1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012, Autodesk, Inc.
//
// All rights reserved.
//
// Implementation of IIF-specific file format and speed optimizations
// provided by Innobec Technologies inc on behalf of Autodesk.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#pragma once
#ifndef INCLUDED_IMF_OPTIMIZED_PIXEL_READING_H
#define INCLUDED_IMF_OPTIMIZED_PIXEL_READING_H
#include "ImfSimd.h"
#include "ImfSystemSpecific.h"
#include <iostream>
#include "ImfChannelList.h"
#include "ImfFrameBuffer.h"
#include "ImfStringVectorAttribute.h"
OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_ENTER
class OptimizationMode
{
public:
bool _optimizable;
int _ySampling;
OptimizationMode() : _optimizable(false) {}
};
#if IMF_HAVE_SSE2
//------------------------------------------------------------------------
// Test for SSE pointer alignemnt
//------------------------------------------------------------------------
EXR_FORCEINLINE
bool
isPointerSSEAligned (const void* EXR_RESTRICT pPointer)
{
unsigned long trailingBits = ((unsigned long)pPointer) & 15;
return trailingBits == 0;
}
//------------------------------------------------------------------------
// Load SSE from address into register
//------------------------------------------------------------------------
template<bool IS_ALIGNED>
EXR_FORCEINLINE
__m128i loadSSE (__m128i*& loadAddress)
{
// throw exception :: this is not accepted
return _mm_loadu_si128 (loadAddress);
}
template<>
EXR_FORCEINLINE
__m128i loadSSE<false> (__m128i*& loadAddress)
{
return _mm_loadu_si128 (loadAddress);
}
template<>
EXR_FORCEINLINE
__m128i loadSSE<true> (__m128i*& loadAddress)
{
return _mm_load_si128 (loadAddress);
}
//------------------------------------------------------------------------
// Store SSE from register into address
//------------------------------------------------------------------------
template<bool IS_ALIGNED>
EXR_FORCEINLINE
void storeSSE (__m128i*& storeAddress, __m128i& dataToStore)
{
}
template<>
EXR_FORCEINLINE
void
storeSSE<false> (__m128i*& storeAddress, __m128i& dataToStore)
{
_mm_storeu_si128 (storeAddress, dataToStore);
}
template<>
EXR_FORCEINLINE
void
storeSSE<true> (__m128i*& storeAddress, __m128i& dataToStore)
{
_mm_stream_si128 (storeAddress, dataToStore);
}
//------------------------------------------------------------------------
//
// Write to RGBA
//
//------------------------------------------------------------------------
//
// Using SSE intrinsics
//
template<bool READ_PTR_ALIGNED, bool WRITE_PTR_ALIGNED>
EXR_FORCEINLINE
void writeToRGBASSETemplate
(__m128i*& readPtrSSERed,
__m128i*& readPtrSSEGreen,
__m128i*& readPtrSSEBlue,
__m128i*& readPtrSSEAlpha,
__m128i*& writePtrSSE,
const size_t& lPixelsToCopySSE)
{
for (size_t i = 0; i < lPixelsToCopySSE; ++i)
{
__m128i redRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSERed);
__m128i greenRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEGreen);
__m128i blueRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEBlue);
__m128i alphaRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEAlpha);
__m128i redGreenRegister = _mm_unpacklo_epi16 (redRegister,
greenRegister);
__m128i blueAlphaRegister = _mm_unpacklo_epi16 (blueRegister,
alphaRegister);
__m128i pixel12Register = _mm_unpacklo_epi32 (redGreenRegister,
blueAlphaRegister);
__m128i pixel34Register = _mm_unpackhi_epi32 (redGreenRegister,
blueAlphaRegister);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel12Register);
++writePtrSSE;
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel34Register);
++writePtrSSE;
redGreenRegister = _mm_unpackhi_epi16 (redRegister, greenRegister);
blueAlphaRegister = _mm_unpackhi_epi16 (blueRegister, alphaRegister);
pixel12Register = _mm_unpacklo_epi32 (redGreenRegister,
blueAlphaRegister);
pixel34Register = _mm_unpackhi_epi32 (redGreenRegister,
blueAlphaRegister);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel12Register);
++writePtrSSE;
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel34Register);
++writePtrSSE;
++readPtrSSEAlpha;
++readPtrSSEBlue;
++readPtrSSEGreen;
++readPtrSSERed;
}
}
//
// Not using SSE intrinsics. This is still faster than the alternative
// because we have multiple read pointers and therefore we are able to
// take advantage of data locality for write operations.
//
EXR_FORCEINLINE
void writeToRGBANormal (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
unsigned short*& readPtrAlpha,
unsigned short*& writePtr,
const size_t& lPixelsToCopy)
{
for (size_t i = 0; i < lPixelsToCopy; ++i)
{
*(writePtr++) = *(readPtrRed++);
*(writePtr++) = *(readPtrGreen++);
*(writePtr++) = *(readPtrBlue++);
*(writePtr++) = *(readPtrAlpha++);
}
}
//
// Determine which (template) version to use by checking whether pointers
// are aligned
//
EXR_FORCEINLINE
void optimizedWriteToRGBA (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
unsigned short*& readPtrAlpha,
unsigned short*& writePtr,
const size_t& pixelsToCopySSE,
const size_t& pixelsToCopyNormal)
{
bool readPtrAreAligned = true;
readPtrAreAligned &= isPointerSSEAligned(readPtrRed);
readPtrAreAligned &= isPointerSSEAligned(readPtrGreen);
readPtrAreAligned &= isPointerSSEAligned(readPtrBlue);
readPtrAreAligned &= isPointerSSEAligned(readPtrAlpha);
bool writePtrIsAligned = isPointerSSEAligned(writePtr);
if (!readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBASSETemplate<false, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)readPtrAlpha,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (!readPtrAreAligned && writePtrIsAligned)
{
writeToRGBASSETemplate<false, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)readPtrAlpha,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBASSETemplate<true, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)readPtrAlpha,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if(readPtrAreAligned && writePtrIsAligned)
{
writeToRGBASSETemplate<true, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)readPtrAlpha,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
writeToRGBANormal (readPtrRed, readPtrGreen, readPtrBlue, readPtrAlpha,
writePtr, pixelsToCopyNormal);
}
//------------------------------------------------------------------------
//
// Write to RGBA Fill A
//
//------------------------------------------------------------------------
//
// Using SSE intrinsics
//
template<bool READ_PTR_ALIGNED, bool WRITE_PTR_ALIGNED>
EXR_FORCEINLINE
void
writeToRGBAFillASSETemplate (__m128i*& readPtrSSERed,
__m128i*& readPtrSSEGreen,
__m128i*& readPtrSSEBlue,
const unsigned short& alphaFillValue,
__m128i*& writePtrSSE,
const size_t& pixelsToCopySSE)
{
const __m128i dummyAlphaRegister = _mm_set_epi16 (alphaFillValue,
alphaFillValue,
alphaFillValue,
alphaFillValue,
alphaFillValue,
alphaFillValue,
alphaFillValue,
alphaFillValue);
for (size_t pixelCounter = 0; pixelCounter < pixelsToCopySSE; ++pixelCounter)
{
__m128i redRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSERed);
__m128i greenRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEGreen);
__m128i blueRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEBlue);
__m128i redGreenRegister = _mm_unpacklo_epi16 (redRegister,
greenRegister);
__m128i blueAlphaRegister = _mm_unpacklo_epi16 (blueRegister,
dummyAlphaRegister);
__m128i pixel12Register = _mm_unpacklo_epi32 (redGreenRegister,
blueAlphaRegister);
__m128i pixel34Register = _mm_unpackhi_epi32 (redGreenRegister,
blueAlphaRegister);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel12Register);
++writePtrSSE;
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel34Register);
++writePtrSSE;
redGreenRegister = _mm_unpackhi_epi16 (redRegister,
greenRegister);
blueAlphaRegister = _mm_unpackhi_epi16 (blueRegister,
dummyAlphaRegister);
pixel12Register = _mm_unpacklo_epi32 (redGreenRegister,
blueAlphaRegister);
pixel34Register = _mm_unpackhi_epi32 (redGreenRegister,
blueAlphaRegister);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel12Register);
++writePtrSSE;
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, pixel34Register);
++writePtrSSE;
++readPtrSSEBlue;
++readPtrSSEGreen;
++readPtrSSERed;
}
}
//
// Not using SSE intrinsics. This is still faster than the alternative
// because we have multiple read pointers and therefore we are able to
// take advantage of data locality for write operations.
//
EXR_FORCEINLINE
void
writeToRGBAFillANormal (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
const unsigned short& alphaFillValue,
unsigned short*& writePtr,
const size_t& pixelsToCopy)
{
for (size_t i = 0; i < pixelsToCopy; ++i)
{
*(writePtr++) = *(readPtrRed++);
*(writePtr++) = *(readPtrGreen++);
*(writePtr++) = *(readPtrBlue++);
*(writePtr++) = alphaFillValue;
}
}
//
// Determine which (template) version to use by checking whether pointers
// are aligned.
//
EXR_FORCEINLINE
void
optimizedWriteToRGBAFillA (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
const unsigned short& alphaFillValue,
unsigned short*& writePtr,
const size_t& pixelsToCopySSE,
const size_t& pixelsToCopyNormal)
{
bool readPtrAreAligned = true;
readPtrAreAligned &= isPointerSSEAligned (readPtrRed);
readPtrAreAligned &= isPointerSSEAligned (readPtrGreen);
readPtrAreAligned &= isPointerSSEAligned (readPtrBlue);
bool writePtrIsAligned = isPointerSSEAligned (writePtr);
if (!readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBAFillASSETemplate<false, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
alphaFillValue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (!readPtrAreAligned && writePtrIsAligned)
{
writeToRGBAFillASSETemplate<false, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
alphaFillValue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBAFillASSETemplate<true, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
alphaFillValue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (readPtrAreAligned && writePtrIsAligned)
{
writeToRGBAFillASSETemplate<true, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
alphaFillValue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
writeToRGBAFillANormal (readPtrRed,
readPtrGreen, readPtrBlue, alphaFillValue,
writePtr, pixelsToCopyNormal);
}
//------------------------------------------------------------------------
//
// Write to RGB
//
//------------------------------------------------------------------------
//
// Using SSE intrinsics
//
template<bool READ_PTR_ALIGNED, bool WRITE_PTR_ALIGNED>
EXR_FORCEINLINE
void
writeToRGBSSETemplate (__m128i*& readPtrSSERed,
__m128i*& readPtrSSEGreen,
__m128i*& readPtrSSEBlue,
__m128i*& writePtrSSE,
const size_t& pixelsToCopySSE)
{
for (size_t pixelCounter = 0; pixelCounter < pixelsToCopySSE; ++pixelCounter)
{
//
// Need to shuffle and unpack pointers to obtain my first register
// We must save 8 pixels at a time, so we must have the following three registers at the end:
// 1) R1 G1 B1 R2 G2 B2 R3 G3
// 2) B3 R4 G4 B4 R5 G5 B5 R6
// 3) G6 B6 R7 G7 B7 R8 G8 B8
//
__m128i redRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSERed);
__m128i greenRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEGreen);
__m128i blueRegister = loadSSE<READ_PTR_ALIGNED> (readPtrSSEBlue);
//
// First register: R1 G1 B1 R2 G2 B2 R3 G3
// Construct 2 registers and then unpack them to obtain our final result:
//
__m128i redGreenRegister = _mm_unpacklo_epi16 (redRegister,
greenRegister);
__m128i redBlueRegister = _mm_unpacklo_epi16 (redRegister,
blueRegister);
__m128i greenBlueRegister = _mm_unpacklo_epi16 (greenRegister,
blueRegister);
// Left Part (R1 G1 B1 R2)
__m128i quarterRight = _mm_shufflelo_epi16 (redBlueRegister,
_MM_SHUFFLE(3,0,2,1));
__m128i halfLeft = _mm_unpacklo_epi32 (redGreenRegister,
quarterRight);
// Right Part (G2 B2 R3 G3)
__m128i quarterLeft = _mm_shuffle_epi32 (greenBlueRegister,
_MM_SHUFFLE(3,2,0,1));
quarterRight = _mm_shuffle_epi32 (redGreenRegister,
_MM_SHUFFLE(3,0,1,2));
__m128i halfRight = _mm_unpacklo_epi32 (quarterLeft, quarterRight);
__m128i fullRegister = _mm_unpacklo_epi64 (halfLeft, halfRight);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, fullRegister);
++writePtrSSE;
//
// Second register: B3 R4 G4 B4 R5 G5 B5 R6
//
// Left Part (B3, R4, G4, B4)
quarterLeft = _mm_shufflehi_epi16 (redBlueRegister,
_MM_SHUFFLE(0, 3, 2, 1));
quarterRight = _mm_shufflehi_epi16 (greenBlueRegister,
_MM_SHUFFLE(1, 0, 3, 2));
halfLeft = _mm_unpackhi_epi32 (quarterLeft, quarterRight);
// Update the registers
redGreenRegister = _mm_unpackhi_epi16 (redRegister, greenRegister);
redBlueRegister = _mm_unpackhi_epi16 (redRegister, blueRegister);
greenBlueRegister = _mm_unpackhi_epi16 (greenRegister, blueRegister);
// Right Part (R5 G5 B5 R6)
quarterRight = _mm_shufflelo_epi16 (redBlueRegister,
_MM_SHUFFLE(3,0,2,1));
halfRight = _mm_unpacklo_epi32 (redGreenRegister, quarterRight);
fullRegister = _mm_unpacklo_epi64 (halfLeft, halfRight);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, fullRegister);
++writePtrSSE;
//
// Third register: G6 B6 R7 G7 B7 R8 G8 B8
//
// Left part (G6 B6 R7 G7)
quarterLeft = _mm_shuffle_epi32 (greenBlueRegister,
_MM_SHUFFLE(3,2,0,1));
quarterRight = _mm_shuffle_epi32 (redGreenRegister,
_MM_SHUFFLE(3,0,1,2));
halfLeft = _mm_unpacklo_epi32 (quarterLeft, quarterRight);
// Right part (B7 R8 G8 B8)
quarterLeft = _mm_shufflehi_epi16 (redBlueRegister,
_MM_SHUFFLE(0, 3, 2, 1));
quarterRight = _mm_shufflehi_epi16 (greenBlueRegister,
_MM_SHUFFLE(1, 0, 3, 2));
halfRight = _mm_unpackhi_epi32 (quarterLeft, quarterRight);
fullRegister = _mm_unpacklo_epi64 (halfLeft, halfRight);
storeSSE<WRITE_PTR_ALIGNED> (writePtrSSE, fullRegister);
++writePtrSSE;
//
// Increment read pointers
//
++readPtrSSEBlue;
++readPtrSSEGreen;
++readPtrSSERed;
}
}
//
// Not using SSE intrinsics. This is still faster than the alternative
// because we have multiple read pointers and therefore we are able to
// take advantage of data locality for write operations.
//
EXR_FORCEINLINE
void
writeToRGBNormal (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
unsigned short*& writePtr,
const size_t& pixelsToCopy)
{
for (size_t i = 0; i < pixelsToCopy; ++i)
{
*(writePtr++) = *(readPtrRed++);
*(writePtr++) = *(readPtrGreen++);
*(writePtr++) = *(readPtrBlue++);
}
}
//
// Determine which (template) version to use by checking whether pointers
// are aligned
//
EXR_FORCEINLINE
void optimizedWriteToRGB (unsigned short*& readPtrRed,
unsigned short*& readPtrGreen,
unsigned short*& readPtrBlue,
unsigned short*& writePtr,
const size_t& pixelsToCopySSE,
const size_t& pixelsToCopyNormal)
{
bool readPtrAreAligned = true;
readPtrAreAligned &= isPointerSSEAligned(readPtrRed);
readPtrAreAligned &= isPointerSSEAligned(readPtrGreen);
readPtrAreAligned &= isPointerSSEAligned(readPtrBlue);
bool writePtrIsAligned = isPointerSSEAligned(writePtr);
if (!readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBSSETemplate<false, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (!readPtrAreAligned && writePtrIsAligned)
{
writeToRGBSSETemplate<false, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (readPtrAreAligned && !writePtrIsAligned)
{
writeToRGBSSETemplate<true, false> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
else if (readPtrAreAligned && writePtrIsAligned)
{
writeToRGBSSETemplate<true, true> ((__m128i*&)readPtrRed,
(__m128i*&)readPtrGreen,
(__m128i*&)readPtrBlue,
(__m128i*&)writePtr,
pixelsToCopySSE);
}
writeToRGBNormal (readPtrRed, readPtrGreen, readPtrBlue,
writePtr, pixelsToCopyNormal);
}
#else // ! defined IMF_HAVE_SSE2
#endif // defined IMF_HAVE_SSE2
OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_EXIT
#endif
|