1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
|
/****************************************************************************
* photons.cpp
*
* Author: Nathan Kopp
*
* This module implements Photon Mapping.
*
* from Persistence of Vision(tm) Ray Tracer version 3.6.
* Copyright 1991-2003 Persistence of Vision Team
* Copyright 2003-2004 Persistence of Vision Raytracer Pty. Ltd.
*---------------------------------------------------------------------------
* NOTICE: This source code file is provided so that users may experiment
* with enhancements to POV-Ray and to port the software to platforms other
* than those supported by the POV-Ray developers. There are strict rules
* regarding how you are permitted to use this file. These rules are contained
* in the distribution and derivative versions licenses which should have been
* provided with this file.
*
* These licences may be found online, linked from the end-user license
* agreement that is located at http://www.povray.org/povlegal.html
*---------------------------------------------------------------------------
* This program is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
*---------------------------------------------------------------------------
* $File: //depot/povray/3.6-release/source/photons.cpp $
* $Revision: #3 $
* $Change: 3032 $
* $DateTime: 2004/08/02 18:43:41 $
* $Author: chrisc $
* $Log$
*****************************************************************************/
#include "frame.h"
#include "userio.h"
#include "povray.h"
#include "vector.h"
#include "texture.h" /* for FRAND() */
#include "matrices.h"
#include "objects.h"
#include "csg.h"
#include "octree.h"
#include "radiosit.h"
#include "photons.h"
#include "povms.h"
#include "povmsend.h"
#include "ray.h"
#include "pov_util.h"
#include <algorithm>
BEGIN_POV_NAMESPACE
/* ------------------------------------------------------ */
/* global variables */
/* ------------------------------------------------------ */
int backtraceFlag; // GLOBAL VARIABLE
PHOTON_OPTIONS photonOptions; // GLOBAL VARIABLE
int InitBacktraceWasCalled; // GLOBAL VARIABLE
// statistics helpers
int gPhotonStat_i = 0; // GLOBAL VARIABLE
int gPhotonStat_x_samples = 0; // GLOBAL VARIABLE
int gPhotonStat_y_samples = 0; // GLOBAL VARIABLE
int gPhotonStat_end = 0; // GLOBAL VARIABLE
/* ------------------------------------------------------ */
/* external variables */
/* ------------------------------------------------------ */
extern int Trace_Level; // GLOBAL VARIABLE
extern int disp_elem; // GLOBAL VARIABLE
extern int disp_nelems; // GLOBAL VARIABLE
/* ------------------------------------------------------ */
/* static functions */
/* ------------------------------------------------------ */
static PHOTON* AllocatePhoton(PHOTON_MAP *map);
static void FreePhotonMemory();
static void InitPhotonMemory();
static void sortAndSubdivide(int start, int end, int sorted);
static void buildTree(PHOTON_MAP *map);
static void ShootPhotonsAtObject(OBJECT *Object, LIGHT_SOURCE *Light, int count);
static void SearchThroughObjects(OBJECT *Object, LIGHT_SOURCE *Light, bool count);
static int savePhotonMap(void);
static int loadPhotonMap(void);
static void swapPhotons(int a, int b);
static void PQInsert(PHOTON *photon, DBL d);
static void PQDelMax(void);
static void gatherPhotonsRec(int start, int end);
static void setGatherOptions(PHOTON_MAP *map, int mediaMap);
/* ------------------------------------------------------ */
/* static variables */
/* ------------------------------------------------------ */
/*
These static variables are used to conserve stack space during
extensive recursion when gathering photons. All of these static
variables end in "_s".
*/
static PHOTON **map_s; /* photon map */ // GLOBAL VARIABLE
static DBL size_sq_s; /* search radius squared */ // GLOBAL VARIABLE
static DBL Size_s; /* search radius (static) */ // GLOBAL VARIABLE
static DBL sqrt_dmax_s, dmax_s; /* dynamic search radius... current maximum */ // GLOBAL VARIABLE
static int TargetNum_s; /* how many to gather */ // GLOBAL VARIABLE
static DBL *pt_s; /* point around which we are gathering */ // GLOBAL VARIABLE
static int numfound_s; /* number of photons found */ // GLOBAL VARIABLE
static DBL *norm_s; /* surface normal */ // GLOBAL VARIABLE
static DBL flattenFactor; /* amount to flatten the spher to make it */ // GLOBAL VARIABLE
/* an ellipsoid when gathering photons */
/* zero = no flatten, one = regular */
static DBL photonCountEstimate; // GLOBAL VARIABLE
/*****************************************************************************
FUNCTION
CheckPassThru()
Checks to make sure that pass-through, high-density, and refraction
are not simultaneously selected. If all three are turned on, we need
to choose an appropriate one to turn off.
Preconditions:
'o' is an initialized object
'flag' is PH_PASSTHRU_FLAG, PH_TARGET_FLAG, or PH_RFR_ON_FLAG
(this is which flag was set most recently)
Postconditions:
One of these flags in 'o' is turned off, since they cannot all be turned on.
******************************************************************************/
void CheckPassThru(OBJECT *o, int flag)
{
if( Test_Flag(o, PH_PASSTHRU_FLAG) &&
Test_Flag(o, PH_TARGET_FLAG) &&
!Test_Flag(o, PH_RFR_OFF_FLAG) )
{
switch (flag)
{
case PH_PASSTHRU_FLAG:
Warning(0, "Cannot use pass_through with refraction & target.\nTurning off refraction.");
Set_Flag(o, PH_RFR_OFF_FLAG);
Clear_Flag(o, PH_RFR_ON_FLAG);
break;
case PH_TARGET_FLAG:
if(Test_Flag(o, PH_RFR_ON_FLAG))
{
Warning(0, "Cannot use pass_through with refraction & target.\nTurning off pass_through.");
Clear_Flag(o,PH_PASSTHRU_FLAG);
}
else
{
Warning(0, "Cannot use pass_through with refraction & target.\nTurning off refraction.");
Set_Flag(o, PH_RFR_OFF_FLAG);
Clear_Flag(o, PH_RFR_ON_FLAG);
}
break;
case PH_RFR_ON_FLAG:
Warning(0, "Cannot use pass_through with refraction & target.\nTurning off pass_through.");
Clear_Flag(o, PH_PASSTHRU_FLAG);
break;
}
}
}
/*****************************************************************************
FUNCTION
InitBacktraceEverything()
Allocates memory.
Initializes all photon mapping stuff.
Does not create the photon map.
Preconditions: InitBacktraceEverything() not yet called
or
both InitBacktraceEverything() and FreeBacktraceEverything() called
Postconditions:
If photonOptions.photonsEnabled is true, then
memory for photon mapping is allocated.
else
nothing is done
******************************************************************************/
void InitBacktraceEverything()
{
int i;
double theta;
if (photonOptions.photonsEnabled)
{
InitBacktraceWasCalled = true;
photonOptions.photonMap.head = NULL;
photonOptions.photonMap.numPhotons = 0;
photonOptions.photonMap.numBlocks = 0;
#ifdef GLOBAL_PHOTONS
photonOptions.globalPhotonMap.head = NULL;
photonOptions.globalPhotonMap.numPhotons = 0;
photonOptions.globalPhotonMap.numBlocks = 0;
#endif
photonOptions.mediaPhotonMap.head = NULL;
photonOptions.mediaPhotonMap.numPhotons = 0;
photonOptions.mediaPhotonMap.numBlocks = 0;
photonOptions.photonGatherList = (PHOTON**)POV_MALLOC(sizeof(PHOTON *)*photonOptions.maxGatherCount, "Photon Map Info");
photonOptions.photonDistances = (DBL *)POV_MALLOC(sizeof(DBL)*photonOptions.maxGatherCount, "Photon Map Info");
InitPhotonMemory();
/* create the sin/cos arrays for speed */
/* range is -127..+127 => 0..254 */
photonOptions.sinTheta = (DBL *)POV_MALLOC(sizeof(DBL)*255, "Photon Map Info");
photonOptions.cosTheta = (DBL *)POV_MALLOC(sizeof(DBL)*255, "Photon Map Info");
for(i=0; i<255; i++)
{
theta = (double)(i-127)*M_PI/127.0;
photonOptions.sinTheta[i] = sin(theta);
photonOptions.cosTheta[i] = cos(theta);
}
}
}
/* savePhotonMap()
Saves the caustic photon map to a file.
Preconditions:
InitBacktraceEverything was called
the photon map has been built and balanced
photonOptions.fileName contains the filename to save
Postconditions:
Returns 1 if success, 0 if failure.
If success, the photon map has been written to the file.
*/
static int savePhotonMap()
{
PHOTON *ph;
FILE *f;
int i, err;
f = fopen(photonOptions.fileName, "wb");
if (!f) return 0;
/* caustic photons */
fwrite(&photonOptions.photonMap.numPhotons, sizeof(photonOptions.photonMap.numPhotons),1,f);
if (photonOptions.photonMap.numPhotons>0 && photonOptions.photonMap.head)
{
for(i=0; i<photonOptions.photonMap.numPhotons; i++)
{
ph = &(PHOTON_AMF(photonOptions.photonMap.head, i));
err = fwrite(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fwrite returned an error! */
fclose(f);
return 0;
}
}
}
#ifdef GLOBAL_PHOTONS
/* global photons */
fwrite(&photonOptions.globalPhotonMap.numPhotons, sizeof(photonOptions.globalPhotonMap.numPhotons),1,f);
if (photonOptions.globalPhotonMap.numPhotons>0 && photonOptions.globalPhotonMap.head)
{
for(i=0; i<photonOptions.globalPhotonMap.numPhotons; i++)
{
ph = &(PHOTON_AMF(photonOptions.globalPhotonMap.head, i));
err = fwrite(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fwrite returned an error! */
fclose(f);
return 0;
}
}
}
#endif
/* media photons */
fwrite(&photonOptions.mediaPhotonMap.numPhotons, sizeof(photonOptions.mediaPhotonMap.numPhotons),1,f);
if (photonOptions.mediaPhotonMap.numPhotons>0 && photonOptions.mediaPhotonMap.head)
{
for(i=0; i<photonOptions.mediaPhotonMap.numPhotons; i++)
{
ph = &(PHOTON_AMF(photonOptions.mediaPhotonMap.head, i));
err = fwrite(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fwrite returned an error! */
fclose(f);
return 0;
}
}
}
fclose(f);
return true;
}
/* loadPhotonMap()
Loads the caustic photon map from a file.
Preconditions:
InitBacktraceEverything was called
the photon map is empty
photonOptions.fileName contains the filename to load
Postconditions:
Returns 1 if success, 0 if failure.
If success, the photon map has been loaded from the file.
If failure then the render should stop with an error
*/
static int loadPhotonMap()
{
int i;
int err;
PHOTON *ph;
FILE *f;
int numph;
if (!photonOptions.photonsEnabled) return 0;
f = fopen(photonOptions.fileName, "rb");
if (!f) return 0;
fread(&numph, sizeof(numph),1,f);
for(i=0; i<numph; i++)
{
ph = AllocatePhoton(&photonOptions.photonMap);
err = fread(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fread returned an error! */
fclose(f);
return 0;
}
}
if (!feof(f)) /* for backwards file format compatibility */
{
#ifdef GLOBAL_PHOTONS
/* global photons */
fread(&numph, sizeof(numph),1,f);
for(i=0; i<numph; i++)
{
ph = AllocatePhoton(&photonOptions.globalPhotonMap);
err = fread(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fread returned an error! */
fclose(f);
return 0;
}
}
#endif
/* media photons */
fread(&numph, sizeof(numph),1,f);
for(i=0; i<numph; i++)
{
ph = AllocatePhoton(&photonOptions.mediaPhotonMap);
err = fread(ph, sizeof(PHOTON), 1, f);
if (err<=0)
{
/* fread returned an error! */
fclose(f);
return 0;
}
}
}
fclose(f);
return true;
}
/*****************************************************************************
FUNCTION
FreeBacktraceEverything()
Preconditions:
if photonOptions.photonsEnabled is true, then InitBacktraceEverything()
must have been called
PostConditions:
if photonOptions.photonsEnabled is true, then
photon memory is freed
sets photonOptions.photonsEnabled to false
else
does nothing
******************************************************************************/
void FreeBacktraceEverything()
{
if (!InitBacktraceWasCalled) return;
if (photonOptions.photonsEnabled)
{
/* free everything that we allocated */
if(photonOptions.photonGatherList)
POV_FREE(photonOptions.photonGatherList);
photonOptions.photonGatherList = NULL;
if(photonOptions.photonDistances)
POV_FREE(photonOptions.photonDistances);
photonOptions.photonDistances = NULL;
if (photonOptions.sinTheta)
POV_FREE(photonOptions.sinTheta);
photonOptions.sinTheta = NULL;
if (photonOptions.cosTheta)
POV_FREE(photonOptions.cosTheta);
photonOptions.cosTheta = NULL;
FreePhotonMemory();
photonOptions.photonsEnabled = false;
}
}
/*****************************************************************************
FUNCTION
AllocatePhoton(PHOTON_MAP *map)
allocates a photon
Photons are allocated in blocks. map->head is a
dynamically-created array of these blocks. The blocks themselves
are allocated as they are needed.
Preconditions:
InitBacktraceEverything was called
Postconditions:
Marks another photon as allocated (and allocates another block of
photons if necessary).
Returns a pointer to the new photon.
This will be the next available photon in array.
******************************************************************************/
PHOTON* AllocatePhoton(PHOTON_MAP *map)
{
int i,j,k;
/* array mapping funciton */
/* !!!!!!!!!!! warning
This code does the same function as the macro PHOTON_AMF
It is done here separatly instead of using the macro for
speed reasons (to avoid duplicate operations). If the
macro is changed, this MUST ALSO BE CHANGED!
*/
i=(map->numPhotons & PHOTON_BLOCK_MASK);
j=(map->numPhotons >> (PHOTON_BLOCK_POWER));
/* new photon */
map->numPhotons++;
if(j == map->numBlocks)
{
/* the base array is too small, we need to reallocate it */
PHOTON **newMap;
newMap = (PHOTON **)POV_MALLOC(sizeof(PHOTON *)*map->numBlocks*2, "photons");
map->numBlocks*=2;
/* copy entries */
for(k=0; k<j; k++)
newMap[k] = map->head[k];
/* set new entries to zero */
for(k=j; k<map->numBlocks; k++)
newMap[k] = NULL;
/* free old map and put the new map in place */
POV_FREE(map->head);
map->head = newMap;
}
if(map->head[j] == NULL)
/* allocate a new block of photons */
map->head[j] = (PHOTON *)POV_MALLOC(sizeof(PHOTON)*PHOTON_BLOCK_SIZE, "photons");
return &(map->head[j][i]);
}
/*****************************************************************************
FUNCTION
InitPhotonMemory()
Initializes photon memory.
Must only be called by InitBacktraceEverything().
******************************************************************************/
static void InitPhotonMemory()
{
int k;
/* allocate the base array */
photonOptions.photonMap.numPhotons = 0;
photonOptions.photonMap.numBlocks = INITIAL_BASE_ARRAY_SIZE;
photonOptions.photonMap.head = (PHOTON_BLOCK *)POV_MALLOC(sizeof(PHOTON_BLOCK *)*INITIAL_BASE_ARRAY_SIZE, "photons");
/* zero the array */
for(k=0; k<photonOptions.photonMap.numBlocks; k++)
photonOptions.photonMap.head[k] = NULL;
#ifdef GLOBAL_PHOTONS
/* ------------ global photons ----------------*/
/* allocate the base array */
photonOptions.globalPhotonMap.numPhotons = 0;
photonOptions.globalPhotonMap.numBlocks = INITIAL_BASE_ARRAY_SIZE;
photonOptions.globalPhotonMap.head = (PHOTON_BLOCK *)POV_MALLOC(sizeof(PHOTON_BLOCK *)*INITIAL_BASE_ARRAY_SIZE, "photons");
/* zero the array */
for(k=0; k<photonOptions.globalPhotonMap.numBlocks; k++)
photonOptions.globalPhotonMap.head[k] = NULL;
#endif
/* ------------ media photons ----------------*/
/* allocate the base array */
photonOptions.mediaPhotonMap.numPhotons = 0;
photonOptions.mediaPhotonMap.numBlocks = INITIAL_BASE_ARRAY_SIZE;
photonOptions.mediaPhotonMap.head = (PHOTON_BLOCK *)POV_MALLOC(sizeof(PHOTON_BLOCK *)*INITIAL_BASE_ARRAY_SIZE, "photons");
/* zero the array */
for(k=0; k<photonOptions.mediaPhotonMap.numBlocks; k++)
photonOptions.mediaPhotonMap.head[k] = NULL;
}
/*****************************************************************************
FUNCTION
FreePhotonMemory()
Frees all allocated blocks and the base array.
Must be called only by FreeBacktraceEverything()
******************************************************************************/
static void FreePhotonMemory()
{
int j;
/* if already freed then stop now */
if (photonOptions.photonMap.head==NULL)
return;
/* file name to load or save caustic photon map */
if ( photonOptions.fileName )
{
POV_FREE(photonOptions.fileName);
photonOptions.fileName=NULL;
}
/* free all non-NULL arrays */
for(j=0; j<photonOptions.photonMap.numBlocks; j++)
{
if(photonOptions.photonMap.head[j] != NULL)
{
POV_FREE(photonOptions.photonMap.head[j]);
}
}
/* free the base array */
POV_FREE(photonOptions.photonMap.head);
photonOptions.photonMap.head = NULL;
#ifdef GLOBAL_PHOTONS
/* ---------------- global photons -------------- */
/* if already freed then stop now */
if (photonOptions.globalPhotonMap.head==NULL)
return;
/* free all non-NULL arrays */
for(j=0; j<photonOptions.globalPhotonMap.numBlocks; j++)
{
if(photonOptions.globalPhotonMap.head[j] != NULL)
{
POV_FREE(photonOptions.globalPhotonMap.head[j]);
}
}
/* free the base array */
POV_FREE(photonOptions.globalPhotonMap.head);
photonOptions.globalPhotonMap.head = NULL;
#endif
/* ---------------- media photons -------------- */
/* if already freed then stop now */
if (photonOptions.mediaPhotonMap.head==NULL)
return;
/* free all non-NULL arrays */
for(j=0; j<photonOptions.mediaPhotonMap.numBlocks; j++)
{
if(photonOptions.mediaPhotonMap.head[j] != NULL)
{
POV_FREE(photonOptions.mediaPhotonMap.head[j]);
}
}
/* free the base array */
POV_FREE(photonOptions.mediaPhotonMap.head);
photonOptions.mediaPhotonMap.head = NULL;
}
/*****************************************************************************
*
* FUNCTION
*
* cubic_spline (copied from point.c for use with light attenuation )
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* POV-Ray Team
*
* DESCRIPTION
*
* Cubic spline that has tangents of slope 0 at x == low and at x == high.
* For a given value "pos" between low and high the spline value is returned.
*
* CHANGES
*
* -
*
******************************************************************************/
static DBL cubic_spline(DBL low, DBL high, DBL pos)
{
/* Check to see if the position is within the proper boundaries. */
if (pos < low)
return(0.0);
else
{
if (pos >= high)
return(1.0);
}
/* Normalize to the interval [0...1]. */
pos = (pos - low) / (high - low);
/* See where it is on the cubic curve. */
return(3 - 2 * pos) * pos * pos;
}
/*****************************************************************************
FUNCTION
SearchThroughObjects()
Searches through 'object' and all siblings and children of 'object' to
locate objects with PH_TARGET_FLAG set. This flag means that the object
receives photons.
Preconditions:
Photon mapping initialized (InitBacktraceEverything() called)
'Object' is a object (with or without siblings)
'Light' is a light source in the scene
Postconditions:
Photons may have been shot at the object, its siblings, or its children.
******************************************************************************/
static void SearchThroughObjects(OBJECT *Object, LIGHT_SOURCE *Light, bool count)
{
OBJECT *Sib;
/* check this object and all siblings */
for(Sib = Object; Sib != NULL; Sib = Sib -> Sibling)
{
if(Test_Flag(Sib, PH_TARGET_FLAG) &&
!(Sib->Type & LIGHT_SOURCE_OBJECT))
{
/* do not shoot photons if global lights are turned off for object */
if(!Test_Flag(Sib, NO_GLOBAL_LIGHTS_FLAG))
ShootPhotonsAtObject(Sib, Light, count);
Do_Cooperate(1);
Check_User_Abort(false);
}
/* if it has children, check them too */
else if((Sib->Type & IS_COMPOUND_OBJECT))
{
SearchThroughObjects(((CSG *)Sib)->Children, Light, count);
}
}
}
/*****************************************************************************
FUNCTION
ShootPhotonsAtObject()
Shoots photons from 'Light' to 'Object'
Preconditions:
Photon mapping initialized (InitBacktraceEverything() called)
'Object' is a object with PH_TARGET_FLAG set
'Light' is a light source in the scene
Possible future expansion:
Object==NULL means create a global photon map.
Postconditions:
Photons may have been shot at the object, depending on a variety
of flags
******************************************************************************/
static void ShootPhotonsAtObject(OBJECT *Object, LIGHT_SOURCE *Light, int count)
{
RAY Ray; /* ray that we shoot */
COLOUR Colour, PhotonColour; /* light color and photon color */
int i; /* counter */
DBL theta, phi; /* rotation angles */
DBL dtheta, dphi; /* deltas for theta and phi */
DBL jittheta, jitphi; /* jittered versions of theta and phi */
DBL mintheta,maxtheta,minphi,maxphi;
/* these are minimum and maximum for theta and
phi for the spiral shooting */
DBL dist; /* distance from light to bounding sphere */
DBL rad; /* radius of bounding sphere */
DBL st,ct; /* cos(theta) & sin(theta) for rotation */
DBL Attenuation; /* light attenuation for spotlight */
DBL costheta_spot;
VECTOR up, left, ctr, toctr, v; /* vectors to determine direction of shot */
TRANSFORM Trans; /* transformation for rotation */
int mergedFlags=0; /* merged flags to see if we should shoot photons */
int notComputed=true; /* have the ray containers been computed for this point yet?*/
int hitAtLeastOnce = false; /* have we hit the object at least once - for autostop stuff */
/* get the light source colour */
Assign_Colour(Colour, Light->Colour);
/* set global variable stuff */
photonOptions.Light = Light;
photonOptions.photonObject = Object;
/* first, check on various flags... make sure all is a go for this object */
if(Object)
{
mergedFlags = Light->Flags | photonOptions.photonObject->Flags;
photonOptions.lightFlags = Light->Flags;
}
else
{
mergedFlags = photonOptions.lightFlags = PH_RFR_ON_FLAG | PH_RFL_ON_FLAG; /*Light->Flags;*/
}
if (!(((mergedFlags & PH_RFR_ON_FLAG) && !(mergedFlags & PH_RFR_OFF_FLAG)) ||
((mergedFlags & PH_RFL_ON_FLAG) && !(mergedFlags & PH_RFL_OFF_FLAG))))
/* it is a no-go for this object... bail out now */
return;
if(Object)
{
/* find bounding sphere based on bounding box */
ctr[X] = photonOptions.photonObject->BBox.Lower_Left[X] + photonOptions.photonObject->BBox.Lengths[X] / 2.0;
ctr[Y] = photonOptions.photonObject->BBox.Lower_Left[Y] + photonOptions.photonObject->BBox.Lengths[Y] / 2.0;
ctr[Z] = photonOptions.photonObject->BBox.Lower_Left[Z] + photonOptions.photonObject->BBox.Lengths[Z] / 2.0;
VSub(v, ctr,photonOptions.photonObject->BBox.Lower_Left);
VLength(rad, v);
/* find direction from object to bounding sphere */
VSub(toctr, ctr, Light->Center);
VLength(dist, toctr);
VNormalizeEq(toctr);
if ( fabs(fabs(toctr[Z])- 1.) < .1 ) {
/* too close to vertical for comfort, so use cross product with horizon */
up[X] = 0.; up[Y] = 1.; up[Z] = 0.;
}
else
{
up[X] = 0.; up[Y] = 0.; up[Z] = 1.;
}
/* find "left", which is vector perpendicular to toctr */
if(Light->Parallel)
{
/* for parallel lights, left is actually perpendicular to the direction of the
light source */
VCross(left, Light->Direction, up); VNormalizeEq(left);
}
else
{
VCross(left, toctr, up); VNormalizeEq(left);
}
/*
light dist ctr
* ------------------ +
---___ |
---___ | rad
---_|
*/
/* calculate the spacial separation (spread) */
photonOptions.photonSpread = photonOptions.photonObject->Ph_Density*photonOptions.surfaceSeparation;
/* if rays aren't parallel, divide by dist so we get separation at a distance of 1 unit */
if (!Light->Parallel)
{
photonOptions.photonSpread /= dist;
}
if (count)
{
/* try to guess the number of photons */
DBL x=rad / (photonOptions.photonObject->Ph_Density*photonOptions.surfaceSeparation);
x=x*x*M_PI;
#if(1)
if ( ((mergedFlags & PH_RFR_ON_FLAG) && !(mergedFlags & PH_RFR_OFF_FLAG)) &&
((mergedFlags & PH_RFL_ON_FLAG) && !(mergedFlags & PH_RFL_OFF_FLAG)) )
{
x *= 1.5; /* assume 2 times as many photons with both reflection & refraction */
}
if ( !Test_Flag(photonOptions.photonObject, PH_IGNORE_PHOTONS_FLAG) )
{
if ( ((mergedFlags & PH_RFR_ON_FLAG) && !(mergedFlags & PH_RFR_OFF_FLAG)) )
{
if ( ((mergedFlags & PH_RFL_ON_FLAG) && !(mergedFlags & PH_RFL_OFF_FLAG)) )
x *= 3; /* assume 3 times as many photons if ignore_photons not used */
else
x *= 2; /* assume less for only refraction */
}
}
x *= 0.5; /* assume 1/2 of photons hit target object */
#endif
photonCountEstimate += x;
return;
}
}
else
{
#ifdef GLOBAL_PHOTONS
/* set up for global photon map */
mintheta = 0;
maxtheta = M_PI;
/* determine photonSpread from a number? */
photonOptions.photonSpread = Light->Ph_Density*photonOptions.globalSeparation;
Make_Vector(up, 1,0,0);
Make_Vector(left, 0,1,0);
Make_Vector(toctr, 0,0,1);
dist = 1.0;
if (count)
{
/* try to guess the number of photons */
photonCountEstimate += M_PI*4.0/(photonOptions.photonSpread*photonOptions.photonSpread);
return;
}
#else
Error("Internal Error - global photons have been disabled."); /* we should never get here if gobal photons are not enabled */
#endif
}
/* adjust spread if we are using an area light */
if(Light->Area_Light && Light->Photon_Area_Light)
{
photonOptions.photonSpread *= sqrt((DBL)(Light->Area_Size1*Light->Area_Size2));
}
/* set the photon density - calculate angular density from spacial */
if(Light->Parallel)
{
/* OK, here we fake things a bit for parallel lights. Theta is not really theta.
It really represents the radius... but why re-code an entire loop. For POV 4.0
this should be re-written as an abstract class with polymorphism. */
dtheta = photonOptions.photonSpread;
}
else
{
/* calculate delta theta */
dtheta = atan(photonOptions.photonSpread);
}
/* if photonSpread <= 0.0, we must return or we'll get stuck in an infinite loop! */
if (photonOptions.photonSpread <= 0.0)
return;
mintheta = 0;
if (Light->Parallel)
{
maxtheta = rad;
}
else if (dist>=rad)
{
maxtheta = atan(rad/dist);
}
else
{
maxtheta = M_PI;
if (fabs(dist)<EPSILON)
{
Make_Vector(up, 1,0,0);
Make_Vector(left, 0,1,0);
Make_Vector(toctr, 0,0,1);
}
dist = rad;
}
/* ---------------------------------------------
main ray-shooting loop
--------------------------------------------- */
i = 0;
notComputed = true;
for(theta=mintheta; theta<maxtheta; theta+=dtheta)
{
photonOptions.hitObject = false;
if (theta<EPSILON)
{
dphi=2*M_PI;
}
else
{
/* remember that for area lights, "theta" really means "radius" */
if (Light->Parallel)
{
dphi = dtheta / theta;
}
else
{
dphi=dtheta/sin(theta);
}
}
minphi = -M_PI + dphi*FRAND()*0.5;
maxphi = M_PI - dphi/2 + (minphi+M_PI);
for(phi=minphi; phi<maxphi; phi+=dphi)
{
int x_samples,y_samples;
int area_x, area_y;
/* ------------------- shoot one photon ------------------ */
/* jitter theta & phi */
jitphi = phi + (dphi)*(FRAND() - 0.5)*1.0*photonOptions.jitter;
jittheta = theta + (dtheta)*(FRAND() - 0.5)*1.0*photonOptions.jitter;
/* actually, shoot multiple samples for area light */
if(Light->Area_Light && Light->Photon_Area_Light && !Light->Parallel)
{
x_samples = Light->Area_Size1;
y_samples = Light->Area_Size2;
}
else
{
x_samples = 1;
y_samples = 1;
}
for(area_x=0; area_x<x_samples; area_x++)
for(area_y=0; area_y<y_samples; area_y++)
{
Assign_Vector(Ray.Initial,Light->Center);
if (Light->Area_Light && !Light->Parallel)
{
/* ------------- area light ----------- */
/* we need to make new up, left, and toctr vectors so we can
do proper rotations of theta and phi about toctr. The
ray's initial point and ending points are both jittered to
produce the area-light effect. */
DBL Jitter_u, Jitter_v, ScaleFactor;
VECTOR NewAxis1, NewAxis2;
/* we must recompute the media containers (new start point) */
notComputed = true;
/*
Jitter_u = (int)(FRAND()*Light->Area_Size1);
Jitter_v = (int)(FRAND()*Light->Area_Size2);
*/
Jitter_u = area_x; /*+(0.5*FRAND() - 0.25);*/
Jitter_v = area_y; /*+(0.5*FRAND() - 0.25);*/
if (Light->Area_Size1 > 1 && x_samples>1)
{
ScaleFactor = Jitter_u/(DBL)(Light->Area_Size1 - 1) - 0.5;
VScale (NewAxis1, Light->Axis1, ScaleFactor);
}
else
{
Make_Vector(NewAxis1, 0.0, 0.0, 0.0);
}
if (Light->Area_Size2 > 1 && y_samples>1)
{
ScaleFactor = Jitter_v/(DBL)(Light->Area_Size2 - 1) - 0.5;
VScale (NewAxis2, Light->Axis2, ScaleFactor);
}
else
{
Make_Vector(NewAxis2, 0.0, 0.0, 0.0);
}
/* need a new toctr & left */
VAddEq(Ray.Initial, NewAxis1);
VAddEq(Ray.Initial, NewAxis2);
VSub(toctr, ctr, Ray.Initial);
VLength(dist, toctr);
VNormalizeEq(toctr);
if ( fabs(fabs(toctr[Z])- 1.) < .1 ) {
/* too close to vertical for comfort, so use cross product with horizon */
up[X] = 0.; up[Y] = 1.; up[Z] = 0.;
}
else
{
up[X] = 0.; up[Y] = 0.; up[Z] = 1.;
}
VCross(left, toctr, up); VNormalizeEq(left);
if (fabs(dist)<EPSILON)
{
Make_Vector(up, 1,0,0);
Make_Vector(left, 0,1,0);
Make_Vector(toctr, 0,0,1);
}
}
DBL dist_of_initial_from_center;
if (Light->Parallel)
{
DBL a;
VECTOR v;
/* assign the direction */
Assign_Vector(Ray.Direction,Light->Direction);
/* project ctr onto plane defined by Direction & light location */
VDot(a,Ray.Direction, toctr);
VScale(v,Ray.Direction, -a*dist); /* MAYBE NEEDS TO BE NEGATIVE! */
VAdd(Ray.Initial, ctr, v);
/* move point along "left" distance theta (remember theta means rad) */
VScale(v,left,jittheta);
/* rotate pt around Ray.Direction by phi */
/* use POV funcitons... slower but easy */
Compute_Axis_Rotation_Transform(&Trans,Light->Direction,jitphi);
MTransPoint(v, v, &Trans);
VAddEq(Ray.Initial, v);
// compute the length of "v" if we're going to use it
if (Light->Light_Type == CYLINDER_SOURCE)
{
VECTOR initial_from_center;
VSub(initial_from_center, Ray.Initial, Light->Center);
VLength(dist_of_initial_from_center, initial_from_center);
}
}
else
{
/* rotate toctr by theta around up */
st = sin(jittheta);
ct = cos(jittheta);
/* use fast rotation */
v[X] = -st*left[X] + ct*toctr[X];
v[Y] = -st*left[Y] + ct*toctr[Y];
v[Z] = -st*left[Z] + ct*toctr[Z];
/* then rotate by phi around toctr */
/* use POV funcitons... slower but easy */
Compute_Axis_Rotation_Transform(&Trans,toctr,jitphi);
MTransPoint(Ray.Direction, v, &Trans);
}
/* ------ attenuation for spot/cylinder (copied from point.c) ---- */
Attenuation = 1.0;
/* ---------- spot light --------- */
if (Light->Light_Type == SPOT_SOURCE)
{
VDot(costheta_spot, Ray.Direction, Light->Direction);
if (costheta_spot > 0.0)
{
Attenuation = pow(costheta_spot, Light->Coeff);
if (Light->Radius > 0.0)
Attenuation *= cubic_spline(Light->Falloff, Light->Radius, costheta_spot);
}
else
Attenuation = 0.0;
}
/* ---------- cylinder light ----------- */
else if (Light->Light_Type == CYLINDER_SOURCE)
{
DBL k, len;
VDot(k, Ray.Direction, Light->Direction);
if (k > 0.0)
{
len = dist_of_initial_from_center;
if (len < Light->Falloff)
{
DBL dist = 1.0 - len / Light->Falloff;
Attenuation = pow(dist, Light->Coeff);
if (Light->Radius > 0.0 && len > Light->Radius)
Attenuation *= cubic_spline(0.0, 1.0 - Light->Radius / Light->Falloff, dist);
}
else
Attenuation = 0.0;
}
else
Attenuation = 0.0;
}
/* set up defaults for reflection, refraction */
photonOptions.passThruPrev = true;
photonOptions.passThruThis = false;
photonOptions.photonDepth = 0.0;
Trace_Level = 1;
Total_Depth = 0.0;
Increase_Counter(stats[Number_Of_Photons_Shot]);
/* attenuate for area light extra samples */
Attenuation/=(x_samples*y_samples);
/* compute photon color from light source & attenuation */
PhotonColour[0] = Colour[0]*Attenuation;
PhotonColour[1] = Colour[1]*Attenuation;
PhotonColour[2] = Colour[2]*Attenuation;
PhotonColour[3] = 0.0;
PhotonColour[4] = 0.0;
if (Attenuation<0.00001) continue;
/* handle the projected_through object if it exists */
if (Light->Projected_Through_Object != NULL)
{
/* try to intersect ray with projected-through object */
INTERSECTION Intersect;
Intersect.Object = NULL;
if ( Intersection( &Intersect, Light->Projected_Through_Object, &Ray ) )
{
/* we must recompute the media containers (new start point) */
notComputed = true;
/* we did hit it, so find the 'real' starting point of the ray */
/* find the farthest intersection */
VAddScaledEq(Ray.Initial,Intersect.Depth+EPSILON, Ray.Direction);
photonOptions.photonDepth += Intersect.Depth+EPSILON;
while(Intersection( &Intersect, Light->Projected_Through_Object, &Ray ) )
{
VAddScaledEq(Ray.Initial, Intersect.Depth+EPSILON, Ray.Direction);
photonOptions.photonDepth += Intersect.Depth+EPSILON;
}
}
else
{
/* we didn't hit it, so stop now */
continue;
}
}
/* As mike said, "fire photon torpedo!" */
Initialize_Ray_Containers(&Ray);
initialize_ray_container_state(&Ray, notComputed);
notComputed = false;
disp_elem = 0; /* for dispersion */
disp_nelems = 0; /* for dispersion */
Trace(&Ray, PhotonColour, 1.0);
/* display here */
i++;
if ((i%100) == 0)
{
gPhotonStat_i = i;
gPhotonStat_x_samples = x_samples;
gPhotonStat_y_samples = y_samples;
Send_ProgressUpdate(PROGRESS_BUILDING_PHOTON_MAPS);
Check_User_Abort(false);
}
} /* end of multiple samples */
}
/* if we didn't hit anything and we're past the autostop angle, then
we should stop
as per suggestion from Smellenberg, changed autostop to a percentage
of the object's bounding sphere. */
/* suggested by Pabs, we only use autostop if we have it it once */
if (photonOptions.hitObject) hitAtLeastOnce=true;
if (hitAtLeastOnce && !photonOptions.hitObject && photonOptions.photonObject)
if (theta>photonOptions.autoStopPercent*maxtheta) break;
} /* end of rays loop */
}
/*****************************************************************************
FUNCTION
BuildPhotonMaps()
This is the primary function for building photon maps.
Preconditions:
Photon memory is allocated (InitBacktraceEverything has been called).
The entire scene has been parsed.
The ray-tracer has been completely initialized.
Postconditions:
The photon map is built based on options specified in the scene file.
******************************************************************************/
void BuildPhotonMaps(void)
{
LIGHT_SOURCE *Light; /* light source to use */
LIGHT_GROUP_LIGHT *Light_Group_Light;
int old_mtl; /* saved max_trace_level */
DBL old_adc; /* saved adc_bailout */
/* if not enabled, then return */
if (!photonOptions.photonsEnabled)
return;
/* should we load the photon map instead of building? */
if (photonOptions.fileName && photonOptions.loadFile)
{
/* status bar for user */
Send_Progress("Loading Photon Maps", PROGRESS_LOADING_PHOTON_MAPS);
if (!loadPhotonMap())
{
Error("Could not load photon map (%s)",photonOptions.fileName);
}
Do_Cooperate(0);
/* don't build */
/* but do set photon options automatically */
/* ----------- surface photons ------------- */
if (photonOptions.photonMap.numPhotons>0)
{
setGatherOptions(&photonOptions.photonMap, false);
}
#ifdef GLOBAL_PHOTONS
/* ----------- global photons ------------- */
if (photonOptions.globalPhotonMap.numPhotons>0)
{
setGatherOptions(&photonOptions.globalPhotonMap, false);
}
#endif
/* ----------- media photons ------------- */
if (photonOptions.mediaPhotonMap.numPhotons>0)
{
setGatherOptions(&photonOptions.mediaPhotonMap, true);
}
return;
}
/* set flag so POV knows we're in backtrace step */
backtraceFlag = 1;
/* status bar for user */
Send_Progress("Building Photon Maps", PROGRESS_BUILDING_PHOTON_MAPS);
/* save adc_bailout and max_trace_level */
old_adc = ADC_Bailout;
old_mtl = Max_Trace_Level;
/* use the photon-specific ones if they were specified */
if (photonOptions.Max_Trace_Level>=0)
Max_Trace_Level = photonOptions.Max_Trace_Level;
if (photonOptions.ADC_Bailout>=0)
ADC_Bailout = photonOptions.ADC_Bailout;
/* COUNT THE PHOTONS */
if(photonOptions.surfaceCount>0)
{
DBL factor;
photonCountEstimate = 0.0;
// global lights
photonOptions.Light_Is_Global = true;
for (Light = Frame.Light_Sources;
Light != NULL;
Light = Light->Next_Light_Source)
if (Light->Light_Type != FILL_LIGHT_SOURCE)
{
SearchThroughObjects(Frame.Objects, Light, true);
}
// light_group lights
photonOptions.Light_Is_Global = false;
for (Light_Group_Light = Frame.Light_Group_Lights;
Light_Group_Light != NULL;
Light_Group_Light = Light_Group_Light->Next)
{
Light = Light_Group_Light->Light;
if (Light->Light_Type != FILL_LIGHT_SOURCE)
{
SearchThroughObjects(Frame.Objects, Light, true);
}
}
factor = (DBL)photonCountEstimate/photonOptions.surfaceCount;
factor = sqrt(factor);
photonOptions.surfaceSeparation *= factor;
}
/* COUNT THE GLOBAL PHOTONS */
if(photonOptions.globalCount>0)
{
DBL factor;
photonCountEstimate = 0.0;
photonOptions.Light_Is_Global = true;
for (Light = Frame.Light_Sources;
Light != NULL;
Light = Light->Next_Light_Source)
if (Light->Light_Type != FILL_LIGHT_SOURCE)
{
ShootPhotonsAtObject(NULL, Light, true);
}
// light_group lights
photonOptions.Light_Is_Global = false;
for (Light_Group_Light = Frame.Light_Group_Lights;
Light_Group_Light != NULL;
Light_Group_Light = Light_Group_Light->Next)
{
Light = Light_Group_Light->Light;
if (Light->Light_Type != FILL_LIGHT_SOURCE)
{
ShootPhotonsAtObject(NULL, Light, true);
}
}
factor = (DBL)photonCountEstimate/photonOptions.globalCount;
factor = sqrt(factor);
photonOptions.globalSeparation *= factor;
Do_Cooperate(1);
}
// there is a world out there that wants some attention [trf]
Do_Cooperate(0);
/* loop through global light sources */
photonOptions.Light_Is_Global = true;
for (Light = Frame.Light_Sources;
Light != NULL;
Light = Light->Next_Light_Source)
if (Light->Light_Type != FILL_LIGHT_SOURCE)
{
if (Light->Light_Type == CYLINDER_SOURCE && !Light->Parallel)
{
Warning(0,"Cylinder lights should be parallel when used with photons.");
}
/* do global lighting here if it is ever implemented */
if (Test_Flag(Light, PH_TARGET_FLAG) && (photonOptions.globalCount>0))
ShootPhotonsAtObject(NULL, Light, false);
/* do object-specific lighting */
SearchThroughObjects(Frame.Objects, Light, false);
}
// loop through light_group light sources
photonOptions.Light_Is_Global = false;
for (Light_Group_Light = Frame.Light_Group_Lights;
Light_Group_Light != NULL;
Light_Group_Light = Light_Group_Light->Next)
{
Light = Light_Group_Light->Light;
if (Light->Light_Type == CYLINDER_SOURCE && !Light->Parallel)
{
Warning(0,"Cylinder lights should be parallel when used with photons.");
}
/* do global lighting here if it is ever implemented */
if (Test_Flag(Light, PH_TARGET_FLAG) && (photonOptions.globalCount>0))
ShootPhotonsAtObject(NULL, Light, false);
/* do object-specific lighting */
SearchThroughObjects(Frame.Objects, Light, false);
}
/* clear this flag */
backtraceFlag = 0;
/* restore saved variables */
ADC_Bailout = old_adc;
Max_Trace_Level = old_mtl;
/* now actually build the kd-tree by sorting the array of photons */
if (photonOptions.photonMap.numPhotons>0)
{
buildTree(&photonOptions.photonMap);
setGatherOptions(&photonOptions.photonMap, false);
}
#ifdef GLOBAL_PHOTONS
/* ----------- global photons ------------- */
if (photonOptions.globalPhotonMap.numPhotons>0)
{
buildTree(&photonOptions.globalPhotonMap);
setGatherOptions(&photonOptions.globalPhotonMap, false);
}
#endif
/* ----------- media photons ------------- */
if (photonOptions.mediaPhotonMap.numPhotons>0)
{
buildTree(&photonOptions.mediaPhotonMap);
setGatherOptions(&photonOptions.mediaPhotonMap, true);
}
if (photonOptions.photonMap.numPhotons+
#ifdef GLOBAL_PHOTONS
photonOptions.globalPhotonMap.numPhotons+
#endif
photonOptions.mediaPhotonMap.numPhotons > 0)
{
/* should we load the photon map now that it is built? */
if (photonOptions.fileName && !photonOptions.loadFile)
{
/* status bar for user */
Send_Progress("Saving Photon Maps", PROGRESS_SAVING_PHOTON_MAPS);
if (!savePhotonMap())
{
Warning(0,"Could not save photon map.");
}
}
}
else
{
if (photonOptions.fileName && !photonOptions.loadFile)
{
Warning(0,"Could not save photon map - no photons!");
}
}
// good idea to make sure all warnings and errors arrive frontend now [trf]
Do_Cooperate(0);
}
/*****************************************************************************
FUNCTION
addSurfacePhoton()
Adds a photon to the array of photons.
Preconditions:
InitBacktraceEverything() was called
'Point' is the intersection point to store the photon
'Origin' is the origin of the light ray
'LightCol' is the color of the light propogated through the scene
'RawNorm' is the raw normal of the surface intersected
Postconditions:
Another photon is allocated (by AllocatePhoton())
The information passed in (as well as photonOptions.photonDepth)
is stored in the photon data structure.
******************************************************************************/
void addSurfacePhoton(VECTOR Point, VECTOR Origin, COLOUR LightCol, VECTOR /*RawNorm*/)
{
PHOTON *Photon;
COLOUR LightCol2;
DBL Attenuation;
VECTOR d;
DBL d_len, phi, theta;
PHOTON_MAP *map;
/* first, compensate for POV's weird light attenuation */
if ((photonOptions.Light->Fade_Power > 0.0) && (fabs(photonOptions.Light->Fade_Distance) > EPSILON))
{
Attenuation = 2.0 / (1.0 + pow(photonOptions.photonDepth / photonOptions.Light->Fade_Distance, photonOptions.Light->Fade_Power));
}
else
Attenuation = 1;
VScale(LightCol2, LightCol, Attenuation);
if(!photonOptions.Light->Parallel)
{
VScaleEq(LightCol2, photonOptions.photonDepth*photonOptions.photonDepth);
}
VScaleEq(LightCol2, photonOptions.photonSpread*photonOptions.photonSpread);
/* if too dark, maybe we should stop here */
#ifdef GLOBAL_PHOTONS
if(photonOptions.photonObject==NULL)
{
map = &photonOptions.globalPhotonMap;
Increase_Counter(stats[Number_Of_Global_Photons_Stored]);
}
else
#endif
{
map = &photonOptions.photonMap;
Increase_Counter(stats[Number_Of_Photons_Stored]);
}
/* allocate the photon */
Photon = AllocatePhoton(map);
/* convert photon from three floats to 4 bytes */
colour2photonRgbe(Photon->Colour, LightCol2);
/* store the location */
Assign_Vector(Photon->Loc, Point);
/* now determine rotation angles */
VSub(d,Origin, Point);
VNormalizeEq(d);
d_len = sqrt(d[X]*d[X]+d[Z]*d[Z]);
phi = acos(d[X]/d_len);
if (d[Z]<0) phi = -phi;
theta = acos(d_len);
if (d[Y]<0) theta = -theta;
/* cram these rotation angles into two signed bytes */
Photon->theta=(signed char)(theta*127.0/M_PI);
Photon->phi=(signed char)(phi*127.0/M_PI);
}
/*****************************************************************************
FUNCTION
addMediaPhoton()
Adds a photon to the array of photons.
Preconditions:
InitBacktraceEverything() was called
'Point' is the intersection point to store the photon
'Origin' is the origin of the light ray
'LightCol' is the color of the light propogated through the scene
Postconditions:
Another photon is allocated (by AllocatePhoton())
The information passed in (as well as photonOptions.photonDepth)
is stored in the photon data structure.
******************************************************************************/
void addMediaPhoton(VECTOR Point, VECTOR Origin, COLOUR LightCol, DBL depthDiff)
{
PHOTON *Photon;
COLOUR LightCol2;
DBL Attenuation;
VECTOR d;
DBL d_len, phi, theta;
/* first, compensate for POV's weird light attenuation */
if ((photonOptions.Light->Fade_Power > 0.0) && (fabs(photonOptions.Light->Fade_Distance) > EPSILON))
{
Attenuation = 2.0 / (1.0 + pow((photonOptions.photonDepth+depthDiff) / photonOptions.Light->Fade_Distance, photonOptions.Light->Fade_Power));
}
else
Attenuation = 1;
#if 0
VScale(LightCol2, LightCol, photonOptions.photonSpread*photonOptions.photonSpread);
if(!photonOptions.Light->Parallel)
{
VScaleEq(LightCol2, (photonOptions.photonDepth+depthDiff)*(photonOptions.photonDepth+depthDiff)*Attenuation);
}
#else
VScale(LightCol2, LightCol, Attenuation);
if(!photonOptions.Light->Parallel)
{
VScaleEq(LightCol2, (photonOptions.photonDepth+depthDiff) *
(photonOptions.photonDepth+depthDiff));
}
VScaleEq(LightCol2, photonOptions.photonSpread*photonOptions.photonSpread);
#endif
/* if too dark, maybe we should stop here */
/* allocate the photon */
if(photonOptions.photonObject==NULL) return;
Increase_Counter(stats[Number_Of_Media_Photons_Stored]);
Photon = AllocatePhoton(&photonOptions.mediaPhotonMap);
/* convert photon from three floats to 4 bytes */
colour2photonRgbe(Photon->Colour, LightCol2);
/* store the location */
Assign_Vector(Photon->Loc, Point);
/* now determine rotation angles */
VSub(d,Origin, Point);
VNormalizeEq(d);
d_len = sqrt(d[X]*d[X]+d[Z]*d[Z]);
phi = acos(d[X]/d_len);
if (d[Z]<0) phi = -phi;
theta = acos(d_len);
if (d[Y]<0) theta = -theta;
/* cram these rotation angles into two signed bytes */
Photon->theta=(signed char)(theta*127.0/M_PI);
Photon->phi=(signed char)(phi*127.0/M_PI);
}
/* ====================================================================== */
/* ====================================================================== */
/* KD - TREE */
/* ====================================================================== */
/* ====================================================================== */
/*****************************************************************************
FUNCTION
swapPhotons
swaps two photons
Precondition:
photon memory initialized
static map_s points to the photon map
'a' and 'b' are indexes within the range of photons in map_s
(NO ERROR CHECKING IS DONE)
Postconditions:
the photons indexed by 'a' and 'b' are swapped
*****************************************************************************/
static void swapPhotons(int a, int b)
{
int ai,aj,bi,bj;
PHOTON tmp;
/* !!!!!!!!!!! warning
This code does the same function as the macro PHOTON_AMF
It is done here separatly instead of using the macro for
speed reasons (to avoid duplicate operations). If the
macro is changed, this MUST ALSO BE CHANGED!
*/
ai = a & PHOTON_BLOCK_MASK;
aj = a >> PHOTON_BLOCK_POWER;
bi = b & PHOTON_BLOCK_MASK;
bj = b >> PHOTON_BLOCK_POWER;
tmp = map_s[aj][ai];
map_s[aj][ai] = map_s[bj][bi];
map_s[bj][bi] = tmp;
}
/*****************************************************************************
FUNCTION
insertSort
(modified from Data Structures textbook)
Preconditions:
photon memory initialized
static map_s points to the photon map
'start' is the index of the first photon
'end' is the index of the last photon
'd' is the dimension to sort on (X, Y, or Z)
Postconditions:
photons from 'start' to 'end' in map_s are sorted in
ascending order on dimension d
******************************************************************************/
static void insertSort(int start, int end, int d)
{
int j,k;
PHOTON tmp;
for(k=end-1; k>=start; k--)
{
j=k+1;
tmp = PHOTON_AMF(map_s, k);
while ( (tmp.Loc[d] > PHOTON_AMF(map_s,j).Loc[d]) )
{
PHOTON_AMF(map_s,j-1) = PHOTON_AMF(map_s,j);
j++;
if (j>end) break;
}
PHOTON_AMF(map_s,j-1) = tmp;
}
}
/*****************************************************************************
FUNCTION
quickSortRec
(modified from Data Structures textbook)
Recursive part of the quicksort routine
This does not sort all the way. once this is done, insertSort
should be called to finish the sorting process!
Preconditions:
photon memory initialized
static map_s points to the photon map
'left' is the index of the first photon
'right' is the index of the last photon
'd' is the dimension to sort on (X, Y, or Z)
Postconditions:
photons from 'left' to 'right' in map_s are MOSTLY sorted in
ascending order on dimension d
******************************************************************************/
static void quickSortRec(int left, int right, int d)
{
int j,k;
if(left<right)
{
swapPhotons(((left+right)>>1), left+1);
if(PHOTON_AMF(map_s,left+1).Loc[d] > PHOTON_AMF(map_s,right).Loc[d])
swapPhotons(left+1,right);
if(PHOTON_AMF(map_s,left).Loc[d] > PHOTON_AMF(map_s,right).Loc[d])
swapPhotons(left,right);
if(PHOTON_AMF(map_s,left+1).Loc[d] > PHOTON_AMF(map_s,left).Loc[d])
swapPhotons(left+1,left);
j=left+1; k=right;
while(j<=k)
{
for(j++; ((j<=right)&&(PHOTON_AMF(map_s,j).Loc[d]<PHOTON_AMF(map_s,left).Loc[d])); j++);
for(k--; ((k>=left)&&(PHOTON_AMF(map_s,k).Loc[d]>PHOTON_AMF(map_s,left).Loc[d])); k--);
if(j<k)
swapPhotons(j,k);
}
swapPhotons(left,k);
if(k-left > 10)
{
quickSortRec(left,k-1,d);
}
if(right-k > 10)
{
quickSortRec(k+1,right,d);
}
/* leave the rest for insertSort */
}
}
/*****************************************************************************
FUNCTION
halfSortRec
(modified quicksort algorithm)
Recursive part of the quicksort routine, but it only does half
the quicksort. It only recurses one branch - the branch that contains
the midpoint (median).
Preconditions:
photon memory initialized
static map_s points to the photon map
'left' is the index of the first photon
'right' is the index of the last photon
'd' is the dimension to sort on (X, Y, or Z)
'mid' is the index where the median will end up
Postconditions:
the photon at the midpoint (mid) is the median of the photons
when sorted on dimention d.
******************************************************************************/
static void halfSortRec(int left, int right, int d, int mid)
{
int j,k;
if(left<right)
{
swapPhotons(((left+right)>>1), left+1);
if(PHOTON_AMF(map_s,left+1).Loc[d] > PHOTON_AMF(map_s,right).Loc[d])
swapPhotons(left+1,right);
if(PHOTON_AMF(map_s,left).Loc[d] > PHOTON_AMF(map_s,right).Loc[d])
swapPhotons(left,right);
if(PHOTON_AMF(map_s,left+1).Loc[d] > PHOTON_AMF(map_s,left).Loc[d])
swapPhotons(left+1,left);
j=left+1; k=right;
while(j<=k)
{
for(j++; ((j<=right)&&(PHOTON_AMF(map_s,j).Loc[d]<PHOTON_AMF(map_s,left).Loc[d])); j++);
for(k--; ((k>=left)&&(PHOTON_AMF(map_s,k).Loc[d]>PHOTON_AMF(map_s,left).Loc[d])); k--);
if(j<k)
swapPhotons(j,k);
}
/* put the pivot into its position */
swapPhotons(left,k);
/* only go down the side that contains the midpoint */
/* don't do anything if the midpoint=k (the pivot, which is
now in the correct position */
if(k-left > 0 && (mid>=left) && (mid<k))
{
halfSortRec(left,k-1,d,mid);
}
else if(right-k > 0 && (mid>k) && (mid<=right))
{
halfSortRec(k+1,right,d,mid);
}
}
}
/*****************************************************************************
FUNCTION
sortAndSubdivide
Finds the dimension with the greates range, sorts the photons on that
dimension. Then it recurses on the left and right halves (keeping
the median photon as a pivot). This produces a balanced kd-tree.
Preconditions:
photon memory initialized
static map_s points to the photon map
'start' is the index of the first photon
'end' is the index of the last photon
'sorted' is the dimension that was last sorted (so we don't sort again)
Postconditions:
photons from 'start' to 'end' in map_s are in a valid kd-tree format
******************************************************************************/
static void sortAndSubdivide(int start, int end, int /*sorted*/)
{
int i,j; /* counters */
SNGL_VECT min,max; /* min/max vectors for finding range */
int DimToUse; /* which dimesion has the greatest range */
int mid; /* index of median (middle) */
int len; /* length of the array we're sorting */
if (end==start)
{
PHOTON_AMF(map_s, start).info = 0;
return;
}
if(end<start) return;
// this seems to be a good place for this call [trf]
Do_Cooperate(1);
/*
* loop and find greatest range
*/
Make_Vector(min, 1/EPSILON, 1/EPSILON, 1/EPSILON);
Make_Vector(max, -1/EPSILON, -1/EPSILON, -1/EPSILON);
for(i=start; i<=end; i++)
{
for(j=X; j<=Z; j++)
{
PHOTON *ph = &(PHOTON_AMF(map_s,i));
if (ph->Loc[j] < min[j])
min[j]=ph->Loc[j];
if (ph->Loc[j] > max[j])
max[j]=ph->Loc[j];
}
}
/* choose which dimension to use */
DimToUse = X;
if((max[Y]-min[Y])>(max[DimToUse]-min[DimToUse]))
DimToUse=Y;
if((max[Z]-min[Z])>(max[DimToUse]-min[DimToUse]))
DimToUse=Z;
/* find midpoint */
mid = (end+start)>>1;
/* use half of a quicksort to find the median */
len = end-start;
if (len>=2)
{
/* only display status every so often */
if(len > 1000)
{
gPhotonStat_end = end;
Send_ProgressUpdate(PROGRESS_SORTING_PHOTONS);
}
halfSortRec(start, end, DimToUse, mid);
//quickSortRec(start, end, DimToUse);
}
/* set DimToUse for the midpoint */
PHOTON_AMF(map_s, mid).info = DimToUse;
/* now recurse to continue building the kd-tree */
sortAndSubdivide(start, mid - 1, DimToUse);
sortAndSubdivide(mid + 1, end, DimToUse);
}
/*****************************************************************************
FUNCTION
buildTree
Builds the kd-tree by calling sortAndSubdivide(). Sets the static
variable map_s.
Preconditions:
photon memory initialized
'map' is a pointer to a photon map containing an array of unsorted
photons
Postconditions:
photons are in a valid kd-tree format
******************************************************************************/
static void buildTree(PHOTON_MAP *map)
{
Send_Progress("Sorting photons", PROGRESS_SORTING_PHOTONS);
map_s = map->head;
sortAndSubdivide(0,map->numPhotons-1,X+Y+Z/*this is not X, Y, or Z*/);
}
/*****************************************************************************
FUNCTION
setGatherOptions
determines gather options
Preconditions:
photon memory initialized
'map' points to an already-built (and sorted) photon map
'mediaMap' is true if 'map' contians media photons, and false if
'map' contains surface photons
Postconditions:
gather gather options are set for this map
******************************************************************************/
static void setGatherOptions(PHOTON_MAP *map, int mediaMap)
{
DBL r;
DBL density;
VECTOR Point;
int numToSample;
int n,i,j;
DBL mind,maxd,avgd;
DBL sum,sum2;
DBL saveDensity;
//int greaterThan;
int lessThan;
/* if user did not set minimum gather radius,
then we should calculate it */
if (map->minGatherRad <= 0.0)
{
mind=10000000.0;
maxd=avgd=sum=sum2=0.0;
/* use 5% of photons, min 100, max 10000 */
numToSample = map->numPhotons/20;
if (numToSample>1000) numToSample = 1000;
if (numToSample<100) numToSample = 100;
for(i=0; i<numToSample; i++)
{
j = rand() % map->numPhotons;
Assign_Vector(Point,(PHOTON_AMF(map->head, j)).Loc);
n=gatherPhotons(Point, 10000000.0, &r, NULL, false, map);
if(mediaMap)
density = 3.0 * n / (4.0*M_PI*r*r*r); /* should that be 4/3? */
else
density = n / (M_PI*r*r);
if (density>maxd) maxd=density;
if (density<mind) mind=density;
sum+=density;
sum2+=density*density;
}
avgd = sum/numToSample;
/* try using some standard deviation stuff instead of this */
saveDensity = avgd;
/*
greaterThan = 0;
for(i=0; i<numToSample; i++)
{
j = rand() % map->numPhotons;
Assign_Vector(Point,(PHOTON_AMF(map->head, j)).Loc);
n=gatherPhotons(Point, 10000000.0, &r, NULL, false, map);
if(mediaMap)
density = 3.0 * n / (4.0*M_PI*r*r*r); // should that be 4/3?
else
density = n / (M_PI*r*r);
if (density>saveDensity)
greaterThan++;
}
density = saveDensity * (DBL)greaterThan / numToSample;
*/
density = saveDensity;
if(mediaMap)
{
map->minGatherRad = pow(3.0 * photonOptions.maxGatherCount / (density*M_PI*4.0), 0.3333);
}
else
map->minGatherRad = sqrt(photonOptions.maxGatherCount / (density*M_PI));
lessThan = 0;
for(i=0; i<numToSample; i++)
{
j = rand() % map->numPhotons;
Assign_Vector(Point,(PHOTON_AMF(map->head, j)).Loc);
n=gatherPhotons(Point, map->minGatherRad, &r, NULL, false, map);
if(mediaMap)
density = 3.0 * n / (4.0*M_PI*r*r*r); // should that be 4/3?
else
density = n / (M_PI*r*r);
// count as "lessThan" if the density is below 70% of the average,
// and if it is at least above 5% of the average.
if (density<(saveDensity*0.7) && density>(saveDensity*0.05))
lessThan++;
}
// the 30.0 is a bit of a fudge-factor.
map->minGatherRad*=(1.0+20.0*((DBL)lessThan/(numToSample)));
}
// Now apply the user-defined multiplier, so that the user can tell
// POV to take shortcuts which will improve speed at the expensive of
// quality. Alternatively, the user could tell POV to use a bigger
// radius to improve quality.
map->minGatherRad *= map->minGatherRadMult;
if(mediaMap)
{
/* double the radius if it is a media map */
map->minGatherRad *= 2;
}
/* always do this! - use 6 times the area */
map->gatherRadStep = map->minGatherRad*2;
/* somehow we could automatically determine the number of steps */
}
/**************************************************************
=========== PRIORITY QUEUES ===============
Each priority stores its data in the static variables below (such as
numfound_s) and in the global variables
Preconditions:
static DBL size_sq_s; - maximum radius given squared
static DBL Size_s; - radius
static DBL dmax_s; - square of radius used so far
static int TargetNum_s; - target number
static DBL *pt_s; - center point
static numfound_s; - number of photons in priority queue
these must be allocated:
photonOptions.photonGatherList - array of photons in priority queue
photonOptions.photonDistances - corresponding priorities(distances)
*Each priority queue has the following functions:
function PQInsert(PHOTON *photon, DBL d)
Inserts 'photon' into the priority queue with priority (distance
from target point) 'd'.
void PQDelMax()
Removes the photon with the greates distance (highest priority)
from the queue.
********************************************************************/
/* try different priority queues */
#define ORDERED 0
#define UNORDERED 1
#define HEAP 2
#define PRI_QUE HEAP
/* -------------- ordered list implementation ----------------- */
#if (PRI_QUE == ORDERED)
static void PQInsert(PHOTON *photon, DBL d)
{
int i,j;
Increase_Counter(stats[Priority_Queue_Add]);
/* save this in order, remove maximum, save new dmax_s */
/* store in array and shift - assumption is that we don't have
to shift often */
for (i=0; photonOptions.photonDistances[i]<d && i<(numfound_s); i++);
for (j=numfound_s; j>i; j--)
{
photonOptions.photonGatherList[j] = photonOptions.photonGatherList[j-1];
photonOptions.photonDistances[j] = photonOptions.photonDistances[j-1];
}
numfound_s++;
photonOptions.photonGatherList[i] = photon;
photonOptions.photonDistances[i] = d;
if (numfound_s==TargetNum_s)
dmax_s=photonOptions.photonDistances[numfound_s-1];
}
static void PQDelMax()
{
Increase_Counter(stats[Priority_Queue_Remove]);
numfound_s--;
}
#endif
/* -------------- unordered list implementation ----------------- */
#if (PRI_QUE == UNORDERED)
static void PQInsert(PHOTON *photon, DBL d)
{
Increase_Counter(stats[Priority_Queue_Add]);
photonOptions.photonGatherList[numfound_s] = photon;
photonOptions.photonDistances[numfound_s] = d;
if (d>dmax_s)
dmax_s=d;
numfound_s++;
}
static void PQDelMax()
{
int i,max;
Increase_Counter(stats[Priority_Queue_Remove]);
max=0;
/* find max */
for(i=1; i<numfound_s; i++)
if (photonOptions.photonDistances[i]>photonOptions.photonDistances[max]) max = i;
/* remove it, shifting the photons */
for(i=max+1; i<numfound_s; i++)
{
photonOptions.photonGatherList[i-1] = photonOptions.photonGatherList[i];
photonOptions.photonDistances[i-1] = photonOptions.photonDistances[i];
}
numfound_s--;
/* find a new dmax_s */
dmax_s=photonOptions.photonDistances[0];
for(i=1; i<numfound_s; i++)
if (photonOptions.photonDistances[i]>dmax_s) dmax_s = photonOptions.photonDistances[i];
}
#endif
/* -------------- heap implementation ----------------- */
/* this is from Sejwick (spelling?) */
#if (PRI_QUE == HEAP)
static void PQInsert(PHOTON *photon, DBL d)
{
Increase_Counter(stats[Priority_Queue_Add]);
DBL* Distances = photonOptions.photonDistances;
PHOTON** Photons = photonOptions.photonGatherList;
unsigned int k = ++numfound_s;
while (k > 1)
{
unsigned int half_k = k / 2;
DBL d_half_k_m1 = Distances[half_k - 1];
if (d < d_half_k_m1)
break;
Distances [k - 1] = d_half_k_m1;
Photons[k - 1] = Photons[half_k - 1];
k = half_k;
}
Distances [k - 1] = d;
Photons[k - 1] = photon;
}
static void FullPQInsert(PHOTON *photon, DBL d)
{
Increase_Counter(stats[Priority_Queue_Remove]);
DBL* Distances = photonOptions.photonDistances;
PHOTON** Photons = photonOptions.photonGatherList;
int k = 1, k2 = 2;
for (; k2 < numfound_s; k = k2, k2 += k)
{
DBL d_k2_m1 = Distances[k2 - 1],
d_k2 = Distances[k2];
if (d_k2 > d_k2_m1)
{
d_k2_m1 = d_k2;
++k2;
}
if (!(d_k2_m1 > d))
break;
Distances [k - 1] = d_k2_m1;
Photons[k - 1] = Photons[k2 - 1];
}
if (k2 == numfound_s) {
DBL d_k2_m1 = Distances[k2 - 1];
if (d_k2_m1 > d) {
Distances [k - 1] = d_k2_m1;
Photons[k - 1] = Photons[k2 - 1];
k = k2;
}
}
Distances [k - 1] = d;
Photons[k - 1] = photon;
/* find a new dmax_s */
dmax_s = Distances[0];
}
#endif
/*****************************************************************************
FUNCTION
gatherPhotonsRec()
Recursive part of gatherPhotons
Searches the kd-tree with range start..end (midpoint is pivot)
Preconditions:
same preconditions as priority queue functions
static variable map_s points to the map to use
'start' is the first photon in this range
'end' is the last photon in this range
the range 'start..end' must have been used in building photon map!!!
Postconditions:
photons within the range of start..end are added to the priority
queue (photons may be delted from the queue to make room for photons
of lower priority)
******************************************************************************/
static void gatherPhotonsRec(int start, int end)
{
DBL delta;
int DimToUse;
DBL d,dx,dy,dz;
int mid;
PHOTON *photon;
VECTOR ptToPhoton;
DBL discFix; /* use disc(ellipsoid) for gathering instead of sphere */
/* find midpoint */
mid = (end+start)>>1;
photon = &(PHOTON_AMF(map_s, mid));
DimToUse = photon->info & PH_MASK_XYZ;
/*
* check this photon
*/
/* find distance from pt */
ptToPhoton[X] = - pt_s[X] + photon->Loc[X];
ptToPhoton[Y] = - pt_s[Y] + photon->Loc[Y];
ptToPhoton[Z] = - pt_s[Z] + photon->Loc[Z];
/* all distances are squared */
dx = ptToPhoton[X]*ptToPhoton[X];
dy = ptToPhoton[Y]*ptToPhoton[Y];
dz = ptToPhoton[Z]*ptToPhoton[Z];
if (!( ((dx>dmax_s) && ((DimToUse)==X)) ||
((dy>dmax_s) && ((DimToUse)==Y)) ||
((dz>dmax_s) && ((DimToUse)==Z)) ))
{
/* it fits manhatten distance - maybe we can use this photon */
/* find euclidian distance (squared) */
d = dx + dy + dz;
/* now fix this distance so that we gather using an ellipsoid
alligned with the surface normal instead of a sphere. This
minimizes false bleeding of photons at sharp corners
dmax_s is square of radius of major axis
dmax_s/16 is " " " " minor " (1/6 of major axis)
*/
/*
VDot(discFix,norm_s,ptToPhoton);
discFix*=discFix*(dmax_s/1000.0-dmax_s);
*/
if (flattenFactor!=0.0)
{
VDot(discFix,norm_s,ptToPhoton);
discFix = fabs(discFix);
d += flattenFactor*(discFix)*d*16;
}
/* this will add zero if on the plane, and will double distance from
point to photon if it is ptToPhoton is perpendicular to the surface */
if(d < dmax_s)
{
if (numfound_s+1>TargetNum_s)
{
FullPQInsert(photon, d);
sqrt_dmax_s = sqrt(dmax_s);
}
else
PQInsert(photon, d);
}
}
/* now go left & right if appropriate - if going left or right goes out
the current range, then don't go that way. */
/*
delta=pt_s[DimToUse]-photon->Loc[DimToUse];
if(delta<0)
{
if (end>=mid+1) gatherPhotonsRec(start, mid - 1);
if (delta*delta < dmax_s )
if (mid-1>=start) gatherPhotonsRec(mid + 1, end);
}
else
{
if (mid-1>=start) gatherPhotonsRec(mid+1,end);
if (delta*delta < dmax_s )
if (end>=mid+1) gatherPhotonsRec(start, mid - 1);
}
*/
delta=pt_s[DimToUse]-photon->Loc[DimToUse];
if(delta<0)
{
/* on left - go left first */
if (pt_s[DimToUse]-sqrt_dmax_s < photon->Loc[DimToUse])
{
if (mid-1>=start)
gatherPhotonsRec(start, mid - 1);
}
if (pt_s[DimToUse]+sqrt_dmax_s > photon->Loc[DimToUse])
{
if(end>=mid+1)
gatherPhotonsRec(mid + 1, end);
}
}
else
{
/* on right - go right first */
if (pt_s[DimToUse]+sqrt_dmax_s > photon->Loc[DimToUse])
{
if(end>=mid+1)
gatherPhotonsRec(mid + 1, end);
}
if (pt_s[DimToUse]-sqrt_dmax_s < photon->Loc[DimToUse])
{
if (mid-1>=start)
gatherPhotonsRec(start, mid - 1);
}
}
}
/*****************************************************************************
FUNCTION
gatherPhotons()
gathers photons from the global photon map
Preconditons:
photonOptions.photonGatherList and photonOptions.photonDistances
are allocated and are each maxGatherCount in length
'Size' - maximum search radius
'r' points to a double
BuildPhotonMaps() has been called for this scene.
Postconditions:
*r is radius actually used for gathereing (maximum value is 'Size')
photonOptions.photonGatherList and photonOptions.photonDistances
contain the gathered photons
returns number of photons gathered
******************************************************************************/
int gatherPhotons(VECTOR pt, DBL Size, DBL *r, VECTOR norm, int flatten, PHOTON_MAP *map)
{
if (map->numPhotons<=0) return 0; /* no crashes, please... */
/* set the static variables */
numfound_s=0;
size_sq_s = Size*Size;
dmax_s = size_sq_s;
sqrt_dmax_s = Size;
norm_s = norm;
if(flatten)
{
flattenFactor = 1.0;
}
else
{
flattenFactor = 0.0;
}
Size_s = Size;
TargetNum_s = photonOptions.maxGatherCount;
pt_s = pt;
map_s = map->head;
/* now search the kd-tree recursively */
gatherPhotonsRec(0, map->numPhotons-1);
/* set the radius variable */
*r = sqrt_dmax_s;
/* return the number of photons found */
return(numfound_s);
}
/******************************************************************
stuff grabbed from radiosit.h & radiosit.c
******************************************************************/
extern const BYTE_XYZ rad_samples[];
static void VUnpack(VECTOR dest_vec, const BYTE_XYZ * pack_vec)
{
dest_vec[X] = ((double)pack_vec->x * (1./ 255.))*2.-1.;
dest_vec[Y] = ((double)pack_vec->y * (1./ 255.))*2.-1.;
dest_vec[Z] = ((double)pack_vec->z * (1./ 255.));
VNormalizeEq(dest_vec); /* already good to about 1%, but we can do better */
}
/******************************************************************
******************************************************************/
void ChooseRay(RAY *NewRay, VECTOR Normal, RAY * /*Ray*/, VECTOR Raw_Normal, int WhichRay)
{
VECTOR random_vec, up, n2, n3;
int i;
DBL /*n,*/ NRay_Direction;
#define REFLECT_FOR_RADIANCE 0
#if (REFLECT_FOR_RADIANCE)
/* Get direction of reflected ray. */
n = -2.0 * (Ray->Direction[X] * Normal[X] + Ray->Direction[Y] * Normal[Y] + Ray->Direction[Z] * Normal[Z]);
VLinComb2(NewRay->Direction, n, Normal, 1.0, Ray->Direction);
VDot(NRay_Direction, NewRay->Direction, Raw_Normal);
if (NRay_Direction < 0.0)
{
/* subtract 2*(projection of NRay.Direction onto Raw_Normal)
from NRay.Direction */
DBL Proj;
Proj = NRay_Direction * -2;
VAddScaledEq(NewRay->Direction, Proj, Raw_Normal);
}
return;
#else
Assign_Vector(NewRay->Direction, Normal);
#endif
if ( fabs(fabs(NewRay->Direction[Z])- 1.) < .1 ) {
/* too close to vertical for comfort, so use cross product with horizon */
up[X] = 0.; up[Y] = 1.; up[Z] = 0.;
}
else
{
up[X] = 0.; up[Y] = 0.; up[Z] = 1.;
}
VCross(n2, NewRay->Direction, up); VNormalizeEq(n2);
VCross(n3, NewRay->Direction, n2); VNormalizeEq(n3);
/*i = (int)(FRAND()*1600);*/
i = WhichRay;
WhichRay = (WhichRay + 1) % 1600;
VUnpack(random_vec, &rad_samples[i]);
if ( fabs(NewRay->Direction[Z] - 1.) < .001 ) /* pretty well straight Z, folks */
{
/* we are within 1/20 degree of pointing in the Z axis. */
/* use all vectors as is--they're precomputed this way */
Assign_Vector(NewRay->Direction, random_vec);
}
else
{
NewRay->Direction[X] = n2[X]*random_vec[X] + n3[X]*random_vec[Y] + NewRay->Direction[X]*random_vec[Z];
NewRay->Direction[Y] = n2[Y]*random_vec[X] + n3[Y]*random_vec[Y] + NewRay->Direction[Y]*random_vec[Z];
NewRay->Direction[Z] = n2[Z]*random_vec[X] + n3[Z]*random_vec[Y] + NewRay->Direction[Z]*random_vec[Z];
}
/* if our new ray goes through, flip it back across raw_normal */
VDot(NRay_Direction, NewRay->Direction, Raw_Normal);
if (NRay_Direction < 0.0)
{
/* subtract 2*(projection of NRay.Direction onto Raw_Normal)
from NRay.Direction */
DBL Proj;
Proj = NRay_Direction * -2;
VAddScaledEq(NewRay->Direction, Proj, Raw_Normal);
}
VNormalizeEq(NewRay->Direction);
}
int GetPhotonStat(POVMSType a)
{
switch(a)
{
case kPOVAttrib_ObjectPhotonCount:
return gPhotonStat_i;
case kPOVAttrib_TotalPhotonCount:
return photonOptions.photonMap.numPhotons;
case kPOVAttrib_MediaPhotonCount:
return photonOptions.mediaPhotonMap.numPhotons;
case kPOVAttrib_PhotonXSamples:
return gPhotonStat_x_samples;
case kPOVAttrib_PhotonYSamples:
return gPhotonStat_y_samples;
case kPOVAttrib_CurrentPhotonCount:
return gPhotonStat_end;
}
return 0;
}
END_POV_NAMESPACE
|