File: encoding.cpp

package info (click to toggle)
povray 1%3A3.7.0.0-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 105,396 kB
  • ctags: 115,305
  • sloc: cpp: 438,613; ansic: 118,761; sh: 37,706; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,282; cs: 879; awk: 590; perl: 245; xml: 95
file content (595 lines) | stat: -rw-r--r-- 25,017 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*******************************************************************************
 * encoding.cpp
 *
 * ---------------------------------------------------------------------------
 * Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
 * Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
 *
 * POV-Ray is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * POV-Ray is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * ---------------------------------------------------------------------------
 * POV-Ray is based on the popular DKB raytracer version 2.12.
 * DKBTrace was originally written by David K. Buck.
 * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
 * ---------------------------------------------------------------------------
 * $File: //depot/public/povray/3.x/source/base/image/encoding.cpp $
 * $Revision: #1 $
 * $Change: 6069 $
 * $DateTime: 2013/11/06 11:59:40 $
 * $Author: chrisc $
 *******************************************************************************/

// configbase.h must always be the first POV file included within base *.cpp files
#include "base/configbase.h"
#include "base/image/encoding.h"
#include "base/image/image.h"
#include "base/povmsgid.h"

// this must be the last file included
#include "base/povdebug.h"

namespace pov_base
{

/*******************************************************************************/

#define ALPHA_EPSILON 1.0e-6

static const unsigned int MaxBayerMatrixSize = 4;
typedef float BayerMatrix[MaxBayerMatrixSize][MaxBayerMatrixSize];

static const BayerMatrix BayerMatrices[MaxBayerMatrixSize+1] = 
{
	// dummy for 0x0
	{ { 0 } },
	// 1x1 (of little use, but here it is)
	{ { 1/2.0-0.5 } },
	// 2x2
	{ { 1/4.0-0.5, 3/4.0-0.5 },
	  { 4/4.0-0.5, 2/4.0-0.5 } },
	// 3x3
	{ { 3/9.0-0.5, 7/9.0-0.5, 4/9.0-0.5 },
	  { 6/9.0-0.5, 1/9.0-0.5, 9/9.0-0.5 },
	  { 2/9.0-0.5, 8/9.0-0.5, 5/9.0-0.5 } },
	// 4x4
	{ {  1/16.0-0.5,  9/16.0-0.5,  3/16.0-0.5, 11/16.0-0.5 },
	  { 13/16.0-0.5,  5/16.0-0.5, 15/16.0-0.5,  7/16.0-0.5 },
	  {  4/16.0-0.5, 12/16.0-0.5,  2/16.0-0.5, 10/16.0-0.5 },
	  { 16/16.0-0.5,  8/16.0-0.5, 14/16.0-0.5,  6/16.0-0.5 } }
};

/*******************************************************************************/

/// Class representing "no-op" dithering rules.
class NoDither : public DitherHandler
{
	public:
		virtual void getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt);
};

/// Class representing bayer dithering rules, generating a regular pattern.
class BayerDither : public DitherHandler
{
	public:
		BayerDither(unsigned int mxSize);
		virtual void getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt);
		static inline float getOffset(unsigned int x, unsigned int y, unsigned int ms) { return BayerMatrices[ms][x%ms][y%ms]; }
	protected:
		OffsetInfo  lastErr;
		int         matrixSize;
};

/// Class representing simple 1D error diffusion dithering rules, carrying over the error from one pixel to the next.
class DiffusionDither1D : public DitherHandler
{
	public:
		virtual void getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt);
		virtual void setError(unsigned int x, unsigned int y, const OffsetInfo& err);
	protected:
		OffsetInfo lastErr;
};

/// Class representing simple 2D error diffusion dithering rules, carrying over the error from one pixel to the right, as well as the two pixels below.
/// @note   This implementation uses an additional 1-line pixel buffer to avoid manipulating the original image.
class DiffusionDither2D : public DitherHandler
{
	public:
		DiffusionDither2D(unsigned int width);
		virtual ~DiffusionDither2D();
		virtual void getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt);
		virtual void setError(unsigned int x, unsigned int y, const OffsetInfo& err);
	protected:
		unsigned int imageWidth;
		OffsetInfo* nextRowOffset;
		OffsetInfo* thisRowOffset;
};

/// Class representing Floyd-Steinberg dithering rules, carrying over the error from one pixel to the right, as well as the three pixels below.
/// @note   This implementation uses an additional 1-line pixel buffer to avoid manipulating the original image.
class FloydSteinbergDither : public DitherHandler
{
	public:
		FloydSteinbergDither(unsigned int width);
		virtual ~FloydSteinbergDither();
		virtual void getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt);
		virtual void setError(unsigned int x, unsigned int y, const OffsetInfo& err);
	protected:
		unsigned int imageWidth;
		OffsetInfo* nextRowOffset;
		OffsetInfo* thisRowOffset;
};

/*******************************************************************************/

void NoDither::getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt)
{
	offLin.clear();
	offQnt.clear();
}

/*******************************************************************************/

BayerDither::BayerDither(unsigned int mxSize) :
	matrixSize(min(mxSize,MaxBayerMatrixSize))
{
	;
}

void BayerDither::getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt)
{
	offLin.clear();
	offQnt.setAll(getOffset(x, y, matrixSize));
}

/*******************************************************************************/

void DiffusionDither1D::getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt)
{
	offLin = lastErr; lastErr.clear(); offQnt.clear();
}

void DiffusionDither1D::setError(unsigned int x, unsigned int y, const OffsetInfo& err)
{
	lastErr = err;
}

/*******************************************************************************/

DiffusionDither2D::DiffusionDither2D(unsigned int width) :
	imageWidth(width),
	thisRowOffset(new OffsetInfo[width+1]),
	nextRowOffset(new OffsetInfo[width+1])
{
	;
}

DiffusionDither2D::~DiffusionDither2D()
{
	delete[] thisRowOffset;
	delete[] nextRowOffset;
}

void DiffusionDither2D::getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt)
{
	offLin = thisRowOffset[x];
	offQnt.clear();
}

void DiffusionDither2D::setError(unsigned int x, unsigned int y, const OffsetInfo& err)
{
	if (x == 0)
	{
		OffsetInfo* tmp = nextRowOffset;
		nextRowOffset = thisRowOffset;
		thisRowOffset = tmp;
		for (unsigned int i = 0; i < imageWidth+1; i ++)
			nextRowOffset[i].clear();
	}
	thisRowOffset[x+1] += err * (2/4.0); // pixel to the right
	nextRowOffset[x]   += err * (1/4.0); // pixel below
	nextRowOffset[x+1] += err * (1/4.0); // pixel below right
}

/*******************************************************************************/

FloydSteinbergDither::FloydSteinbergDither(unsigned int width) :
	imageWidth(width),
	thisRowOffset(new OffsetInfo[width+2]),
	nextRowOffset(new OffsetInfo[width+2])
{
	;
}

FloydSteinbergDither::~FloydSteinbergDither()
{
	delete[] thisRowOffset;
	delete[] nextRowOffset;
}

void FloydSteinbergDither::getOffset(unsigned int x, unsigned int y, OffsetInfo& offLin, OffsetInfo& offQnt)
{
	offLin = thisRowOffset[x+1];
	offQnt.clear();
}

void FloydSteinbergDither::setError(unsigned int x, unsigned int y, const OffsetInfo& err)
{
	if (x == 0)
	{
		OffsetInfo* tmp = nextRowOffset;
		nextRowOffset = thisRowOffset;
		thisRowOffset = tmp;
		for (unsigned int i = 0; i < imageWidth+2; i ++)
			nextRowOffset[i].clear();
	}
	thisRowOffset[x+2] += err * (7/16.0); // pixel to the right
	nextRowOffset[x]   += err * (3/16.0); // pixel below left
	nextRowOffset[x+1] += err * (5/16.0); // pixel below
	nextRowOffset[x+2] += err * (1/16.0); // pixel below right
}

/*******************************************************************************/

DitherHandlerPtr GetDitherHandler(int method, unsigned int imageWidth)
{
	switch (method)
	{
		case kPOVList_DitherMethod_None:            return DitherHandlerPtr(new NoDither());
		case kPOVList_DitherMethod_Diffusion1D:     return DitherHandlerPtr(new DiffusionDither1D());
		case kPOVList_DitherMethod_Diffusion2D:     return DitherHandlerPtr(new DiffusionDither2D(imageWidth));
		case kPOVList_DitherMethod_FloydSteinberg:  return DitherHandlerPtr(new FloydSteinbergDither(imageWidth));
		case kPOVList_DitherMethod_Bayer2x2:        return DitherHandlerPtr(new BayerDither(2));
		case kPOVList_DitherMethod_Bayer3x3:        return DitherHandlerPtr(new BayerDither(3));
		case kPOVList_DitherMethod_Bayer4x4:        return DitherHandlerPtr(new BayerDither(4));
		default:                                    throw POV_EXCEPTION_STRING("Invalid dither method for output");
	}
}

DitherHandlerPtr GetNoOpDitherHandler()
{
	return DitherHandlerPtr(new NoDither());
}

/*******************************************************************************/

float GetDitherOffset(unsigned int x, unsigned int y)
{
	return BayerDither::getOffset(x,y,4);
}

/*******************************************************************************/

inline void AlphaPremultiply(float& fGray, float fAlpha)
{
	fGray *= fAlpha;
}
inline void AlphaPremultiply(float& fRed, float& fGreen, float& fBlue, float fAlpha)
{
	fRed   *= fAlpha;
	fGreen *= fAlpha;
	fBlue  *= fAlpha;
}
inline void AlphaUnPremultiply(float& fGray, float fAlpha)
{
	if (fAlpha == 0)
		// This special case has no perfectly sane solution. We'll just pretend that fAlpha is very, very small but non-zero.
		fAlpha = ALPHA_EPSILON;
	fGray /= fAlpha;
}
inline void AlphaUnPremultiply(float& fRed, float& fGreen, float& fBlue, float fAlpha)
{
	if (fAlpha == 0)
		// This special case has no perfectly sane solution. We'll just pretend that fAlpha is very, very small but non-zero.
		fAlpha = ALPHA_EPSILON;
	fRed   /= fAlpha;
	fGreen /= fAlpha;
	fBlue  /= fAlpha;
}

void SetEncodedGrayValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int gray)
{
	if (!img->IsIndexed() && img->GetMaxIntValue() == max && GammaCurve::IsNeutral(g))
		// avoid potential re-quantization in case we have a pretty match between encoded data and container
		img->SetGrayValue(x, y, gray);
	else
		img->SetGrayValue(x, y, IntDecode(g,gray,max));
}
void SetEncodedGrayAValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int gray, unsigned int alpha, bool premul)
{
	bool doPremultiply   = (alpha != max) && !premul && (img->IsPremultiplied() || !img->HasTransparency()); // need to apply premultiplication if encoded data isn't PM'ed but container content should be
	bool doUnPremultiply = (alpha != max) && premul && !img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	if (!doPremultiply && !doUnPremultiply && !img->IsIndexed() && img->GetMaxIntValue() == max && GammaCurve::IsNeutral(g))
		// avoid potential re-quantization in case we have a pretty match between encoded data and container
		img->SetGrayAValue(x, y, gray, alpha);
	else
	{
		float fAlpha = IntDecode(alpha,max);
		float fGray  = IntDecode(g,gray,max);
		if (doPremultiply)
			AlphaPremultiply(fGray, fAlpha);
		else if (doUnPremultiply)
			AlphaUnPremultiply(fGray, fAlpha);
		// else no need to worry about premultiplication
		img->SetGrayAValue(x, y, fGray, fAlpha);
	}
}
void SetEncodedRGBValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int red, unsigned int green, unsigned int blue)
{
	if (!img->IsIndexed() && img->GetMaxIntValue() == max && GammaCurve::IsNeutral(g))
		// avoid potential re-quantization in case we have a pretty match between encoded data and container
		img->SetRGBValue(x, y, red, green, blue);
	else
		img->SetRGBValue(x, y, IntDecode(g,red,max), IntDecode(g,green,max), IntDecode(g,blue,max));
}
void SetEncodedRGBAValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int red, unsigned int green, unsigned int blue, unsigned int alpha, bool premul)
{
	bool doPremultiply   = (alpha != max) && !premul && (img->IsPremultiplied() || !img->HasTransparency()); // need to apply premultiplication if encoded data isn't PM'ed but container content should be
	bool doUnPremultiply = (alpha != max) && premul && !img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	if (!doPremultiply && !doUnPremultiply && !img->IsIndexed() && img->GetMaxIntValue() == max && GammaCurve::IsNeutral(g))
		// avoid potential re-quantization in case we have a pretty match between encoded data and container
		img->SetRGBAValue(x, y, red, green, blue, alpha);
	else
	{
		float fAlpha = IntDecode(alpha,  max);
		float fRed   = IntDecode(g,red,  max);
		float fGreen = IntDecode(g,green,max);
		float fBlue  = IntDecode(g,blue, max);
		if (doPremultiply)
			AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
		else if (doUnPremultiply)
			AlphaUnPremultiply(fRed, fGreen, fBlue, fAlpha);
		// else no need to worry about premultiplication
		img->SetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
	}
}
void SetEncodedGrayValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float fGray)
{
	img->SetGrayValue(x, y, GammaCurve::Decode(g,fGray));
}
void SetEncodedGrayAValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float fGray, float fAlpha, bool premul)
{
	bool doPremultiply   = !premul && (img->IsPremultiplied() || !img->HasTransparency()); // need to apply premultiplication if encoded data isn't PM'ed but container content should be
	bool doUnPremultiply = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	fGray = GammaCurve::Decode(g,fGray);
	if (doPremultiply)
		AlphaPremultiply(fGray, fAlpha);
	else if (doUnPremultiply)
		AlphaUnPremultiply(fGray, fAlpha);
	// else no need to worry about premultiplication
	img->SetGrayAValue(x, y, fGray, fAlpha);
}
void SetEncodedRGBValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float red, float green, float blue)
{
	img->SetRGBValue(x, y, GammaCurve::Decode(g,red), GammaCurve::Decode(g,green), GammaCurve::Decode(g,blue));
}
void SetEncodedRGBAValue(Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float fRed, float fGreen, float fBlue, float fAlpha, bool premul)
{
	bool doPremultiply   = !premul && (img->IsPremultiplied() || !img->HasTransparency()); // need to apply premultiplication if encoded data isn't PM'ed but container content should be
	bool doUnPremultiply = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	fRed   = GammaCurve::Decode(g,fRed);
	fGreen = GammaCurve::Decode(g,fGreen);
	fBlue  = GammaCurve::Decode(g,fBlue);
	if (doPremultiply)
		AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
	else if (doUnPremultiply)
		AlphaUnPremultiply(fRed, fGreen, fBlue, fAlpha);
	// else no need to worry about premultiplication
	img->SetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
}

unsigned int GetEncodedGrayValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, DitherHandler& dh)
{
	float fGray;
	if (!img->IsPremultiplied() && img->HasTransparency())
	{
		// data has transparency and is stored non-premultiplied; precompose against a black background
		float fAlpha;
		img->GetGrayAValue(x, y, fGray, fAlpha);
		AlphaPremultiply(fGray, fAlpha);
	}
	else
	{
		// no need to worry about premultiplication
		fGray = img->GetGrayValue(x, y);
	}
	DitherHandler::OffsetInfo linOff, encOff;
	dh.getOffset(x,y,linOff,encOff);
	unsigned int iGray = IntEncode(g,fGray+linOff.gray,max,encOff.gray,linOff.gray);
	dh.setError(x,y,linOff);
	return iGray;
}
void GetEncodedGrayAValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int& gray, unsigned int& alpha, DitherHandler& dh, bool premul)
{
	bool doPremultiply   = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to apply premultiplication if encoded data should be premul'ed but container content isn't
	bool doUnPremultiply = !premul && img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	float fGray, fAlpha;
	img->GetGrayAValue(x, y, fGray, fAlpha);
	if (doPremultiply)
	{
		AlphaPremultiply(fGray, fAlpha);
	}
	else if (doUnPremultiply)
	{
		// Data has been stored premultiplied, but should be encoded non-premultiplied.
		// Clipping will happen /before/ re-multiplying with alpha (because the latter is done in the viewer), which is equivalent to clipping
		// pre-multiplied components to be no greater than alpha, thereby "killing" highlights on transparent objects;
		// compensate for this by boosting opacity of any exceptionally bright pixels.
		if (fGray > fAlpha)
			fAlpha = min(1.0f, fGray);
		// Need to convert from premultiplied to non-premultiplied encoding.
		AlphaUnPremultiply(fGray, fAlpha);
	}
	else if (!premul)
	{
		// Data has been stored un-premultiplied and should be encoded that way.
		// Clipping will happen /before/ multiplying with alpha (because the latter is done in the viewer), which is equivalent to clipping
		// pre-multiplied components to be no greater than alpha, thereby "killing" highlights on transparent objects;
		// compensate for this by boosting opacity of any exceptionally bright pixels.
		if (fGray > 1.0)
		{
			float fFactor = fGray;
			if (fFactor * fAlpha > 1.0)
				fFactor = 1.0/fAlpha;
			// this keeps the product of alpha*color constant
			fAlpha *= fFactor;
			fGray  /= fFactor;
		}
		// No need for converting between premultiplied and un-premultiplied encoding.
	}
	// else no need to worry about premultiplication
	DitherHandler::OffsetInfo linOff, encOff;
	dh.getOffset(x,y,linOff,encOff);
	gray  = IntEncode(g, fGray + linOff.gray,  max, encOff.gray,  linOff.gray);
	alpha = IntEncode(fAlpha   + linOff.alpha, max, encOff.alpha, linOff.alpha);
	dh.setError(x,y,linOff);
}
void GetEncodedRGBValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int& red, unsigned int& green, unsigned int& blue, DitherHandler& dh)
{
	float fRed, fGreen, fBlue;
	if (!img->IsPremultiplied() && img->HasTransparency())
	{
		float fAlpha;
		// data has transparency and is stored non-premultiplied; precompose against a black background
		img->GetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
		AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
	}
	else
	{
		// no need to worry about premultiplication
		img->GetRGBValue(x, y, fRed, fGreen, fBlue);
	}
	DitherHandler::OffsetInfo linOff, encOff;
	dh.getOffset(x,y,linOff,encOff);
	red   = IntEncode(g,fRed   + linOff.red,   max, encOff.red,   linOff.red);
	green = IntEncode(g,fGreen + linOff.green, max, encOff.green, linOff.green);
	blue  = IntEncode(g,fBlue  + linOff.blue,  max, encOff.blue,  linOff.blue);
	dh.setError(x,y,linOff);
}
void GetEncodedRGBAValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, unsigned int max, unsigned int& red, unsigned int& green, unsigned int& blue, unsigned int& alpha, DitherHandler& dh, bool premul)
{
	bool doPremultiply   = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to apply premultiplication if encoded data should be premul'ed but container content isn't
	bool doUnPremultiply = !premul && img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	float fRed, fGreen, fBlue, fAlpha;
	img->GetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
	if (doPremultiply)
	{
		// Data has been stored premultiplied, but should be encoded non-premultiplied.
		// No need for special handling of color components greater than alpha.
		// Need to convert from premultiplied to non-premultiplied encoding.
		AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
	}
	else if (doUnPremultiply)
	{
		// Data has been stored premultiplied, but should be encoded non-premultiplied.
		// Clipping will happen /before/ re-multiplying with alpha (because the latter is done in the viewer), which is equivalent to clipping
		// pre-multiplied components to be no greater than alpha, thereby "killing" highlights on transparent objects;
		// compensate for this by boosting opacity of any exceptionally bright pixels.
		float fBright = RGBColour(fRed, fGreen, fBlue).greyscale();
		if (fBright > fAlpha)
			fAlpha = min(1.0f, fBright);
		// Need to convert from premultiplied to non-premultiplied encoding.
		AlphaUnPremultiply(fRed, fGreen, fBlue, fAlpha);
	}
	else if (!premul)
	{
		// Data has been stored un-premultiplied and should be encoded that way.
		// Clipping will happen /before/ multiplying with alpha (because the latter is done in the viewer), which is equivalent to clipping
		// pre-multiplied components to be no greater than alpha, thereby "killing" highlights on transparent objects;
		// compensate for this by boosting opacity of any exceptionally bright pixels.
		float fBright = RGBColour(fRed, fGreen, fBlue).greyscale();
		if (fBright > 1.0)
		{
			float fFactor = fBright;
			if (fFactor * fAlpha > 1.0)
				fFactor = 1.0/fAlpha;
			// this keeps the product of alpha*color constant
			fAlpha *= fFactor;
			fRed   /= fFactor;
			fGreen /= fFactor;
			fBlue  /= fFactor;
		}
		// No need for converting between premultiplied and un-premultiplied encoding.
	}
	// else no need to worry about premultiplication
	DitherHandler::OffsetInfo linOff, encOff;
	dh.getOffset(x,y,linOff,encOff);
	red   = IntEncode(g,fRed   + linOff.red,   max, encOff.red,   linOff.red);
	green = IntEncode(g,fGreen + linOff.green, max, encOff.green, linOff.green);
	blue  = IntEncode(g,fBlue  + linOff.blue,  max, encOff.blue,  linOff.blue);
	alpha = IntEncode(fAlpha   + linOff.alpha, max, encOff.alpha, linOff.alpha);
	dh.setError(x,y,linOff);
}

float GetEncodedGrayValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g)
{
	float fGray;
	if (!img->IsPremultiplied() && img->HasTransparency())
	{
		// data has transparency and is stored non-premultiplied; precompose against a black background
		float fAlpha;
		img->GetGrayAValue(x, y, fGray, fAlpha);
		AlphaPremultiply(fGray, fAlpha);
	}
	else
	{
		// no need to worry about premultiplication
		fGray = img->GetGrayValue(x, y);
	}
	return GammaCurve::Encode(g,fGray);
}
void GetEncodedGrayAValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float& fGray, float& fAlpha, bool premul)
{
	bool doPremultiply   = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to apply premultiplication if encoded data should be premul'ed but container content isn't
	bool doUnPremultiply = !premul && img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	img->GetGrayAValue(x, y, fGray, fAlpha);
	if (doPremultiply)
		AlphaPremultiply(fGray, fAlpha);
	else if (doUnPremultiply)
		AlphaUnPremultiply(fGray, fAlpha);
	// else no need to worry about premultiplication
	fGray = GammaCurve::Encode(g,fGray);
}
void GetEncodedRGBValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float& fRed, float& fGreen, float& fBlue)
{
	if (!img->IsPremultiplied() && img->HasTransparency())
	{
		// data has transparency and is stored non-premultiplied; precompose against a black background
		float fAlpha;
		img->GetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
		AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
	}
	else
	{
		// no need to worry about premultiplication
		img->GetRGBValue(x, y, fRed, fGreen, fBlue);
	}
	fRed   = GammaCurve::Encode(g,fRed);
	fGreen = GammaCurve::Encode(g,fGreen);
	fBlue  = GammaCurve::Encode(g,fBlue);
}
void GetEncodedRGBAValue(const Image* img, unsigned int x, unsigned int y, const GammaCurvePtr& g, float& fRed, float& fGreen, float& fBlue, float& fAlpha, bool premul)
{
	bool doPremultiply   = premul && !img->IsPremultiplied() && img->HasTransparency(); // need to apply premultiplication if encoded data should be premul'ed but container content isn't
	bool doUnPremultiply = !premul && img->IsPremultiplied() && img->HasTransparency(); // need to undo premultiplication if other way round
	img->GetRGBAValue(x, y, fRed, fGreen, fBlue, fAlpha);
	if (doPremultiply)
		AlphaPremultiply(fRed, fGreen, fBlue, fAlpha);
	else if (doUnPremultiply)
		AlphaUnPremultiply(fRed, fGreen, fBlue, fAlpha);
	// else no need to worry about premultiplication
	fRed   = GammaCurve::Encode(g,fRed);
	fGreen = GammaCurve::Encode(g,fGreen);
	fBlue  = GammaCurve::Encode(g,fBlue);
}

}