1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2009-2014 DreamWorks Animation LLC.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//
// A program to generate various acceleration lookup tables
// for Imf::DwaCompressor
//
#include <cstddef>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <OpenEXRConfig.h>
#ifdef OPENEXR_IMF_HAVE_SYSCONF_NPROCESSORS_ONLN
#include <unistd.h>
#endif
#include <half.h>
#include <IlmThread.h>
#include <IlmThreadSemaphore.h>
#include <ImfIO.h>
#include <ImfXdr.h>
#include "ImfNamespace.h"
using namespace OPENEXR_IMF_NAMESPACE;
namespace {
class LutHeaderWorker
{
public:
class Runner : public IlmThread::Thread
{
public:
Runner(LutHeaderWorker &worker, bool output):
IlmThread::Thread(),
_worker(worker),
_output(output)
{
start();
}
virtual ~Runner()
{
_semaphore.wait();
}
virtual void run()
{
_semaphore.post();
_worker.run(_output);
}
private:
LutHeaderWorker &_worker;
bool _output;
IlmThread::Semaphore _semaphore;
}; // class LutHeaderWorker::Runner
LutHeaderWorker(size_t startValue,
size_t endValue):
_lastCandidateCount(0),
_startValue(startValue),
_endValue(endValue),
_numElements(0),
_offset(new size_t[numValues()]),
_elements(new unsigned short[1024*1024*2])
{
}
~LutHeaderWorker()
{
delete[] _offset;
delete[] _elements;
}
size_t lastCandidateCount() const
{
return _lastCandidateCount;
}
size_t numValues() const
{
return _endValue - _startValue;
}
size_t numElements() const
{
return _numElements;
}
const size_t* offset() const
{
return _offset;
}
const unsigned short* elements() const
{
return _elements;
}
void run(bool outputProgress)
{
half candidate[16];
int candidateCount = 0;
for (size_t input=_startValue; input<_endValue; ++input) {
if (outputProgress) {
#ifdef __GNUC__
if (input % 100 == 0) {
fprintf(stderr,
" Building acceleration for DwaCompressor, %.2f %% %c",
100.*(float)input/(float)numValues(), 13);
}
#else
if (input % 1000 == 0) {
fprintf(stderr,
" Building acceleration for DwaCompressor, %.2f %%\n",
100.*(float)input/(float)numValues());
}
#endif
}
int numSetBits = countSetBits(input);
half inputHalf, closestHalf;
inputHalf.setBits(input);
_offset[input - _startValue] = _numElements;
// Gather candidates
candidateCount = 0;
for (int targetNumSetBits=numSetBits-1; targetNumSetBits>=0;
--targetNumSetBits) {
bool valueFound = false;
for (int i=0; i<65536; ++i) {
if (countSetBits(i) != targetNumSetBits) continue;
if (!valueFound) {
closestHalf.setBits(i);
valueFound = true;
} else {
half tmpHalf;
tmpHalf.setBits(i);
if (fabs((float)inputHalf - (float)tmpHalf) <
fabs((float)inputHalf - (float)closestHalf)) {
closestHalf = tmpHalf;
}
}
}
if (valueFound == false) {
fprintf(stderr, "bork bork bork!\n");
}
candidate[candidateCount] = closestHalf;
candidateCount++;
}
// Sort candidates by increasing number of bits set
for (int i=0; i<candidateCount; ++i) {
for (int j=i+1; j<candidateCount; ++j) {
int iCnt = countSetBits(candidate[i].bits());
int jCnt = countSetBits(candidate[j].bits());
if (jCnt < iCnt) {
half tmp = candidate[i];
candidate[i] = candidate[j];
candidate[j] = tmp;
}
}
}
// Copy candidates to the data buffer;
for (int i=0; i<candidateCount; ++i) {
_elements[_numElements] = candidate[i].bits();
_numElements++;
}
if (input == _endValue-1) {
_lastCandidateCount = candidateCount;
}
}
}
private:
size_t _lastCandidateCount;
size_t _startValue;
size_t _endValue;
size_t _numElements;
size_t *_offset;
unsigned short *_elements;
//
// Precomputing the bit count runs faster than using
// the builtin instruction, at least in one case..
//
// Precomputing 8-bits is no slower than 16-bits,
// and saves a fair bit of overhead..
//
int countSetBits(unsigned short src)
{
static const unsigned short numBitsSet[256] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
return numBitsSet[src & 0xff] + numBitsSet[src >> 8];
}
}; // class LutHeaderWorker
} // namespace
//
// Generate a no-op LUT, to cut down in conditional branches
//
void
generateNoop()
{
printf("const unsigned short dwaCompressorNoOp[] = \n");
printf("{");
for (int i=0; i<65536; ++i) {
if (i % 8 == 0) {
printf("\n ");
}
unsigned short dst;
char *tmp = (char *)(&dst);
unsigned short src = (unsigned short)i;
Xdr::write <CharPtrIO> (tmp, src);
printf("0x%04x, ", dst);
}
printf("\n};\n");
}
//
// Nonlinearly encode luminance. For values below 1.0, we want
// to use a gamma 2.2 function to match what is fairly common
// for storing output referred. However, > 1, gamma functions blow up,
// and log functions are much better behaved. We could use a log
// function everywhere, but it tends to over-sample dark
// regions and undersample the brighter regions, when
// compared to the way real devices reproduce values.
//
// So, above 1, use a log function which is a smooth blend
// into the gamma function.
//
// Nonlinear(linear) =
//
// linear^(1./2.2) / linear <= 1.0
// |
// ln(linear)/ln(e^2.2) + 1 \ otherwise
//
//
// toNonlinear[] needs to take in XDR format half float values,
// and output NATIVE format float.
//
// toLinear[] does the opposite - takes in NATIVE half and
// outputs XDR half values.
//
void
generateToLinear()
{
unsigned short toLinear[65536];
toLinear[0] = 0;
for (int i=1; i<65536; ++i) {
half h;
float sign = 1;
float logBase = pow(2.7182818, 2.2);
// map NaN and inf to 0
if ((i & 0x7c00) == 0x7c00) {
toLinear[i] = 0;
continue;
}
//
// _toLinear - assume i is NATIVE, but our output needs
// to get flipped to XDR
//
h.setBits(i);
sign = 1;
if ((float)h < 0) {
sign = -1;
}
if ( fabs( (float)h) <= 1.0 ) {
h = (half)(sign * pow((float)fabs((float)h), 2.2f));
} else {
h = (half)(sign * pow(logBase, (float)(fabs((float)h) - 1.0)));
}
{
char *tmp = (char *)(&toLinear[i]);
Xdr::write <CharPtrIO> ( tmp, h.bits());
}
}
printf("const unsigned short dwaCompressorToLinear[] = \n");
printf("{");
for (int i=0; i<65536; ++i) {
if (i % 8 == 0) {
printf("\n ");
}
printf("0x%04x, ", toLinear[i]);
}
printf("\n};\n");
}
void
generateToNonlinear()
{
unsigned short toNonlinear[65536];
toNonlinear[0] = 0;
for (int i=1; i<65536; ++i) {
unsigned short usNative, usXdr;
half h;
float sign = 1;
float logBase = pow(2.7182818, 2.2);
usXdr = i;
{
const char *tmp = (char *)(&usXdr);
Xdr::read<CharPtrIO>(tmp, usNative);
}
// map NaN and inf to 0
if ((usNative & 0x7c00) == 0x7c00) {
toNonlinear[i] = 0;
continue;
}
//
// toNonlinear - assume i is XDR
//
h.setBits(usNative);
sign = 1;
if ((float)h < 0) {
sign = -1;
}
if ( fabs( (float)h ) <= 1.0) {
h = (half)(sign * pow(fabs((float)h), 1.f/2.2f));
} else {
h = (half)(sign * ( log(fabs((float)h)) / log(logBase) + 1.0) );
}
toNonlinear[i] = h.bits();
}
printf("const unsigned short dwaCompressorToNonlinear[] = \n");
printf("{");
for (int i=0; i<65536; ++i) {
if (i % 8 == 0) {
printf("\n ");
}
printf("0x%04x, ", toNonlinear[i]);
}
printf("\n};\n");
}
//
// Attempt to get available CPUs in a somewhat portable way.
//
int
cpuCount()
{
if (!IlmThread::supportsThreads()) return 1;
int cpuCount = 1;
#if defined (OPENEXR_IMF_HAVE_SYSCONF_NPROCESSORS_ONLN)
cpuCount = sysconf(_SC_NPROCESSORS_ONLN);
#elif defined (_WIN32)
SYSTEM_INFO sysinfo;
GetSystemInfo( &sysinfo );
cpuCount = sysinfo.dwNumberOfProcessors;
#endif
if (cpuCount < 1) cpuCount = 1;
return cpuCount;
}
//
// Generate acceleration luts for the quantization.
//
// For each possible input value, we want to find the closest numbers
// which have one fewer bits set than before.
//
// This gives us num_bits(input)-1 values per input. If we alloc
// space for everything, that's like a 2MB table. We can do better
// by compressing all the values to be contigious and using offset
// pointers.
//
// After we've found the candidates with fewer bits set, sort them
// based on increasing numbers of bits set. This way, on quantize(),
// we can scan through the list and halt once we find the first
// candidate within the error range. For small values that can
// be quantized to 0, 0 is the first value tested and the search
// can exit fairly quickly.
//
void
generateLutHeader()
{
std::vector<LutHeaderWorker*> workers;
size_t numWorkers = cpuCount();
size_t workerInterval = 65536 / numWorkers;
for (size_t i=0; i<numWorkers; ++i) {
if (i != numWorkers-1) {
workers.push_back( new LutHeaderWorker( i *workerInterval,
(i+1)*workerInterval) );
} else {
workers.push_back( new LutHeaderWorker(i*workerInterval, 65536) );
}
}
if (IlmThread::supportsThreads()) {
std::vector<LutHeaderWorker::Runner*> runners;
for (size_t i=0; i<workers.size(); ++i) {
runners.push_back( new LutHeaderWorker::Runner(*workers[i], (i==0)) );
}
for (size_t i=0; i<workers.size(); ++i) {
delete runners[i];
}
} else {
for (size_t i=0; i<workers.size(); ++i) {
workers[i]->run(i == 0);
}
}
printf("static unsigned int closestDataOffset[] = {\n");
int offsetIdx = 0;
int offsetPrev = 0;
for (size_t i=0; i<workers.size(); ++i) {
for (size_t value=0; value<workers[i]->numValues(); ++value) {
if (offsetIdx % 8 == 0) {
printf(" ");
}
printf("%6lu, ", workers[i]->offset()[value] + offsetPrev);
if (offsetIdx % 8 == 7) {
printf("\n");
}
offsetIdx++;
}
offsetPrev += workers[i]->offset()[workers[i]->numValues()-1] +
workers[i]->lastCandidateCount();
}
printf("};\n\n\n");
printf("static unsigned short closestData[] = {\n");
int elementIdx = 0;
for (size_t i=0; i<workers.size(); ++i) {
for (size_t element=0; element<workers[i]->numElements(); ++element) {
if (elementIdx % 8 == 0) {
printf(" ");
}
printf("%5d, ", workers[i]->elements()[element]);
if (elementIdx % 8 == 7) {
printf("\n");
}
elementIdx++;
}
}
printf("};\n\n\n");
for (size_t i=0; i<workers.size(); ++i) {
delete workers[i];
}
}
int
main(int argc, char **argv)
{
printf("#include <cstddef>\n");
printf("\n\n\n");
generateNoop();
printf("\n\n\n");
generateToLinear();
printf("\n\n\n");
generateToNonlinear();
printf("\n\n\n");
generateLutHeader();
return 0;
}
|