File: colourspace.cpp

package info (click to toggle)
povray 1%3A3.7.0.0-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 105,396 kB
  • ctags: 115,305
  • sloc: cpp: 438,613; ansic: 118,761; sh: 37,706; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,282; cs: 879; awk: 590; perl: 245; xml: 95
file content (391 lines) | stat: -rw-r--r-- 13,559 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*******************************************************************************
 * colourspace.cpp
 *
 * ---------------------------------------------------------------------------
 * Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
 * Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
 *
 * POV-Ray is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * POV-Ray is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * ---------------------------------------------------------------------------
 * POV-Ray is based on the popular DKB raytracer version 2.12.
 * DKBTrace was originally written by David K. Buck.
 * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
 * ---------------------------------------------------------------------------
 * $File: //depot/public/povray/3.x/source/base/image/colourspace.cpp $
 * $Revision: #1 $
 * $Change: 6069 $
 * $DateTime: 2013/11/06 11:59:40 $
 * $Author: chrisc $
 *******************************************************************************/

#include <vector>
#include <algorithm>
#include <cassert>

// configbase.h must always be the first POV file included within base *.cpp files
#include "base/configbase.h"
#include "base/image/colourspace.h"
#include "base/image/encoding.h"
#include "base/povmsgid.h"

// this must be the last file included
#include "base/povdebug.h"

namespace pov_base
{

// definitions of static GammaCurve member variables to satisfy the linker
list<boost::weak_ptr<GammaCurve> > GammaCurve::cache;
boost::mutex GammaCurve::cacheMutex;

// definitions of static GammaCurve-derivatives' member variables to satisfy the linker
SimpleGammaCurvePtr NeutralGammaCurve::instance;
SimpleGammaCurvePtr SRGBGammaCurve::instance;
GammaCurvePtr ITURBT709GammaCurve::instance;
GammaCurvePtr Rec1361GammaCurve::instance;

/*******************************************************************************/

float* GammaCurve::GetLookupTable(unsigned int max)
{
	assert(max == 255 || max == 65535); // shouldn't happen, but it won't hurt to check in debug versions

	// Get a reference to the lookup table pointer we're dealing with, so we don't need to duplicate all the remaining code.
	float*& lookupTable = (max == 255 ? lookupTable8 : lookupTable16);

	// Make sure we're not racing any other thread that might currently be busy creating the LUT.
	boost::mutex::scoped_lock lock(lutMutex);

	// Create the LUT if it doesn't exist yet.
	if (!lookupTable)
	{
		float* tempTable = new float[max+1];
		for (unsigned int i = 0; i <= max; i ++)
			tempTable[i] = Decode(IntDecode(i, max));

		// hook up the table only as soon as it is completed, so that querying the table does not need to
		// care about thread-safety.
		lookupTable = tempTable;
	}

	return lookupTable;
}

GammaCurvePtr GammaCurve::GetMatching(const GammaCurvePtr& newInstance)
{
	GammaCurvePtr oldInstance;
	bool cached = false;

	// See if we have a matching gamma curve in our chache already

	// make sure the cache doesn't get tampered with while we're working on it
	boost::mutex::scoped_lock lock(cacheMutex);

	// Check if we already have created a matching gamma curve object; if so, return that object instead.
	// Also, make sure we get the new object stored (as we're using weak pointers, we may have stale entries;
	// it also won't hurt if we store the new instance, even if we decide to discard it)
	for(list<boost::weak_ptr<GammaCurve> >::iterator i(cache.begin()); i != cache.end(); i++)
	{
		oldInstance = (*i).lock();
		if (!oldInstance)
		{
			// Found a stale entry in the cache where we could store the new instance, in case we don't find any match.
			// As the cache uses weak pointers, we can just as well store the new instance now right away,
			// and leave it up to the weak pointer mechanism to clean up in case we find an existing instance.
			if (!cached)
				(*i) = newInstance;
			cached = true;
		}
		else if (oldInstance->Matches(newInstance))
		{
			// Found a matching curve in the cache, so use that instead, and (as far as we're concerned)
			// just forget that the new instance ever existed (allowing the shared_ptr mechanism to garbage-collect it)
			return oldInstance;
		}
	}

	// No matching gamma curve in the cache yet

	// Store the new entry in the cache if we haven't done so already.
	if (!cached)
		cache.push_back(newInstance);

	return newInstance;
}

/*******************************************************************************/

NeutralGammaCurve::NeutralGammaCurve() {}
SimpleGammaCurvePtr NeutralGammaCurve::Get()
{
	if (!instance)
		instance.reset(new NeutralGammaCurve());
	return SimpleGammaCurvePtr(instance);
}
float NeutralGammaCurve::Encode(float x) const
{
	return x;
}
float NeutralGammaCurve::Decode(float x) const
{
	return x;
}
float NeutralGammaCurve::ApproximateDecodingGamma() const
{
	return 1.0f;
}
int NeutralGammaCurve::GetTypeId() const
{
	return kPOVList_GammaType_Neutral;
}
bool NeutralGammaCurve::Matches(const GammaCurvePtr& p) const
{
	return GammaCurve::IsNeutral(p);
}
bool NeutralGammaCurve::IsNeutral() const
{
	return true;
}

/*******************************************************************************/

SRGBGammaCurve::SRGBGammaCurve() {}
SimpleGammaCurvePtr SRGBGammaCurve::Get()
{
	if (!instance)
		instance.reset(new SRGBGammaCurve());
	return SimpleGammaCurvePtr(instance);
}
float SRGBGammaCurve::Encode(float x) const
{
	// (the threshold of 0.00304 occasionally found on the net was from an older draft)
	if (x <= 0.0031308f) return x * 12.92f;
	else                 return 1.055f * pow(x, 1.0f/2.4f) - 0.055f;
}
float SRGBGammaCurve::Decode(float x) const
{
	// (the threshold of 0.03928 occasionally found on the net was from an older draft)
	if (x < 0.04045f) return x / 12.92f;
	else              return pow((x + 0.055f) / 1.055f, 2.4f);
}
float SRGBGammaCurve::ApproximateDecodingGamma() const
{
	return 2.2f;
}
int SRGBGammaCurve::GetTypeId() const
{
	return kPOVList_GammaType_SRGB;
}

/*******************************************************************************/

ITURBT709GammaCurve::ITURBT709GammaCurve() {}
GammaCurvePtr ITURBT709GammaCurve::Get()
{
	if (!instance)
		instance.reset(new ITURBT709GammaCurve());
	return GammaCurvePtr(instance);
}
float ITURBT709GammaCurve::Encode(float x) const
{
	if (x < 0.018f) return x * 4.5f;
	else            return 1.099f * pow(x, 0.45f) - 0.099f;
}
float ITURBT709GammaCurve::Decode(float x) const
{
	if (x < 0.081f) return x / 4.5f;
	else            return pow((x + 0.099f) / 1.099f, 1.0f/0.45f);
}
float ITURBT709GammaCurve::ApproximateDecodingGamma() const
{
	return 1.9f; // very rough approximation
}

/*******************************************************************************/

Rec1361GammaCurve::Rec1361GammaCurve() {}
GammaCurvePtr Rec1361GammaCurve::Get()
{
	if (!instance)
		instance.reset(new Rec1361GammaCurve());
	return GammaCurvePtr(instance);
}
float Rec1361GammaCurve::Encode(float x) const
{
	if      (x < -0.0045f) return (1.099f * pow(-4*x, 0.45f) - 0.099f) / 4;
	else if (x <  0.018f)  return x * 4.5f;
	else                   return 1.099f * pow(x,0.45f) - 0.099f;
}
float Rec1361GammaCurve::Decode(float x) const
{
	if      (x < -0.02025f) return pow((4*x + 0.099f) / 1.099f, 1.0f/0.45f) / -4;
	else if (x <  0.081f)   return x / 4.5f;
	else                    return pow((x + 0.099f) / 1.099f, 1.0f/0.45f);
}
float Rec1361GammaCurve::ApproximateDecodingGamma() const
{
	return 1.9f; // very rough approximation of the x>0 section
}

/*******************************************************************************/

PowerLawGammaCurve::PowerLawGammaCurve(float gamma) :
	encGamma(gamma)
{}
SimpleGammaCurvePtr PowerLawGammaCurve::GetByEncodingGamma(float gamma)
{
	if (IsNeutral(gamma))
		return NeutralGammaCurve::Get();
	return boost::dynamic_pointer_cast<SimpleGammaCurve,GammaCurve>(GetMatching(GammaCurvePtr(new PowerLawGammaCurve(gamma))));
}
SimpleGammaCurvePtr PowerLawGammaCurve::GetByDecodingGamma(float gamma)
{
	return GetByEncodingGamma(1.0f/gamma);
}
float PowerLawGammaCurve::Encode(float x) const
{
	return pow(max(x,0.0f), encGamma);
}
float PowerLawGammaCurve::Decode(float x) const
{
	return pow(max(x,0.0f), 1.0f/encGamma);
}
float PowerLawGammaCurve::ApproximateDecodingGamma() const
{
	return 1.0f/encGamma;
}
int PowerLawGammaCurve::GetTypeId() const
{
	return kPOVList_GammaType_PowerLaw;
}
float PowerLawGammaCurve::GetParam() const
{
	return 1.0f/encGamma;
}
bool PowerLawGammaCurve::Matches(const GammaCurvePtr& p) const
{
	PowerLawGammaCurve* other = dynamic_cast<PowerLawGammaCurve*>(p.get());
	if (!other) return false;
	return IsNeutral(this->encGamma / other->encGamma);
}
bool PowerLawGammaCurve::IsNeutral(float gamma)
{
	return fabs(1.0 - gamma) <= 0.01;
}

/*******************************************************************************/

ScaledGammaCurve::ScaledGammaCurve(const GammaCurvePtr& gamma, float factor) :
	baseGamma(gamma), encFactor(factor)
{
	ScaledGammaCurve* other = dynamic_cast<ScaledGammaCurve*>(baseGamma.get());
	if (other) // if base gamma curve is a scaled one as well, compute a combined scaling factor instead of nesting
	{
		baseGamma = other->baseGamma;
		encFactor *= other->encFactor;
	}
}
GammaCurvePtr ScaledGammaCurve::GetByEncoding(const GammaCurvePtr& gamma, float factor)
{
	if (IsNeutral(factor))
		return GammaCurvePtr(gamma);
	return GetMatching(GammaCurvePtr(new ScaledGammaCurve(
		GammaCurve::IsNeutral(gamma) ? GammaCurvePtr(NeutralGammaCurve::Get()) : gamma,
		factor)));
}
GammaCurvePtr ScaledGammaCurve::GetByDecoding(float factor, const GammaCurvePtr& gamma)
{
	return GetByEncoding(gamma, 1.0f/factor);
}
float ScaledGammaCurve::Encode(float x) const
{
	return baseGamma->Encode(x) * encFactor;
}
float ScaledGammaCurve::Decode(float x) const
{
	return baseGamma->Decode(x / encFactor);
}
float ScaledGammaCurve::ApproximateDecodingGamma() const
{
	return baseGamma->ApproximateDecodingGamma();
}
bool ScaledGammaCurve::Matches(const GammaCurvePtr& p) const
{
	ScaledGammaCurve* other = dynamic_cast<ScaledGammaCurve*>(p.get());
	if (!other) return false;
	return (this->baseGamma == other->baseGamma) && IsNeutral(this->encFactor / other->encFactor);
}
bool ScaledGammaCurve::IsNeutral(float scale) { return fabs(1.0 - scale) <= 1e-6; }

/*******************************************************************************/

TranscodingGammaCurve::TranscodingGammaCurve(const GammaCurvePtr& working, const GammaCurvePtr& encoding) :
	workGamma(working), encGamma(encoding)
{}
GammaCurvePtr TranscodingGammaCurve::Get(const GammaCurvePtr& working, const GammaCurvePtr& encoding)
{
	// if the working gamma space is linear, we only need the encoding gamma
	if (GammaCurve::IsNeutral(working))
		return GammaCurvePtr(encoding);
	// if both gamma spaces are the same, we can replace them with a neutral gamma curve
	if (working->Matches(encoding))
		return NeutralGammaCurve::Get();
	// check if we can replace the combination of gamma curves with a single power-law gamma curve
	PowerLawGammaCurve* powerLawWork = dynamic_cast<PowerLawGammaCurve*>(working.get());
	if (powerLawWork)
	{
		// if the encoding gamma space is linear, we only need the inverse of the working gamma
		if (GammaCurve::IsNeutral(encoding))
			return PowerLawGammaCurve::GetByEncodingGamma(powerLawWork->ApproximateDecodingGamma());
		// if both gamma spaces are based on a simple power-law, we only need to combine them into a single one
		PowerLawGammaCurve* powerLawEnc  = dynamic_cast<PowerLawGammaCurve*>(encoding.get());
		if (powerLawEnc)
			return PowerLawGammaCurve::GetByEncodingGamma(powerLawWork->ApproximateDecodingGamma() / powerLawEnc->ApproximateDecodingGamma());
	}
	// we really need a combo of two gamma curves
	return GetMatching(GammaCurvePtr(new TranscodingGammaCurve(working, encoding ? encoding : GammaCurvePtr(NeutralGammaCurve::Get()))));
}
float TranscodingGammaCurve::Encode(float x) const
{
	return encGamma->Encode(workGamma->Decode(x));
}
float TranscodingGammaCurve::Decode(float x) const
{
	return workGamma->Encode(encGamma->Decode(x));
}
float TranscodingGammaCurve::ApproximateDecodingGamma() const
{
	return encGamma->ApproximateDecodingGamma() / workGamma->ApproximateDecodingGamma();
}
bool TranscodingGammaCurve::Matches(const GammaCurvePtr& p) const
{
	TranscodingGammaCurve* other = dynamic_cast<TranscodingGammaCurve*>(p.get());
	if (!other) return false;
	return (this->encGamma->Matches(other->encGamma) && this->workGamma->Matches(other->workGamma));
}

/*******************************************************************************/

SimpleGammaCurvePtr GetGammaCurve(int type, float param)
{
	switch (type)
	{
		case kPOVList_GammaType_Neutral:    return NeutralGammaCurve::Get();
		case kPOVList_GammaType_PowerLaw:   return PowerLawGammaCurve::GetByDecodingGamma(param);
		case kPOVList_GammaType_SRGB:       return SRGBGammaCurve::Get();
		default:                            return PowerLawGammaCurve::GetByDecodingGamma(DEFAULT_FILE_GAMMA);
	}
}

}