1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
|
/****************************************************************************
* radiosit.cpp
*
* This module contains all radiosity calculation functions.
*
* This file was written by Jim McElhiney.
*
* from Persistence of Vision(tm) Ray Tracer version 3.6.
* Copyright 1991-2003 Persistence of Vision Team
* Copyright 2003-2004 Persistence of Vision Raytracer Pty. Ltd.
*---------------------------------------------------------------------------
* NOTICE: This source code file is provided so that users may experiment
* with enhancements to POV-Ray and to port the software to platforms other
* than those supported by the POV-Ray developers. There are strict rules
* regarding how you are permitted to use this file. These rules are contained
* in the distribution and derivative versions licenses which should have been
* provided with this file.
*
* These licences may be found online, linked from the end-user license
* agreement that is located at http://www.povray.org/povlegal.html
*---------------------------------------------------------------------------
* This program is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
*---------------------------------------------------------------------------
* $File: //depot/povray/3.6-release/source/radiosit.cpp $
* $Revision: #3 $
* $Change: 3032 $
* $DateTime: 2004/08/02 18:43:41 $
* $Author: chrisc $
* $Log$
*****************************************************************************/
/************************************************************************
* Radiosity calculation routies.
*
* (This does not work the way that most radiosity programs do, but it accomplishes
* the diffuse interreflection integral the hard way and produces similar results. It
* is called radiosity here to avoid confusion with ambient and diffuse, which
* already have well established meanings within POV).
* Inspired by the paper "A Ray Tracing Solution for Diffuse Interreflection"
* by Ward, Rubinstein, and Clear, in Siggraph '88 proceedings.
*
* Basic Idea: Never use a constant ambient term. Instead,
* - For first pixel, cast a whole bunch of rays in different directions
* from the object intersection point to see what the diffuse illumination
* really is. Save this value, after estimating its
* degree of reusability. (Method 1)
* - For second and subsequent pixels,
* - If there are one or more nearby values already computed,
* average them and use the result (Method 2), else
* - Use method 1.
*
* Implemented by and (c) 1994-6 Jim McElhiney, mcelhiney@acm.org or 71201,1326
* All standard POV distribution rights granted. All other rights reserved.
*************************************************************************/
#include <string.h>
#include <algorithm>
#include "frame.h"
#include "lighting.h"
#include "vector.h"
#include "povray.h"
#include "render.h"
#include "texture.h"
#include "octree.h"
#include "radiosit.h"
#include "ray.h"
#include "colour.h"
#include "pov_util.h"
BEGIN_POV_NAMESPACE
USING_POV_BASE_NAMESPACE
int firstRadiosityPass;
/*****************************************************************************
* Local preprocessor defines
******************************************************************************/
#define RAD_GRADIENT 1
#define SAW_METHOD 1
/* #define SIGMOID_METHOD 1 */
/* #define SHOW_SAMPLE_SPOTS 1 */ /* try this! bright spots at sample pts */
/* #define LOW_COUNT_BRIGHT 1 */ /* this will highlight areas of low density if no extra samples are taken in the final pass */
/*****************************************************************************
* Local typedefs
******************************************************************************/
/*****************************************************************************
* Local variables
******************************************************************************/
long ra_reuse_count = 0; // GLOBAL VARIABLE
long ra_gather_count = 0; // GLOBAL VARIABLE
int Radiosity_Trace_Level = 1; // GLOBAL VARIABLE
COLOUR Radiosity_Gather_Total; // GLOBAL VARIABLE
long Radiosity_Gather_Total_Count; // GLOBAL VARIABLE
COLOUR Radiosity_Setting_Total; // GLOBAL VARIABLE
long Radiosity_Setting_Total_Count; // GLOBAL VARIABLE
#ifdef RADSTATS
extern long ot_blockcount; // GLOBAL VARIABLE
long ot_seenodecount = 0; // GLOBAL VARIABLE
long ot_seeblockcount = 0; // GLOBAL VARIABLE
long ot_doblockcount = 0; // GLOBAL VARIABLE
long ot_dotokcount = 0; // GLOBAL VARIABLE
long ot_lastcount = 0; // GLOBAL VARIABLE
long ot_lowerrorcount = 0; // GLOBAL VARIABLE
#endif
VECTOR *fast_rad_samples = NULL; // GLOBAL VARIABLE
OT_NODE *ot_root = NULL; // GLOBAL VARIABLE
/* This (and all other changing globals) should really be in an execution
* context structure passed down the execution call tree as a parameter to
* each function. This would allow for a multiprocessor/multithreaded version.
*/
OStream *ot_fd = NULL; // GLOBAL VARIABLE
/*****************************************************************************
* Static functions
******************************************************************************/
static int ra_reuse (VECTOR IPoint, VECTOR S_Normal, COLOUR Illuminance);
static int ra_average_near (OT_BLOCK *block, void *void_info);
static void ra_gather (VECTOR IPoint, VECTOR Raw_Normal, VECTOR LayNormal2, COLOUR Illuminance, DBL Weight);
static void VUnpack (VECTOR dest_vec, const BYTE_XYZ *pack);
/*****************************************************************************
*
* FUNCTION
*
* Compute_Ambient
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
*
* Main entry point for calculated diffuse illumination
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
/* the colour to be calculated */
/* maximum possible contribution to pixel colour */
/* NK rad 22 Nov 1999 - added LayNormal */
int Compute_Ambient(VECTOR IPoint, VECTOR Raw_Normal, VECTOR LayNormal, COLOUR Ambient_Colour, DBL Weight)
{
int retval, reuse;
DBL grey, save_bound;
save_bound = opts.Radiosity_Error_Bound;
if ( Weight < .25 )
{
opts.Radiosity_Error_Bound += (.25 - Weight);
}
/* NK rad 22 Nov 1999 - switched to LayNormal */
reuse = ra_reuse(IPoint, LayNormal, Ambient_Colour);
opts.Radiosity_Error_Bound = save_bound;
/* allow more samples on final pass - unless user says not to */
if((reuse >= opts.Radiosity_Nearest_Count ) ||
((firstRadiosityPass == false) && (reuse > 0) && !opts.Radiosity_Add_On_Final_Trace))
{
ra_reuse_count++;
retval = 0;
#ifdef LOW_COUNT_BRIGHT
/* use this for testing - it will tell you where too few are found */
if (reuse<opts.Radiosity_Nearest_Count)
{
Ambient_Colour[0] = 4.;
Ambient_Colour[1] = 4.;
Ambient_Colour[2] = 4.;
}
#endif
}
else
{
ra_gather(IPoint, Raw_Normal, LayNormal, Ambient_Colour, Weight);
/* NK rad - always use reuse - avoids bright/dark dots */
/* NK rad 22 Nov 1999 - switched to LayNormal */
reuse=ra_reuse(IPoint, LayNormal, Ambient_Colour);
ra_gather_count++; /* keep a running count */
retval = 1;
}
grey = GREY_SCALE(Ambient_Colour);
/* note grey spelling: american options structure with worldbeat calculations! */
Ambient_Colour[pRED] = opts.Radiosity_Gray * grey + Ambient_Colour[pRED] * (1.-opts.Radiosity_Gray);
Ambient_Colour[pGREEN] = opts.Radiosity_Gray * grey + Ambient_Colour[pGREEN] * (1.-opts.Radiosity_Gray);
Ambient_Colour[pBLUE] = opts.Radiosity_Gray * grey + Ambient_Colour[pBLUE] * (1.-opts.Radiosity_Gray);
/* Scale up by current brightness factor prior to return */
VScale(Ambient_Colour, Ambient_Colour, opts.Radiosity_Brightness);
return(retval);
}
/*****************************************************************************
*
* FUNCTION
*
* ra_reuse
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
*
* Returns whether or not there were some prestored values close enough to
* reuse.
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
static int ra_reuse(VECTOR IPoint, VECTOR S_Normal, COLOUR Illuminance)
{
int i;
WT_AVG gather;
if (ot_root != NULL)
{
Make_Colour(gather.Weights_Times_Illuminances, 0.0, 0.0, 0.0);
gather.Weights = 0.0;
Assign_Vector(gather.P, IPoint);
Assign_Vector(gather.N, S_Normal);
gather.Weights_Count = 0;
gather.Good_Count = 0;
gather.Close_Count = 0;
gather.Current_Error_Bound = opts.Radiosity_Error_Bound;
for (i = 1; i < Radiosity_Trace_Level; i++)
{
gather.Current_Error_Bound *= 2;
}
/*
* Go through the tree calculating a weighted average of all of the
* usable points near this one
*/
ot_dist_traverse(ot_root, IPoint, Radiosity_Trace_Level,
ra_average_near, (void *)&gather);
/* Did we get any nearby points we could reuse? */
if (gather.Good_Count > 0)
{
/* NK rad - Average together all of the samples (sums were returned by
ot_dist_traverse). We are using nearest_count as a lower bound,
not an upper bound.
*/
VInverseScale(Illuminance, gather.Weights_Times_Illuminances, gather.Weights);
}
}
else
{
gather.Good_Count = 0; /* No tree, so no reused values */
}
return(gather.Good_Count);
}
/*****************************************************************************
*
* FUNCTION
*
* ra_average_near
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
*
* Tree traversal function used by ra_reuse()
* Calculate the weight of this cached value, taking into account how far
* it is from our test point, and the difference in surface normal angles.
*
* Given a node with an old cached value, check to see if it is reusable, and
* aggregate its info into the weighted average being built during the tree
* traversal. block contains Point, Normal, Illuminance,
* Harmonic_Mean_Distance
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
static int ra_average_near(OT_BLOCK *block, void *void_info)
{
/* int ind, i;*/
WT_AVG *info = (WT_AVG *) void_info;
VECTOR half, delta, delta_unit;
COLOUR tc, prediction;
DBL ri, error_reuse, dir_diff, in_front, dist, weight, square_dist, dr, dg, db;
DBL error_reuse_rotate, error_reuse_translate, inverse_dist, cos_diff_from_nearest;
DBL quickcheck_rad;
#ifdef RADSTATS
ot_doblockcount++;
#endif
VSub(delta, info->P, block->Point); /* a = b - c, which is test p minus old pt */
square_dist = VSumSqr(delta);
quickcheck_rad = (DBL)block->Harmonic_Mean_Distance * info->Current_Error_Bound;
/* first we do a tuning test--this func gets called a LOT */
if (square_dist < quickcheck_rad * quickcheck_rad)
{
dist = sqrt(square_dist);
ri = (DBL)block->Harmonic_Mean_Distance;
if ( dist > .000001 )
{
inverse_dist = 1./dist;
VScale(delta_unit, delta, inverse_dist); /* this is a normalization */
/* This block reduces the radius of influence when it points near the nearest
surface found during sampling. */
VDot( cos_diff_from_nearest, block->To_Nearest_Surface, delta_unit);
if ( cos_diff_from_nearest > 0. )
{
ri = cos_diff_from_nearest * (DBL)block->Nearest_Distance +
(1.-cos_diff_from_nearest) * ri;
}
}
if (dist < ri * info->Current_Error_Bound)
{
VDot(dir_diff, info->N, block->S_Normal);
/* NB error_reuse varies from 0 to 3.82 (1+ 2 root 2) */
error_reuse_translate = dist / ri;
error_reuse_rotate = 2.0 * sqrt(fabs(1.0 - dir_diff));
error_reuse = error_reuse_translate + error_reuse_rotate;
/* is this old point within a reasonable error distance? */
if (error_reuse < info->Current_Error_Bound)
{
#ifdef RADSTATS
ot_lowerrorcount++;
#endif
if (dist > 0.000001)
{
/*
* Make sure that the old point is not in front of this point, the
* old surface might shadow this point and make the result
* meaningless
*/
VHalf(half, info->N, block->S_Normal);
VNormalizeEq(half); /* needed so check can be to constant */
VDot(in_front, delta_unit, half);
}
else
{
in_front = 1.0;
}
/*
* Theory: eliminate the use of old points well in front of our
* new point we are calculating, but not ones which are just a little
* tiny bit in front. This (usually) avoids eliminating points on the
* same surface by accident.
*/
if (in_front > (-0.05))
{
#ifdef RADSTATS
ot_dotokcount++;
#endif
#ifdef SIGMOID_METHOD
weight = error_reuse / info->Current_Error_Bound; /* 0 < t < 1 */
weight = (cos(weight * M_PI) + 1.0) * 0.5; /* 0 < w < 1 */
#endif
#ifdef SAW_METHOD
weight = 1.0 - (error_reuse / info->Current_Error_Bound); /* 0 < t < 1 */
weight = sqrt(sqrt(weight)); /* less splotchy */
/*weight = sqrt(sqrt(sqrt(weight))); maybe even less splotchy */
/*weight = weight*weight*weight*weight*weight; more splotchy */
#endif
if ( weight > 0.001 )
{ /* avoid floating point oddities near zero */
/* This is the block where we use the gradient to improve the prediction */
dr = delta[X] * block->drdx + delta[Y] * block->drdy + delta[Z] * block->drdz;
dg = delta[X] * block->dgdx + delta[Y] * block->dgdy + delta[Z] * block->dgdz;
db = delta[X] * block->dbdx + delta[Y] * block->dbdy + delta[Z] * block->dbdz;
#ifndef RAD_GRADIENT
dr = dg = db = 0.;
#endif
#if 0
/* Ensure that the total change in colour is a reasonable magnitude */
if ( dr > .1 ) dr = .1; else if ( dr < -.1 ) dr = -.1;
if ( dg > .1 ) dg = .1; else if ( dg < -.1 ) dg = -.1;
if ( db > .1 ) db = .1; else if ( db < -.1 ) db = -.1;
#endif
// NK 6-May-2003 removed clipping - not sure why it was here in the
// first place, but it sure causes problems for HDR scenes, and removing
// it doesn't seem to cause problems for non-HRD scenes.
// But we want to make sure that our deltas don't cause a positive illumination
// to go below zero, while allowing negative illuminations to stay negative.
if ((dr + block->Illuminance[pRED] < 0.0) && block->Illuminance[pRED]>0.0) dr = -block->Illuminance[pRED];
if ((dg + block->Illuminance[pGREEN] < 0.0) && block->Illuminance[pGREEN]>0.0) dg = -block->Illuminance[pGREEN];
if ((db + block->Illuminance[pBLUE] < 0.0) && block->Illuminance[pBLUE]>0.0) db = -block->Illuminance[pBLUE];
prediction[pRED] = block->Illuminance[pRED] + dr;
//prediction[pRED] = max(prediction[pRED], (COLC)0.0), (COLC)1.0);
prediction[pGREEN] = block->Illuminance[pGREEN] + dg;
//prediction[pGREEN] = max(prediction[pGREEN], (COLC)0.0), (COLC)1.0);
prediction[pBLUE] = block->Illuminance[pBLUE] + db;
//prediction[pBLUE] = max(prediction[pBLUE], (COLC)0.0), (COLC)1.0);
#ifdef SHOW_SAMPLE_SPOTS
if ( dist < opts.Radiosity_Dist_Max * .015 ) {
prediction[pRED] = prediction[pGREEN] = prediction[pBLUE] = 3.;
}
#endif
/* The predicted colour is an extrapolation based on the old value */
VScale(tc, prediction, weight);
VAddEq(info->Weights_Times_Illuminances, tc);
info->Weights += weight;
info->Weights_Count++;
info->Good_Count++;
/* NK rad - it fit in the error bound, so keep it. We use all
that fit the error bounding criteria. There is no need to put
a maximum on the number of samples that are averaged.
*/
}
}
}
}
}
return(1);
}
/*****************************************************************************
*
* FUNCTION
*
* ra_gather
*
* INPUT
* IPoint - a point at which the illumination is needed
* Raw_Normal - the surface normal (not perturbed by the current layer) at that point
* Illuminance - a place to put the return result
* Weight - the weight of this point in final output, to drive ADC_Bailout
*
* OUTPUT
* The average colour of light of objects visible from the specified point.
* The colour is returned in the Illuminance parameter.
*
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
* Gather up the incident light and average it.
* Return the results in Illuminance, and also cache them for later.
* Note that last parameter is similar to weight parameter used
* to control ADC_Bailout as a parameter to Trace(), but it also
* takes into account that this subsystem calculates only ambient
* values. Therefore, coming in at the top level, the value might
* be 0.3 if the first object hit had an ambient of 0.3, whereas
* Trace() would have been passed a parameter of 1.0 (since it
* calculates the whole pixel value).
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
static void ra_gather(VECTOR IPoint, VECTOR Raw_Normal, VECTOR LayNormal2, COLOUR Illuminance, DBL Weight)
{
extern FRAME Frame;
int i, hit, Current_Radiosity_Count;
unsigned int Save_Quality_Flags, Save_Options;
VECTOR random_vec, direction, up, min_dist_vec;
int save_Max_Trace_Level;
DBL Inverse_Distance_Sum, depth, mean_dist, weight, save_min_reuse,
drdxs, dgdxs, dbdxs, drdys, dgdys, dbdys, drdzs, dgdzs, dbdzs,
depth_weight_for_this_gradient, dxsquared, dysquared, dzsquared,
constant_term, deemed_depth, min_dist, reuse_dist_min, to_eye,
sum_of_inverse_dist, sum_of_dist, average_dist, gradient_count;
COLOUR Colour_Sums, Temp_Colour;
RAY New_Ray;
OT_BLOCK *block;
OT_ID id;
int sampleNum;
VECTOR n2,n3;
int save_nearest_count;
DBL max_ill;
DBL save_dist_max;
DBL save_adc_bailout;
VECTOR LayNormal;
/* we might change laynormal, so make sure we're using our local copy */
Assign_Vector(LayNormal,LayNormal2);
/*
* A bit of theory: The goal is to create a set of "random" direction rays
* so that the probability of close-to-normal versus close-to-tangent rolls
* off in a cos-theta curve, where theta is the deviation from normal.
* That is, lots of rays close to normal, and very few close to tangent.
* You also want to have all of the rays be evenly spread, no matter how
* many you want to use. The lookup array has an array of points carefully
* chosen to meet all of these criteria.
*/
/* The number of rays to trace varies with our recursion depth */
Current_Radiosity_Count = opts.Radiosity_Count;
save_min_reuse = opts.Radiosity_Min_Reuse;
save_nearest_count = opts.Radiosity_Nearest_Count;
save_dist_max = opts.Radiosity_Dist_Max;
/* NK rad - use different adc_bailout for radiosity calculations */
save_adc_bailout = ADC_Bailout;
if (Radiosity_Trace_Level==1)
{
ADC_Bailout *= opts.Radiosity_ADC_Bailout;
}
/* NK rad - compute dist_max on the fly */
/* we really should use the ray's footprint here... but that means we need
to keep track of the ray footprints, first */
VDist(opts.Radiosity_Dist_Max, Frame.Camera->Location, IPoint);
opts.Radiosity_Dist_Max *= 0.2;
/*for ( i=1; i<Radiosity_Trace_Level; i++ )*/
if (Radiosity_Trace_Level>1)
{
Current_Radiosity_Count /= 3;
opts.Radiosity_Min_Reuse *= 2.;
opts.Radiosity_Nearest_Count = 2;
opts.Radiosity_Dist_Max *= 2;
}
if (Radiosity_Trace_Level>2)
{
Current_Radiosity_Count /= 2;
opts.Radiosity_Nearest_Count = 1;
opts.Radiosity_Dist_Max *= 2;
}
if (Current_Radiosity_Count<5) Current_Radiosity_Count=5;
/* Save some global stuff which we have to change for now */
save_Max_Trace_Level = Max_Trace_Level;
// adjust the max_trace_level
Max_Trace_Level = Trace_Level + opts.Radiosity_Recursion_Limit + 1;
// but make sure it doesn't exceed the original max trace level
if (Max_Trace_Level>save_Max_Trace_Level) Max_Trace_Level = save_Max_Trace_Level;
// if (Max_Trace_Level>MAX_TRACE_LEVEL_LIMIT) Max_Trace_Level = MAX_TRACE_LEVEL_LIMIT;
/* Since we'll be calculating averages, zero the accumulators */
Make_Colour(Colour_Sums, 0., 0., 0.);
Inverse_Distance_Sum = 0.;
min_dist = BOUND_HUGE;
if ( fabs(fabs(LayNormal[Z])- 1.) < .1 ) {
/* too close to vertical for comfort, so use cross product with horizon */
up[X] = 0.; up[Y] = 1.; up[Z] = 0.;
}
else
{
up[X] = 0.; up[Y] = 0.; up[Z] = 1.;
}
VCross(n2, LayNormal, up); VNormalizeEq(n2);
VCross(n3, LayNormal, n2); VNormalizeEq(n3);
/* Note that this max() forces at least one ray to be shot.
Otherwise, the loop does nothing, since every call to
Trace() just bails out immediately! */
weight = max(ADC_Bailout, Weight/(DBL)Current_Radiosity_Count);
/* Initialized the accumulators for the integrals which will be come the rad gradient */
drdxs = dgdxs = dbdxs = drdys = dgdys = dbdys = drdzs = dgdzs = dbdzs = 0.;
sum_of_inverse_dist = sum_of_dist = gradient_count = 0.;
for (i = sampleNum = hit = 0; i < Current_Radiosity_Count; i++)
{
//DBL scale;
DBL rayOk=-1;
int lockupTest = 0;
/* loop through here choosing rays until we get one that is not behind
the surface */
while(rayOk<=0 && lockupTest<1600)
{
lockupTest++;
/*/Increase_Counter(stats[Gather_Performed_Count]);*/
Assign_Vector(random_vec, fast_rad_samples[sampleNum++]);
//scale = 1.0;
/* don't go beyond range of samples */
if (sampleNum>=1600) sampleNum = 0;
/* if we've taken too many incorrect samples, use raw_normal instead of laynormal */
if (sampleNum>Current_Radiosity_Count*5)
{
Assign_Vector(LayNormal,Raw_Normal);
}
if ( fabs(LayNormal[Z] - 1.) < .001 ) /* pretty well straight Z, folks */
{
/* we are within 1/20 degree of pointing in the Z axis. */
/* use all vectors as is--they're precomputed this way */
Assign_Vector(direction, random_vec);
}
else
{
direction[X] = n2[X]*random_vec[X] + n3[X]*random_vec[Y] + LayNormal[X]*random_vec[Z];
direction[Y] = n2[Y]*random_vec[X] + n3[Y]*random_vec[Y] + LayNormal[Y]*random_vec[Z];
direction[Z] = n2[Z]*random_vec[X] + n3[Z]*random_vec[Y] + LayNormal[Z]*random_vec[Z];
}
/* make sure we don't go behind raw_normal */
VDot(rayOk,direction,Raw_Normal);
}
/* Build a ray pointing in the chosen direction */
Make_Colour(Temp_Colour, 0.0, 0.0, 0.0);
Initialize_Ray_Containers(&New_Ray);
Assign_Vector(New_Ray.Initial, IPoint);
Assign_Vector(New_Ray.Direction, direction);
/* save some flags that must be set to a different value during the trace() */
Save_Quality_Flags = opts.Quality_Flags;
Save_Options = opts.Options;
opts.Radiosity_Quality = 6;
#ifdef SAFE_BUT_SLOW
opts.Quality_Flags = Quality_Values[opts.Radiosity_Quality];
#else
/* Set up a custom quality level with no area lights or light buffer */
opts.Options &= ~USE_LIGHT_BUFFER;
opts.Quality_Flags &= ~Q_AREA_LIGHT;
if(!opts.Radiosity_Use_Media)
{
opts.Quality_Flags &= ~Q_VOLUME;
}
#endif
/* Go down in recursion, trace the result, and come back up */
Trace_Level++;
Radiosity_Trace_Level++;
depth = Trace(&New_Ray, Temp_Colour, weight);
Radiosity_Trace_Level--;
Trace_Level--;
/* NK rad - each sample is limited to a user-specified brightness */
/* this is necessary to fix problems splotchiness caused by very
bright objects */
/* changed lighting.c to ignore phong/specular if tracing radiosity beam */
max_ill = max3(Temp_Colour[0],Temp_Colour[1],Temp_Colour[2]);
if(max_ill>opts.Maximum_Sample_Brightness
&& opts.Maximum_Sample_Brightness > 0.0)
{
max_ill = opts.Maximum_Sample_Brightness/max_ill;
VScaleEq(Temp_Colour, max_ill);
}
/* let's wait and scale it after we do the gradients
VScaleEq(Temp_Colour, scale);*/
/* Add into illumination gradient integrals */
deemed_depth = depth;
if (deemed_depth < opts.Radiosity_Dist_Max * 10.)
{
depth_weight_for_this_gradient = 1. / deemed_depth;
sum_of_inverse_dist += 1. / deemed_depth;
sum_of_dist += deemed_depth;
gradient_count++;
dxsquared = direction[X] * direction[X]; if (direction[X] < 0.) dxsquared = -dxsquared;
dysquared = direction[Y] * direction[Y]; if (direction[Y] < 0.) dysquared = -dysquared;
dzsquared = direction[Z] * direction[Z]; if (direction[Z] < 0.) dzsquared = -dzsquared;
drdxs += dxsquared * Temp_Colour[pRED] * depth_weight_for_this_gradient;
dgdxs += dxsquared * Temp_Colour[pGREEN] * depth_weight_for_this_gradient;
dbdxs += dxsquared * Temp_Colour[pBLUE] * depth_weight_for_this_gradient;
drdys += dysquared * Temp_Colour[pRED] * depth_weight_for_this_gradient;
dgdys += dysquared * Temp_Colour[pGREEN] * depth_weight_for_this_gradient;
dbdys += dysquared * Temp_Colour[pBLUE] * depth_weight_for_this_gradient;
drdzs += dzsquared * Temp_Colour[pRED] * depth_weight_for_this_gradient;
dgdzs += dzsquared * Temp_Colour[pGREEN] * depth_weight_for_this_gradient;
dbdzs += dzsquared * Temp_Colour[pBLUE] * depth_weight_for_this_gradient;
}
if (depth > opts.Radiosity_Dist_Max)
{
depth = opts.Radiosity_Dist_Max;
}
else
{
#ifdef RADSTATS
hit++;
#endif
}
if (depth < min_dist)
{
min_dist = depth;
Assign_Vector(min_dist_vec, direction);
}
opts.Quality_Flags = Save_Quality_Flags;
opts.Options = Save_Options;
/* Add into total illumination integral */
/* Ok, now we will scale the color (previous scale is commented out) */
VAddEq(Colour_Sums, Temp_Colour);
/* scale is always 1.0 here, so we just addeq instead of scaling!
VAddScaledEq(Colour_Sums, scale, Temp_Colour); */
Inverse_Distance_Sum += 1.0 / depth;
} /* end ray sampling loop */
/*
* Use the accumulated values to calculate the averages needed. The sphere
* of influence of this primary-method sample point is based on the
* harmonic mean distance to the points encountered. (An harmonic mean is
* the inverse of the mean of the inverses).
*/
mean_dist = 1.0 / (Inverse_Distance_Sum / (DBL) Current_Radiosity_Count);
VInverseScale(Illuminance, Colour_Sums, (DBL) Current_Radiosity_Count);
/* Keep a running total of the final Illuminances we calculated */
if ( Radiosity_Trace_Level == 1) {
VAddEq(Radiosity_Gather_Total, Illuminance);
Radiosity_Gather_Total_Count++;
}
/* We want to cached this block for later reuse. But,
* if ground units not big enough, meaning that the value has very
* limited reuse potential, forget it.
*/
if (Radiosity_Trace_Level == 1 || Current_Radiosity_Count>=5)
if (mean_dist > (opts.Radiosity_Dist_Max * 0.0001))
{
/*
* Theory: we don't want to calculate a primary method ray loop at every
* point along the inside edges, so a minimum effectivity is practical.
* It is expressed as a fraction of the distance to the eyepoint. 1/2%
* is a good number. This enhancement was Greg Ward's idea, but the use
* of % units is my idea. [JDM]
*/
VDist(to_eye, Frame.Camera->Location, IPoint);
reuse_dist_min = to_eye * opts.Radiosity_Min_Reuse;
if (mean_dist < reuse_dist_min)
{
mean_dist = reuse_dist_min;
}
/* figure out the block id */
ot_index_sphere(IPoint, mean_dist * opts.Real_Radiosity_Error_Bound, &id);
#ifdef RADSTATS
ot_blockcount++;
#endif
/* After end of ray loop, we've decided that this point is worth storing */
/* Allocate a block, and fill it with values for reuse in cacheing later */
block = (OT_BLOCK *)POV_MALLOC(sizeof(OT_BLOCK), "octree block");
memset(block, 0, sizeof(OT_BLOCK));
/* beta */
if ( gradient_count > 10)
{
average_dist = sum_of_dist / gradient_count;
constant_term = 1.00 / (sum_of_inverse_dist * average_dist );
block->drdx = (float)(drdxs * constant_term);
block->dgdx = (float)(dgdxs * constant_term);
block->dbdx = (float)(dbdxs * constant_term);
block->drdy = (float)(drdys * constant_term);
block->dgdy = (float)(dgdys * constant_term);
block->dbdy = (float)(dbdys * constant_term);
block->drdz = (float)(drdzs * constant_term);
block->dgdz = (float)(dgdzs * constant_term);
block->dbdz = (float)(dbdzs * constant_term);
}
/* Fill up the values in the octree (ot_) cache block */
Assign_RGB(block->Illuminance, Illuminance);
Assign_Vector(block->To_Nearest_Surface, min_dist_vec);
block->Harmonic_Mean_Distance = (float)mean_dist;
block->Nearest_Distance = (float)min_dist;
block->Bounce_Depth = (short)Radiosity_Trace_Level;
Assign_Vector(block->Point, IPoint);
Assign_Vector(block->S_Normal, LayNormal);
block->next = NULL;
/* store the info block in the oct tree */
ot_ins(&ot_root, block, &id);
/* In case the rendering is suspended, save the cache tree values to a file */
if ( opts.Radiosity_File_SaveWhileRendering && (ot_fd != NULL) ) {
ot_write_block(block, ot_fd);
}
}
/* Put things back where they were in recursion depth */
Max_Trace_Level = save_Max_Trace_Level;
opts.Radiosity_Min_Reuse = save_min_reuse;
opts.Radiosity_Nearest_Count = save_nearest_count;
opts.Radiosity_Dist_Max = save_dist_max;
/* NK rad - put back adc_bailout */
ADC_Bailout = save_adc_bailout;
/* NK ---- */
}
/*****************************************************************************
*
* FUNCTION VUnpack() - Unpacks "pack_vec" into "dest_vec" and normalizes it.
*
* INPUT
*
* OUTPUT
*
* RETURNS Nothing
*
* AUTHOUR Jim McElhiney
*
* DESCRIPTION
*
* The precomputed radiosity rays are packed into a lookup array with one byte
* for each of dx, dy, and dz. dx and dy are scaled from the range (-1. to 1.),
* and dz is scaled from the range (0. to 1.), and both are stored in the range
* 0 to 255.
*
* The reason for this function is that it saves a bit of memory. There are 2000
* entries in the table, and packing them saves 21 bytes each, or 42KB.
*
* CHANGES
*
* --- Jan 1996 : Creation.
*
******************************************************************************/
static void VUnpack(VECTOR dest_vec, const BYTE_XYZ * pack_vec)
{
dest_vec[X] = ((double)pack_vec->x * (1./ 255.))*2.-1.;
dest_vec[Y] = ((double)pack_vec->y * (1./ 255.))*2.-1.;
dest_vec[Z] = ((double)pack_vec->z * (1./ 255.));
VNormalizeEq(dest_vec); /* already good to about 1%, but we can do better */
}
/*****************************************************************************
*
* FUNCTION Initialize_Radiosity_Code
*
* INPUT Nothing.
*
* OUTPUT Sets various global states used by radiosity. Notably,
* ot_fd - the file identifier of the file used to save radiosity values
*
* RETURNS 1 for Success, 0 for failure (e.g., could not open cache file)
*
* AUTHOUR Jim McElhiney
*
* DESCRIPTION
*
* CHANGES
*
* --- Jan 1996 : Creation.
*
******************************************************************************/
bool Initialize_Radiosity_Code()
{
bool retval;
bool used_existing_file;
IStream *fd;
char rad_cache_filename[256];
int i;
retval = true; /* assume the best */
fast_rad_samples = (VECTOR *)POV_MALLOC(sizeof(VECTOR) * 1600, "Radiosity sample data");
for(i = 0; i < 1600; i++)
{
VUnpack(fast_rad_samples[i], &rad_samples[i]);
}
// always clear these even if radiosity isn't enabled, as otherwise
// we get misleading statistics on subsequent non-radiosity renders
opts.Radiosity_Preview_Done = 0;
ra_gather_count = 0;
ra_reuse_count = 0;
#ifdef RADSTATS
ot_seenodecount = 0;
ot_seeblockcount = 0;
ot_doblockcount = 0;
ot_dotokcount = 0;
ot_lowerrorcount = 0;
ot_lastcount = 0;
#endif
if ( opts.Radiosity_Enabled)
{
if ( opts.Radiosity_Dist_Max == 0. )
{
/* User hasn't picked a radiosity dist max, so pick one automatically. */
VDist(opts.Radiosity_Dist_Max, Frame.Camera->Location,
Frame.Camera->Look_At);
opts.Radiosity_Dist_Max *= 0.2;
}
if ( ot_fd != NULL ) /* if already open for some unknown reason, close it */
{
delete ot_fd;
ot_fd = 0;
}
/* build the file name for the radiosity cache file */
strcpy(rad_cache_filename, opts.Scene_Name);
strcat(rad_cache_filename, RADIOSITY_CACHE_EXTENSION);
opts.Real_Radiosity_Error_Bound = opts.Radiosity_Error_Bound;
/* NK rad */
if (opts.Radiosity_Load_File_Name)
{
fd = New_Checked_IStream(opts.Radiosity_Load_File_Name, POV_File_Data_RCA);
if ( fd != NULL) {
ot_read_file(fd);
delete fd;
}
POV_FREE(opts.Radiosity_Load_File_Name);
opts.Radiosity_Load_File_Name = NULL;
}
/* NK ---- */
used_existing_file = false;
if ( ((opts.Options & CONTINUE_TRACE) && opts.Radiosity_File_ReadOnContinue) ||
opts.Radiosity_File_AlwaysReadAtStart )
{
fd = New_Checked_IStream(rad_cache_filename, POV_File_Data_RCA); /* "myname.rca" */
if ( fd != NULL) {
used_existing_file = ot_read_file(fd);
retval &= used_existing_file;
delete fd;
}
}
else
{
DELETE_FILE(rad_cache_filename); /* default case, force a clean start */
}
if ( opts.Radiosity_File_SaveWhileRendering )
{
/* If we are writing a file, but not using what's there, we truncate,
since we conclude that what is there is bad.
But, if we are also using what's there, then it must be good, so
we just append to it.
*/
ot_fd = New_Checked_OStream(rad_cache_filename, POV_File_Data_RCA, used_existing_file);
retval &= (ot_fd != NULL);
}
}
return retval;
}
/*****************************************************************************
*
* FUNCTION Deinitialize_Radiosity_Code()
*
* INPUT Nothing.
*
* OUTPUT Sets various global states used by radiosity. Notably,
* ot_fd - the file identifier of the file used to save radiosity values
*
* RETURNS 1 for total success, 0 otherwise (e.g., could not save cache tree)
*
* AUTHOUR Jim McElhiney
*
* DESCRIPTION
* Wrap up and free any radiosity-specific features.
* Note that this function is safe to call even if radiosity was not on.
*
* CHANGES
*
* --- Jan 1996 : Creation.
*
******************************************************************************/
bool Deinitialize_Radiosity_Code()
{
bool retval;
char rad_cache_filename[256];
OStream *fd;
retval = true; /* assume the best */
if ( opts.Radiosity_Enabled)
{
/* if the global file identifier is set, close it */
if ( ot_fd != NULL ) {
delete ot_fd;
ot_fd = NULL;
}
/* build the file name for the radiosity cache file */
strcpy(rad_cache_filename, opts.Scene_Name);
strcat(rad_cache_filename, RADIOSITY_CACHE_EXTENSION);
/* If user has not asked us to save the radiosity cache file, delete it */
if ( opts.Radiosity_File_SaveWhileRendering &&
!(opts.Radiosity_File_KeepAlways || (Stop_Flag && opts.Radiosity_File_KeepOnAbort) ) )
{
DELETE_FILE(rad_cache_filename);
}
/* after-the-fact version. This is an alternative to putting a call to
ot_write_node after the call to ot_ins in ra_gather().
The on-the-fly version (all of the code which uses ot_fd) is superior
in that you will get partial results if you restart your rendering
with a different resolution or camera angle. This version is superior
in that your rendering goes a lot quicker.
*/
/* NK rad */
if (opts.Radiosity_Save_File_Name)
{
fd = New_Checked_OStream(opts.Radiosity_Save_File_Name, POV_File_Data_RCA, false);
if ( fd != NULL ) {
ot_save_tree(ot_root, fd);
delete fd;
}
POV_FREE(opts.Radiosity_Save_File_Name);
opts.Radiosity_Save_File_Name = NULL;
}
/* NK ---- */
if (!(opts.Radiosity_File_KeepAlways || (Stop_Flag && opts.Radiosity_File_KeepOnAbort)) &&
!opts.Radiosity_File_SaveWhileRendering && ot_root != NULL )
{
fd = New_Checked_OStream(rad_cache_filename, POV_File_Data_RCA, false);
if ( fd != NULL ) {
retval &= ot_save_tree(ot_root, fd);
delete fd;
}
else
{
retval = false;
}
}
/* Note that multiframe animations should call this free function if they have
moving objects and want correct results.
They should NOT call this function if they have no moving objects (like
fly-throughs) and want speed
*/
if ( ot_root != NULL ) {
retval &= ot_free_tree(&ot_root); /* this zeroes the root pointer */
}
}
if(fast_rad_samples != NULL)
{
POV_FREE(fast_rad_samples);
}
return retval;
}
END_POV_NAMESPACE
|