Isosurface sample (cylinder function)" src="images/tutorial/iso_10.png"> 
</p>
<p>
  It is of course not difficult to change this into a cone, we just need to add a linear component in y-direction: 
</p>
<p>
  <code> function { sqrt(pow(x,2) + pow(z,2)) + y }</code> 
</p>
<p>
  <img alt="Isosurface sample (cone function)" src="images/tutorial/iso_11.png"> 
</p>
<p>
  And we of course can also make a sphere: 
</p>
<p>
  <code> function { sqrt(pow(x,2) + pow(y,2) + pow(z,2)) - 2 }</code> 
</p>
<p>
  <img alt="Isosurface sample (sphere function)" src="images/tutorial/iso_12.png"> 
</p>
<p>
  The <code>2</code> specifies the radius here. 
</p>
<h5><a name="s02_03_03_03_04">2.3.3.3.4 </a>Specifying functions</h5>
<p>
  As we have seen, the functions used to define the isosurface are written in the <code>function {...}</code> block. 
</p>
<p>
  Allowed are: 
</p>
<p>
  User defined functions (like equations). All float expressions and operators (see section "<a href="#l25">User-Defined 
 Functions</a>") which are legal in POV-Ray, can be used. <br>With the equation of a sphere "<code>x^2+y^2+z^2 
 = Threshold</code>" we get: 
</p>
<pre>
isosurface {
function {pow(x,2) + pow(y,2) + pow(z,2)}
  threshold Threshold
  ...
}
</pre>
<p>
  Functions can be declared first (see section "<a href="#l26">Declaring Functions</a>") and then used in 
 the isosurface. 
</p>
<pre>
#declare Sphere = function {pow(x,2) + pow(y,2) + pow(z,2)}
isosurface {
  function { Sphere(x,y,z) }
  threshold Threshold
  ...
}
</pre>
<p>
  By default a function takes three parameters (x,y,z) and you do not have to explicitly specify the parameter names 
 when declaring it. <br>When <em>using</em> the identifier, the parameters <em>must</em> be specified. <br>On the other 
 hand, if you need more or less than three parameters when declaring a function, you also have to explicitly specify 
 the parameter names. 
</p>
<pre>
#declare Sphere = function(x,y,z,Radius) {
    pow(x,2) + pow(y,2) + pow(z,2) - pow(Radius,2) 
}
isosurface {
  function { Sphere(x,y,z,1) }
  ...
}
</pre>
<h5><a name="s02_03_03_03_05">2.3.3.3.5 </a>Internal functions</h5>
<p>
  There are a lot of internal functions available in POV-Ray. For example a sphere could also be generated with <code>function 
 { f_sphere(x, y, z, 2) }</code> These functions are declared in the <code>functions.inc</code> include file. Most of 
 them are more complicated and it is usually faster to use them instead of a hand coded equivalent. See the <a href="s_138.html#s03_07_07_02">complete 
 list</a> for details. 
</p>
<p>
  The following makes a torus just like POV-Ray's torus object: 
</p>
<pre>
  #include "functions.inc"
  isosurface {
    function { f_torus(x, y, z, 1.6, 0.4) }
    contained_by { box { -2, 2 } }
  }
</pre>
<p>
  <img alt="Isosurface sample (torus function)" src="images/tutorial/iso_13.png"> 
</p>
<p>
  The 4th and 5th parameter are the major and minor radius, just like the corresponding values in the <code>torus{}</code> 
 object. 
</p>
<p>
  The parameters x, y and z are required, because it is a declared function. You can also declare functions yourself 
 like it is explained in the <a href="s_97.html#s03_02_01_06_03">reference section</a>. 
</p>
<h5><a name="s02_03_03_03_06">2.3.3.3.6 </a>Combining isosurface functions</h5>
<p>
  We can also simulate some Constructive Solid Geometry with isosurface functions. If you do not know about CSG we 
 suggest you have a look at <a href="s_59.html#s02_02_03_01">"What is CSG?"</a> or the corresponding part of 
 the <a href="s_110.html#s03_04_06">reference section</a> first. 
</p>
<p>
  We will take two functions: a cylinder and a rotated box: 
</p>
<pre>
  #declare fn_A = function { sqrt(pow(y,2) + pow(z,2)) - 0.8 }
  #declare fn_B = function { abs(x)+abs(y)-1 }
</pre>
<p>
  If we combine them the following way, we get a "merge": 
</p>
<p>
  <code>function { min(fn_A(x, y, z), fn_B(x, y, z)) }</code> 
</p>
<p>
  <img alt="Isosurface sample (merge)" src="images/tutorial/iso_14.png"> 
</p>
<p>
  An "intersection" can be obtained by using <code>max()</code> instead of <code>min()</code>: 
</p>
<p>
  <code>function { max(fn_A(x, y, z), fn_B(x, y, z)) }</code> 
</p>
<p>
  <img alt="Isosurface sample (intersection)" src="images/tutorial/iso_15.png"> 
</p>
<p>
  Of course also "difference" is possible, we just have to add a minus (-) before the second function: 
</p>
<p>
  <code>function { max(fn_A(x, y, z), -fn_B(x, y, z)) }</code> 
</p>
<p>
  <img alt="Isosurface sample (difference)" src="images/tutorial/iso_16.png"> 
</p>
<p>
  Apart from basic CSG you can also obtain smooth transits between the different surfaces (like with the <a href="s_68.html#s02_03_03_01">blob 
 object</a>) 
</p>
<pre>
  #declare Blob_threshold=0.01;
  isosurface {
    function {
      (1+Blob_threshold)
      -pow(Blob_threshold, fn_A(x,y,z))
      -pow(Blob_threshold, fn_B(x,y,z))
    }
    max_gradient 4
    contained_by { box { -2, 2 } }
  }
</pre>
<p>
  <img alt="Isosurface sample (blob)" src="images/tutorial/iso_17.png"> 
</p>
<p>
  The <code>Blob_threshold</code> value influences the smoothness of the transit between the shapes. a lower value 
 leads to sharper edges. 
</p>
<p>
  The function for a negative blob looks like: 
</p>
<pre>
function{fn_A(x,y,z) + pow(Blob_threshold,(Fn_B(x,y,z) + Strength))}
</pre>
<h5><a name="s02_03_03_03_07">2.3.3.3.7 </a>Noise and pigment functions</h5>
<p>
  Some of the <a href="#l27">internal functions</a> have a random or noise-like structure 
</p>
<p>
  Together with the pigment functions they are one of the most powerful tools for designing isosurfaces. We can add 
 real surface displacement to the objects rather than only normal perturbation known from the <a href="#l28">normal{} 
 statement</a>. 
</p>
<p>
  The relevant internal functions are: 
</p>
<ul>
 
 <li>
   <code>f_noise3d(x,y,z)</code><br> uses the <a href="#l29">noise generator</a> specified in <code>global_settings{}</code> 
  and generates structures like the bozo pattern. 
 </li>
 <li>
   <code>f_noise_generator(x, y, z, noise_generator)</code><br> generates noise with a specified noise generator. 
 </li>
 <li>
   <code>f_ridged_mf(x, y, z, H, Lacunarity, Octaves, Offset, Gain, noise_generator)</code><br> generates a ridged 
  multifractal pattern. 
 </li>
 <li>
   <code>f_ridge(x, y, z, Lambda, Octaves, Omega, Offset, Ridge, noise_generator)</code><br> generates another noise 
  with ridges. 
 </li>
 <li>
   <code>f_hetero_mf(x, y, z, H, Lacunarity, Octaves, Offset, T, noise_generator)</code><br> generates heterogenic 
  multifractal noise. 
 </li>
</ul>
<p>
  Using pure noise3d as a function results in the following picture: 
</p>
<p>
  <code> function { f_noise3d(x, y, z)-0.5 }</code> 
</p>
<p>
  <img alt="Isosurface sample (noise3d)" src="images/tutorial/iso_18.png"> 
</p>
<p class="Note">
  <strong>Note:</strong> the <code>-0.5</code> is only there to make it match to the used threshold 
 value of 0, the <code>f_noise3d</code> function returns values between 0 and 1. 
</p>
<p>
  With this and the other functions you can generate objects similar to heightfields, having the advantage that a 
 high resolution can be achieved without high memory requirements. 
</p>
<p>
  <code> function { x + f_noise3d(0, y, z) }</code> 
</p>
<p>
  <img alt="Isosurface sample (noise3d 'heightfield')" src="images/tutorial/iso_19.png"> 
</p>
<p>
  The noise function can of course also be subtracted which results in an 'inverted' version: 
</p>
<p>
  <code> function { x - f_noise3d(0, y, z) }</code> 
</p>
<p>
  <img alt="Isosurface sample (noise3d 'heightfield' inverted)" src="images/tutorial/iso_20.png"> 
</p>
<p>
  In the last two pictures we added the noise function to a plane function. The x-parameter was set to 0 so the noise 
 function is constant in x-direction. This way we achieve the typical heightfield structure. 
</p>
<p>
  Of course we can also add noise to any other function. If the noise function is very strong this can result in 
 several separated surfaces. 
</p>
<p>
  <code> function { f_sphere(x, y, z, 1.2) - f_noise3d(x, y, z) }</code> 
</p>
<p>
  <img alt="Isosurface sample (noise3d on sphere)" src="images/tutorial/iso_21.png"> 
</p>
<p>
  This is a noise function applied to a sphere surface, we can influence the intensity of the noise by multiplying it 
 with a factor and change the scale by multiplying the coordinate parameters: 
</p>
<p>
  <code> function { f_sphere(x, y, z, 1.6) - f_noise3d(x * 5, y * 5, z * 5) * 0.5 }</code> 
</p>
<p>
  <img alt="Isosurface sample (noise3d on sphere scaled)" src="images/tutorial/iso_22.png"> 
</p>
<p>
  As alternative to noise functions we can also use any pigment in a function: 
</p>
<pre>
  #declare fn_Pigm=function {
    pigment {
      agate
      color_map {
        [0 color rgb 0]
        [1 color rgb 1]
      }
    }
  }
</pre>
<p>
  This function is a vector function returning a (color) vector.For use in isosurface functions they <em>must</em> be 
 declared first. When using the identifier, you have to specify which component of the color vector should be used. To 
 do this, the dot notation is used: <code>Function(x,y,z).red</code>. 
</p>
<p>
  A color vector has five components. Supported dot types to access these components are: 
</p>
<ul>
 
 <li>
   F( ).<code>x</code> | F( ).<code>u</code> | F( ).<code>red</code> 
  <ul>
   
   <li>
     to get the red value of the color vector 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>y</code> | F( ).<code>v</code> | F( ).<code>green</code> 
  <ul>
   
   <li>
     to get the green value of the color vector 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>z</code> | F( ).<code>blue</code> 
  <ul>
   
   <li>
     to get the blue value of the color vector 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>filter</code> | F( ).<code>t</code> 
  <ul>
   
   <li>
     to get the filter value of the color vector 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>transmit</code> 
  <ul>
   
   <li>
     to get the transmit value of the color vector 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>gray</code> 
  <ul>
   
   <li>
     to get the gray value of the color vector 
   </li>
   <li>
     gray value = Red*29.7% + Green*58.9% + Blue*11.4% 
   </li>
  </ul>
   
 </li>
 <li>
   F( ).<code>hf</code> 
  <ul>
   
   <li>
     to get the height_field value of the color vector 
   </li>
   <li>
     hf value = (Red + Green/255)*0.996093 
   </li>
   <li>
     the .hf operator is experimental and will generate a warning. 
   </li>
  </ul>
   
 </li>
</ul>
<p>
  <code> function { f_sphere(x, y, z, 1.6)-fn_Pigm(x/2, y/2, z/2).gray*0.5 }</code> 
</p>
<p>
  <img alt="Isosurface sample (pigment function)" src="images/tutorial/iso_23.png"> 
</p>
<p>
  There are quite a lot of things possible with pigment functions, but you probably have recognized that this renders 
 quite slow. 
</p>
<h5><a name="s02_03_03_03_08">2.3.3.3.8 </a>Conditional directives and loops</h5>
<p>
  Conditional directives are allowed in functions: 
</p>
<pre>
#declare Rough = yes;
#include "functions.inc"
isosurface {
  function { y #if(Rough=1)-f_noise3d(x/0.5,y/0.3,z/0.4)*0.8 #end }
  ...
}
</pre>
<p>
  Loops can also be used in functions: 
</p>
<pre>
#include "functions.inc"
#declare Thr = 1/1000;
#declare Ang = radians(45);
#declare Offset = 1.5;
#declare Scale = 1.2;
#declare TrSph = function { f_sphere(x-Offset,y,z,0.7*Scale) }
function {
  (1-Thr)
  #declare A = 0;
  #while (A<8)
  -pow(Thr, TrSph(x*cos(A*Ang) + y*sin(A*Ang),
                  y*cos(A*Ang) -x*sin(A*Ang), z) )
    #declare A=A+1;
  #end
}
</pre>
<p class="Note">
  <strong>Note:</strong> The loops and conditionals are evaluated at parse time, not at render time. 
</p>
<h5><a name="s02_03_03_03_09">2.3.3.3.9 </a>Transformations on functions</h5>
<p>
  Transforming an isosurface object is done like transforming any POV-Ray object. Simply use the object modifiers 
 (scale, translate, rotate, ...). 
</p>
<p>
  However, when you want to transform functions within the contained_by object, you have to substitute parameters in 
 the functions. 
</p>
<p>
  The results <em>seem</em> inverted to what you would normally expect. Here is an explanation: <br>Take a 
 Sphere(x,y,z). We know it sits at the origin because x=0. When we want it at x=2 (translating 2 units to the right) we 
 need to write the second equation in the same form: x-2=0 <br>Now that both equations equal 0, we can replace 
 parameter x with x-2 <br>So our Sphere(x-2, y,z) moves two units to the <em>right</em>. 
</p>
<p>
  Let's scale our Sphere 0.5 in the y direction. Default size is y=1 (one unit). We want y=0.5. <br>To get this 
 equation in the same form as the first one, we have to multiply both sides by two. y*2 = 0.5*2, which gives y*2=1 <br>Now 
 we can replace the y parameter in our sphere: Sphere(x, y*2, z). This squishes the y-size of the sphere by half. <br>Well, 
 this is the general idea of substitutions. 
</p>
<p>
  Here is an overview of some useful substitutions: <br>Using a declared object P(x,y,z) 
</p>
<p>
  <strong>Scale</strong><br> scale x : replace "<code>x</code>" with "<code>x/scale</code>" (idem 
 other parameters) 
</p>
<pre>scale x*2   gives    P(x/2,y,z)</pre>
<p>
  <strong>Scale Infinitely</strong><br> scale x infinitely : replace "<code>x</code>" with "<code>0</code>" 
 (idem other parameters) 
</p>
<pre>scale y infinitely   gives    P(x,0,z)</pre>
<p>
  <strong>Translate</strong><br> translate x : replace "<code>x</code>" with "<code>x - translation</code>" 
 (idem other parameters) 
</p>
<pre>translate z*3   gives    P(x,y,z-3)</pre>
<p>
  <strong>Shear</strong><br> shear in XY-plane : replace "<code>x</code>" with "<code>x + 
 y*tan(radians(Angle))</code>" (idem other parameters) 
</p>
<pre>shear 45 degrees left   gives    P(x+y*tan(radians(45)), y, z)</pre>
<p>
  <strong>Rotate</strong> 
</p>
<p class="Note">
  <strong>Note:</strong> these rotation substitutions work like normal POV-rotations: they already 
 compensate for the inverse working 
</p>
<p>
  rotate around X <br>: replace "<code>y</code>" with "<code>z*sin(radians(Angle)) + 
 y*cos(radians(Angle))</code>" <br>: replace "<code>z</code>" with "<code>z*cos(radians(Angle)) - 
 y*sin(radians(Angle))</code>" 
</p>
<p>
  rotate around Y <br>: replace "<code>x</code>" with "<code>x*cos(radians(Angle)) - 
 z*sin(radians(Angle))</code>" <br>: replace "<code>z</code>" with "<code>x*sin(radians(Angle)) + 
 z*cos(radians(Angle))</code>" 
</p>
<p>
  rotate around Z <br>: replace "<code>x</code>" with "<code>x*cos(radians(Angle)) + 
 y*sin(radians(Angle))</code>" <br>: replace "<code>y</code>" with "<code>-x*sin(radians(Angle)) + 
 y*cos(radians(Angle)) </code>" 
</p>
<pre>
  rotate z*75   gives:
  P(x*cos(radians(75)) + y*sin(radians(75)),
    -x*sin(radians(75)) + y*cos(radians(75)), z)
 </pre>
<p>
  <strong>Flip</strong><br> flip X - Y : replace "<code>x</code>" with "<code>y</code>" and 
 replace "<code>y</code>" with "<code>-x</code>" 
</p>
<p>
  flip Y - Z : replace "<code>y</code>" with "<code>z</code>" and replace "<code>z</code>" 
 with "<code>-y</code>" 
</p>
<p>
  flip X - Z : replace "<code>x</code>" with "<code>-z</code>" and replace "<code>z</code>" 
 with "<code>x</code>" 
</p>
<pre>flip x and y   gives    P(y, -x, z)</pre>
<p>
  <strong>Twist</strong><br> twist N turns/unit around <code>X</code> <br>: replace "<code>y</code>" with 
 "<code>z*sin(x*2*pi*N) + y*cos(x*2*pi*N)</code>" <br>: replace "<code>z</code>" with "<code>z*cos(x*2*pi*N) 
 - y*sin(x*2*pi*N)</code>" 
</p>
<h5><a name="s02_03_03_03_10">2.3.3.3.10 </a>Improving Isosurface Speed</h5>
<p>
  To optimize the approximation of the isosurface and to get maximum rendering speed it is important to adapt certain 
 values; 
</p>
<p>
  <code>accuracy</code> 
</p>
<p>
  The accuracy value influences how accurate the surface geometry is calculated. Lower values lead to a more precise, 
 but slower result. The default value of <code>0.001</code> is fairly low. We used this value in all the previous 
 samples, but often you can raise this quite a lot and thereby make things faster. 
</p>
<p>
  <code>max_gradient</code> 
</p>
<p>
  For finding the actual surface it is important for POV-Ray to know the maximum gradient of the function, meaning 
 how fast the function value changes. We can specify a value with the <code>max_gradient</code> keyword. Lower 
 max_gradient values lead to faster rendering, but if the specified value is below the actual maximum gradient of the 
 function, there can be holes or other artefacts in the surface. 
</p>
<p>
  For the same reason functions with infinite gradient should not be used. This applies for pigment functions with 
 brick or checker pattern for example. You should also be careful when using <code>select()</code> in isosurface 
 functions because of this. 
</p>
<p>
  If the real maximum gradient differs too much from the specified value POV-Ray prints a warning together with the 
 found maximum gradient. It is usually sufficient to use this number for the <code>max_gradient</code> parameter to get 
 fast and correct results. 
</p>
<p>
  POV-Ray can also dynamically change the <code>max_gradient</code> when you specify <code>evaluate</code> with 3 
 parameters the isosurface definition. Concerning the details on this and other things see the <a href="s_108.html#s03_04_04">evaluate</a> 
 in the reference section. 
</p>
<p>
  <code>contained_by</code> 
</p>
<p>
  Make sure your <code>contained_by</code> 'object' fits as tightly as possible. An oversized container can 
 sky-rocket the render time. <br>When the container has a lot of empty space around the actual isosurface, POV-Ray has 
 to do a lot of superfluous sampling: especially with complex functions this can become very time consuming. On top of 
 this, the <code>max_gradient</code> needed to get a proper surface will also increase rapidly (almost proportional to 
 the oversize!). <br>You could use a transparent copy of the container (using exactly the same transformations) to 
 check how it fits. Getting the <code>min_extent</code> and <code>max_extent</code> of the <code>isosurface</code> is 
 not useful because it only gives the extent of the container and not of the actual isosurface. 
</p>
<h4><a name="s02_03_03_04">2.3.3.4 </a>Poly Object</h4>
<a name="s02_03_03_04_i1">
<p>
  The polynomial object (and its "shortcut" versions: <code><a href="s_107.html#s03_04_03_02">cubic</a></code>, 
 <code><a href="s_107.html#s03_04_03_02">quartic</a></code> and <code><a href="s_107.html#s03_04_03_03">quadric</a></code>) 
 of POV-Ray is one of the most complex and mathematical primitives of the program. One could think that it is seldom 
 used and more or less obsolete, but we have to remember that for example the torus primitive is just a shortcut for 
 the equivalent <code>quartic</code>, which is just a shortcut for the equivalent <code>poly</code> object. Polys are, 
 however, seldom used in scenes due to the fact that they are so difficult to define and it is far from trivial to get 
 the desired shape with just a polynomial equation. It is mostly used by the most mathematically oriented POV-Ray 
 users. 
</p>
<p>
  This tutorial explains the process of making a polynomial object in POV-Ray. 
</p>
<p class="Note">
  <strong>Note:</strong>Since version 3.5, POV-Ray includes the new <code>isosurface</code> object which 
 makes the polynomial object more or less obsolete. The isosurface is more versatile (you can specify any mathematical 
 function, not just polynomials), easier to use. You can write the function as is, without needing to put values in a 
 gigantic vector. Isosurfaces often render considerably faster than equivalent polys. 
</p>
<p>
  However, the most mathematically oriented still like polys because isosurfaces are calculated just by approximating 
 the right value, while the poly is calculated in a mathematically exact way. Usually isosurfaces are more than good 
 enough for most applications, though. 
</p>
<p class="Note">
  <strong>Note:</strong> at maximum a 15th degree polynomial can be represented with the poly object. If 
 a higher degree polynomial or other non-polynomial function has to be represented, then it is necessary to use the 
 isosurface object. 
</p>
<h5><a name="s02_03_03_04_01">2.3.3.4.1 </a>Creating the polynomial function</h5>
<p>
  The first step is to create the polynomial function to be represented. You will need some (high-school level) 
 mathematical knowledge for this. 
</p>
<p>
  <strong>1)</strong> Let's start with an easy example: A sphere. 
</p>
<p>
  The sphere function is: 
</p>
<p>
  <br><center><img alt="sphere function" src="images/tutorial/polyfunc1.png"></center> 
</p>
<p>
  Now we have to convert this to polynomial form: 
</p>
<p>
  <br><center><img alt="sphere polynomial" src="images/tutorial/polyfunc2.png"></center> 
</p>
<p>
  We will need a polynomial of the 2nd degree to represent this. 
</p>
<p>
  <strong>2)</strong> A more elaborated example: 
</p>
<p>
  Let's take the function: 
</p>
<p>
  <br><center><img alt="function" src="images/tutorial/polyfunc3.png"></center> 
</p>
<p>
  Converting this to polynomial form we get: 
</p>
<p>
  <br><center><img alt="polynomial" src="images/tutorial/polyfunc4.png"></center> 
</p>
<p>
  Although the highest power is 4 we will need a 5th order polynomial to represent this function (because we cannot 
 represent y<sup>4</sup>z with a 4th order polynomial). 
</p>
<p>
  <strong>3)</strong> And since we talked about the torus, let's also take it as an example. 
</p>
<p>
  A torus can be represented with the function: 
</p>
<p>
  <br><center><img alt="torus function" src="images/tutorial/polyfunc5.png"></center> 
</p>
<p>
  where r<sub>1</sub> is the major radius and r<sub>2</sub> is the minor radius. 
</p>
<p>
  Now, this is tougher to convert to polynomial form, but finally we get: 
</p>
<p>
  <br><center><img alt="torus polynomial" src="images/tutorial/polyfunc6.png"></center> 
</p>
<p>
  A 4th order polynomial is enough to represent this. 
</p>
<p class="Note">
  <strong>Note:</strong> not every function can be represented in polynomial form. Only functions that 
 use addition (and substraction), multiplication (and division) and scalar powers (including rational powers, eg. the 
 square root) can be represented. Also, the poly primitive supports only polynomials of the 7th degree at max. 
</p>
<p>
  Converting a function to polynomial form may be a very laborious task for certain functions. Some mathematical 
 programs are very helpful in this matter. 
</p>
<h5><a name="s02_03_03_04_02">2.3.3.4.2 </a>Writing the polynomial vector</h5>
<p>
  Now that we have the function in polynomial form, we have to write it in POV-Ray syntax. The syntax is specified in 
 the in the chapters "<a href="s_107.html#s03_04_03_02">Poly, Cubic and Quartic</a>" and "<a href="s_107.html#s03_04_03_03">Quadric</a>" 
 of the SDL section. There is also a table in this chapter which we will be using to make the polynomial vector. It is 
 easier to have this table printed on paper. 
</p>
<p class="Note">
  <strong>Note:</strong> It is also possible to make a little program with your favorite programming 
 language which will print the poly vector from the polynomial function, but making a program like this is up to you. 
</p>
<p>
  <strong>1)</strong> Let's start with the easy one, ie. the sphere. 
</p>
<p>
  Since the sphere can be represented with a polynomial of 2nd degree, we look at the row titled "2nd" in 
 the table. We see that it has 10 items, ie. we need a vector of size 10. Each item of the vector will be the factor of 
 the term listed in the table. 
</p>
<p>
  The polynomial was: 
</p>
<p>
  <br><center><img alt="sphere polynomial" src="images/tutorial/polyfunc2.png"></center> 
</p>
<p>
  Writing the poly in this way we get: 
</p>
<pre>
#declare Radius=1;
poly
{ 2,
  <1,0,0,0,1,
   0,0,1,0,-Radius*Radius>
}
</pre>
<p>
  Put each group of factors (separated with lines in the table) in their own lines. 
</p>
<p>
  In the table we see that the first item is the factor for x<sup>2</sup>, which is 1 in the function. The next item 
 is xy. Since it is not in the function, its factor is 0. Likewise the next item, which is xz. And so on. The last item 
 is the scalar term, which is in this case -r<sup>2</sup>. 
</p>
<p>
  If we make a proper scene and render it, we get: 
</p>
<pre>
camera { location y*4-z*5 look_at 0 angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }
#declare Radius=1;
poly
{ 2,
  <1,0,0,0,1,
   0,0,1,0,-Radius*Radius>
  pigment { rgb <1,.7,.3> } finish { specular .5 }
}
</pre>
<p>
  <img alt="Sphere polynomial" src="images/tutorial/polypic1.png"> 
</p>
<p class="Note">
  <strong>Note:</strong> there is a shortcut for 2nd degree polynomials: The <code><a href="s_107.html#s03_04_03_03">quadric</a></code> 
 primitive. Using a shortcut version, whenever possible, can lead to faster renderings. We can write the sphere code 
 described above in the following way: 
</p>
<pre>
quadric
{ <1,1,1>, <0,0,0>, <0,0,0>, -Radius*Radius
  pigment { rgb <1,.7,.3> } finish { specular .5 }
}
</pre>
<p>
  <strong>2)</strong> Now lets try the second one. We do it similarly, but this time we need to look at the row 
 titled "5th" in the table. 
</p>
<p>
  The polynomial was: 
</p>
<p>
  <br><center><img alt="5th order polynomial" src="images/tutorial/polyfunc4.png"></center> 
</p>
<p>
  Writing the poly primitive we get: 
</p>
<pre>
poly
{ 5,
  <0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,1,0,
   0,0,0,0,0,
   -2,0,0,0,0,
   0,0,0,0,0,
   0,1,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,0>
}
</pre>
<p>
  With the proper scene we get: 
</p>
<pre>
camera { location <8,20,-10>*.7 look_at x*.01 angle 35 }
light_source { <100,200,20> 1 }
background { rgb <0,.25,.5> }
poly
{ 5,
  <0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,1,0,
   0,0,0,0,0,
   -2,0,0,0,0,
   0,0,0,0,0,
   0,1,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,0>
  clipped_by { box { <-4,-4,-1><4,4,1> } }
  bounded_by { clipped_by }
  pigment { rgb <1,.7,.3> } finish { specular .5 }
  rotate <0,90,-90>
}
</pre>
<p>
  <img alt="5th order polynomial example" src="images/tutorial/polypic2.png"> 
</p>
<p>
  <strong>3)</strong> And finally the torus: 
</p>
<p>
  The polynomial was: 
</p>
<p>
  <br><center><img alt="torus polynomial" src="images/tutorial/polyfunc6.png"></center> 
</p>
<p>
  And we get the proper 4th degree poly primitive: 
</p>
<pre>
camera { location y*4-z*5 look_at 0 angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }
#declare r1=1;
#declare r2=.5;
poly
{ 4,
  <1,0,0,0,2,
   0,0,2,0,-2*(r1*r1+r2*r2),
   0,0,0,0,0,
   0,0,0,0,0,
   1,0,0,2,0,
   2*(r1*r1-r2*r2),0,0,0,0,
   1,0,-2*(r1*r1+r2*r2),0,pow(r1,4)+pow(r2,4)-2*r1*r1*r2*r2>
  pigment { rgb <1,.7,.3> } finish { specular .5 }
}
</pre>
<p>
  When rendered we get: 
</p>
<p>
  <img alt="Torus polynomial" border="0" src="images/tutorial/polypic3.png"> 
</p>
<p>
  There is a shortcut for 4th order polynomials: The <code><a href="s_107.html#s03_04_03_02">quartic</a></code> 
 primitive. We can write the torus like this: 
</p>
<pre>
quartic
{ <1,0,0,0,2,
   0,0,2,0,-2*(r1*r1+r2*r2),
   0,0,0,0,0,
   0,0,0,0,0,
   1,0,0,2,0,
   2*(r1*r1-r2*r2),0,0,0,0,
   1,0,-2*(r1*r1+r2*r2),0,pow(r1,4)+pow(r2,4)-2*r1*r1*r2*r2>
  pigment { rgb <1,.7,.3> } finish { specular .5 }
}
</pre>
<h4><a name="s02_03_03_05">2.3.3.5 </a>Superquadric Ellipsoid Object</h4>
<a name="s02_03_03_05_i1">
<p>
  Sometimes we want to make an object that does not have perfectly sharp edges like a box does. Then, the 
 superquadric ellipsoid shape made by the <code>superellipsoid</code> is a useful object. It is described by the simple 
 syntax: 
</p>
<pre>
  superellipsoid { <Value_E, Value_N >}
</pre>
<p>
  Where <em>Value_E</em> and <em>Value_N</em> are float values greater than zero and less than or equal to one. Let's 
 make a superellipsoid and experiment with the values of <em>Value_E</em> and <em>Value_N</em> to see what kind of 
 shapes we can make. We create a file called <code> supellps.pov</code> and edit it as follows: 
</p>
<pre>
  #include "colors.inc"
  camera {
    location <10, 5, -20>
    look_at 0
    angle 15
  }
  background { color rgb <.5, .5, .5> }
  light_source { <10, 50, -100> White }
</pre>
<p>
  The addition of a gray background makes it a little easier to see our object. We now type: 
</p>
<pre>
  superellipsoid { <.25, .25>
    pigment { Red }
  }
</pre>
<p>
  We save the file and trace it at 200x150 <code>-A</code> to see the shape. It will look like a box, but the edges 
 will be rounded off. Now let's experiment with different values of <em>Value_E</em> and <em> Value_N</em>. For the 
 next trace, try <1, 0.2>. The shape now looks like a cylinder, but the top edges are rounded. Now try <0.1, 
 1>. This shape is an odd one! We do not know exactly what to call it, but it is interesting. Finally, let's try 
 <1, 1>. Well, this is more familiar... a sphere! 
</p>
<p>
  There are a couple of facts about superellipsoids we should know. First, we should not use a value of 0 for either <em> 
 Value_E</em> nor <em> Value_N</em>. This will cause POV-Ray to incorrectly make a black box instead of our desired 
 shape. Second, very small values of <em>Value_E</em> and <em> Value_N</em> may yield strange results so they should be 
 avoided. Finally, the Sturmian root solver will not work with superellipsoids. 
</p>
<p>
  Superellipsoids are finite objects so they respond to auto-bounding and can be used in CSG. 
</p>
<p>
  Now let's use the superellipsoid to make something that would be useful in a scene. We will make a tiled floor and 
 place a couple of superellipsoid objects hovering over it. We can start with the file we have already made. 
</p>
<p>
  We rename it to <code> tiles.pov</code> and edit it so that it reads as follows: 
</p>
<pre>
  #include "colors.inc"
  #include "textures.inc"
  camera {
    location <10, 5, -20>
    look_at 0
    angle 15
  }
  background { color rgb <.5, .5, .5> }
  light_source{ <10, 50, -100> White }
</pre>
<p class="Note">
  <strong>Note:</strong> we have added <code>#include "textures.inc"</code> so we can use 
 pre-defined textures. Now we want to define the superellipsoid which will be our tile. 
</p>
<pre>
  #declare Tile = superellipsoid { <0.5, 0.1>
    scale <1, .05, 1>
  }
</pre>
<p>
  Superellipsoids are roughly 2*2*2 units unless we scale them otherwise. If we wish to lay a bunch of our tiles side 
 by side, they will have to be offset from each other so they do not overlap. We should select an offset value that is 
 slightly more than 2 so that we have some space between the tiles to fill with grout. So we now add this: 
</p>
<pre>
  #declare Offset = 2.1;
</pre>
<p>
  We now want to lay down a row of tiles. Each tile will be offset from the original by an ever-increasing amount in 
 both the +z and -z directions. We refer to our offset and multiply by the tile's rank to determine the position of 
 each tile in the row. We also union these tiles into a single object called <code>Row</code> like this: 
</p>
<pre>
  #declare Row = union {
    object { Tile }
    object { Tile translate z*Offset }
    object { Tile translate z*Offset*2 }
    object { Tile translate z*Offset*3 }
    object { Tile translate z*Offset*4 }
    object { Tile translate z*Offset*5 }
    object { Tile translate z*Offset*6 }
    object { Tile translate z*Offset*7 }
    object { Tile translate z*Offset*8 }
    object { Tile translate z*Offset*9 }
    object { Tile translate z*Offset*10 }
    object { Tile translate -z*Offset }
    object { Tile translate -z*Offset*2 }
    object { Tile translate -z*Offset*3 }
    object { Tile translate -z*Offset*4 }
    object { Tile translate -z*Offset*5 }
    object { Tile translate -z*Offset*6 }
  }
</pre>
<p>
  This gives us a single row of 17 tiles, more than enough to fill the screen. Now we must make copies of the <code>Row</code> 
 and translate them, again by the offset value, in both the +x and -x directions in ever increasing amounts in the same 
 manner. 
</p>
<pre>
  object { Row }
  object { Row translate x*Offset }
  object { Row translate x*Offset*2 }
  object { Row translate x*Offset*3 }
  object { Row translate x*Offset*4 }
  object { Row translate x*Offset*5 }
  object { Row translate x*Offset*6 }
  object { Row translate x*Offset*7 }
  object { Row translate -x*Offset }
  object { Row translate -x*Offset*2 }
  object { Row translate -x*Offset*3 }
  object { Row translate -x*Offset*4 }
  object { Row translate -x*Offset*5 }
  object { Row translate -x*Offset*6 }
  object { Row translate -x*Offset*7 }
</pre>
<p>
  Finally, our tiles are complete. But we need a texture for them. To do this we union all of the <code>Rows</code> 
 together and apply a <code>White Marble</code> pigment and a somewhat shiny reflective surface to it: 
</p>
<pre>
  union{
    object { Row }
    object { Row translate x*Offset }
    object { Row translate x*Offset*2 }
    object { Row translate x*Offset*3 }
    object { Row translate x*Offset*4 }
    object { Row translate x*Offset*5 }
    object { Row translate x*Offset*6 }
    object { Row translate x*Offset*7 }
    object { Row translate -x*Offset }
    object { Row translate -x*Offset*2 }
    object { Row translate -x*Offset*3 }
    object { Row translate -x*Offset*4 }
    object { Row translate -x*Offset*5 }
    object { Row translate -x*Offset*6 }
    object { Row translate -x*Offset*7 }
    pigment { White_Marble }
    finish { phong 1 phong_size 50 reflection .35 }
  }
</pre>
<p>
  We now need to add the grout. This can simply be a white plane. We have stepped up the ambient here a little so it 
 looks whiter. 
</p>
<pre>
  plane {
    y, 0  //this is the grout
    pigment { color White }
    finish { ambient .4 diffuse .7 }
  }
</pre>
<p>
  To complete our scene, let's add five different superellipsoids, each a different color, so that they hover over 
 our tiles and are reflected in them. 
</p>
<pre>
  superellipsoid {
    <0.1, 1>
    pigment { Red }
    translate <5, 3, 0>
    scale .45
  }
  superellipsoid {
    <1, 0.25>
    pigment { Blue }
    translate <-5, 3, 0>
    scale .45
  }
  superellipsoid {
    <0.2, 0.6>
    pigment { Green }
    translate <0, 3, 5>
    scale .45
  }
  superellipsoid {
    <0.25, 0.25>
    pigment { Yellow }
    translate <0, 3, -5>
    scale .45
  }
  superellipsoid {
    <1, 1>
    pigment { Pink }
    translate y*3
    scale .45
  }
</pre>
<p>
  <img alt="Some superellipsoids hovering above a tiled floor." src="images/tutorial/superell.png"> 
</p>
<p>
  We trace the scene at 320x200 <code>-A</code> to see the result. If we are happy with that, we do a final trace at 
 640x480 <code>+A0.2</code>. 
</p>
<p>
 <a name="l25">
<small><strong>More about "User-Defined Functions"</strong></small>
</a>
 <ul>
  
  <li><small>
   <a href="s_155.html#s03_08_03_04">3.8.3.4 User defined Functions</a> in 3.8.3 Language Basics
  </small>
  <li><small>
   <a href="s_97.html#s03_02_01_06">3.2.1.6 User-Defined Functions</a> in 3.2.1 Language Basics
  </small>
 </ul>
</p>
<p>
 <a name="l26">
<small><strong>More about "Declaring Functions"</strong></small>
</a>
 <ul>
  
  <li><small>
   <a href="s_155.html#s03_08_03_04">3.8.3.4 User defined Functions</a> in 3.8.3 Language Basics
  </small>
  <li><small>
   <a href="s_97.html#s03_02_01_06">3.2.1.6 User-Defined Functions</a> in 3.2.1 Language Basics
  </small>
 </ul>
</p>
<p>
 <a name="l27">
<small><strong>More about "internal functions"</strong></small>
</a>
 <ul>
  
  <li><small>
   <a href="s_138.html#s03_07_07_02">3.7.7.2 Internal Functions</a> in 3.7.7 functions.inc
  </small>
  <li><small>
   <a href="s_68.html#s02_03_03_03_05">2.3.3.3.5 Internal functions</a> in 2.3.3.3 Isosurface Object
  </small>
 </ul>
</p>
<p>
 <a name="l28">
<small><strong>More about "normal{} statement"</strong></small>
</a>
 <ul>
  
  <li><small>
   <a href="s_116.html#s03_05_02">3.5.2 Normal</a> in 3.5 Textures
  </small>
  <li><small>
   <a href="s_162.html#s03_08_10_05">3.8.10.5 Normal</a> in 3.8.10 Texture
  </small>
  <li><small>
   <a href="s_69.html#s02_03_04_02">2.3.4.2 Normals</a> in 2.3.4 Advanced Texture Options
  </small>
 </ul>
</p>
<p>
 <a name="l29">
<small><strong>More about "noise generator"</strong></small>
</a>
 <ul>
  
  <li><small>
   <a href="s_102.html#s03_03_03_10">3.3.3.10 Noise_generator</a> in 3.3.3 Global Settings
  </small>
  <li><small>
   <a href="s_126.html#s03_05_12">3.5.12 Pattern Modifiers</a> in 3.5 Textures
  </small>
  <li><small>
   <a href="s_126.html#s03_05_12_04">3.5.12.4 Noise Generators</a> in 3.5.12 Pattern Modifiers
  </small>
 </ul>
</p>
 <br> 
<table class="NavBar" width="100%">
  
 <tr>
   
  <td align="left" nowrap="" valign="middle" width="32">
    <a href="s_67.html"><img alt="previous" border="0" src="prev.png"></a> 
   
  </td>
   
  <td align="left" valign="middle" width="30%">
    <a href="s_67.html">2.3.2 Polygon Based Shapes</a> 
  </td>
   
  <td align="center" valign="middle">
    <strong>2.3.3 Other Shapes</strong> 
  </td>
   
  <td align="right" valign="middle" width="30%">
    <a href="s_69.html">2.3.4 Advanced Texture Options</a> 
  </td>
   
  <td align="right" nowrap="" valign="middle" width="32">
    <a href="s_69.html"><img alt="next" border="0" src="next.png"></a> 
   
  </td>
   
 </tr>
  
</table>
 </body> </html>
 |