1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
|
/*******************************************************************************
* radiosity.cpp
*
* This file contains radiosity computation task code.
*
* ---------------------------------------------------------------------------
* Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
* Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
*
* POV-Ray is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* POV-Ray is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------------
* POV-Ray is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
* ---------------------------------------------------------------------------
* $File: //depot/public/povray/3.x/source/backend/lighting/radiosity.cpp $
* $Revision: #1 $
* $Change: 6069 $
* $DateTime: 2013/11/06 11:59:40 $
* $Author: chrisc $
*******************************************************************************/
/************************************************************************
* Radiosity calculation routies.
*
* (This does not work the way that most radiosity programs do, but it accomplishes
* the diffuse interreflection integral the hard way and produces similar results. It
* is called radiosity here to avoid confusion with ambient and diffuse, which
* already have well established meanings within POV).
* Inspired by the paper "A Ray Tracing Solution for Diffuse Interreflection"
* by Ward, Rubinstein, and Clear, in Siggraph '88 proceedings.
*
* Basic Idea: Never use a constant ambient term. Instead,
* - For first pixel, cast a whole bunch of rays in different directions
* from the object intersection point to see what the diffuse illumination
* really is. Save this value, after estimating its
* degree of reusability. (Method 1)
* - For second and subsequent pixels,
* - If there are one or more nearby values already computed,
* average them and use the result (Method 2), else
* - Use method 1.
*
* Implemented by and (c) 1994-6 Jim McElhiney, mcelhiney@acm.org or 71201,1326
* All standard POV distribution rights granted. All other rights reserved.
*************************************************************************/
#include <string.h>
#include <algorithm>
#include <boost/thread.hpp>
// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/scene/view.h"
#include "backend/render/tracetask.h"
#include "backend/lighting/photons.h"
#include "backend/lighting/radiosity.h"
#include "backend/math/vector.h"
#include "backend/support/fileutil.h"
#include "backend/support/octree.h"
#include "backend/colour/colour.h"
// this must be the last file included
#include "base/povdebug.h"
namespace pov
{
using namespace pov_base;
extern BYTE_XYZ rad_samples[];
// #define RAD_GRADIENT 1 // [CLi] gradient seems to provide no gain at best, and may actually cause artifacts
// #define SAW_METHOD 1
// #define SAW_METHOD_ROOT 2
// #define SIGMOID_METHOD 1
#define PSEUDO_SIGMOID_METHOD 1
#define IN_FRONT_LIMIT (-0.05)
// #define SHOW_SAMPLE_SPOTS 1 // try this! bright spots at sample pts
// #define LOW_COUNT_BRIGHT 1 // this will highlight areas of low density if no extra samples are taken in the final pass
// #define RADDEBUG 1
#define OCTREE_PERFORMANCE_DEBUG 1
const DBL AVG_NEAR_EPSILON = 0.000001;
const DBL RAD_EPSILON = 0.001;
const DBL WEIGHT_ERROR_BOUND_OFFSET = 0.25;
const int PRETRACE_STEP_FINAL = 0; // dummy value to use instead of pretrace step during final render
const int PRETRACE_STEP_LOADED = SCHAR_MAX; // dummy value to use instead of pretrace step for samples loaded from file
// structure used to gather weighted average during tree traversal
struct WT_AVG
{
RGBColour Weights_Times_Illuminances; // Aggregates during traversal
DBL Weights; // Aggregates during traversal
int Weights_Count; // Count of points used, aggregates during trav
int Good_Count; // Count of points used, aggregates during trav
Vector3d P, N; // Point and Normal: input to traverse
DBL Current_Error_Bound; // see Radiosity_Error_Bound
int Pass; // Current pass (FINAL_TRACE for final render)
int TileId; // Current tile
/* [CLi] obsolete
RGBColour Weight_Times_Illuminance[MAX_NEAREST_COUNT];
DBL Weight[MAX_NEAREST_COUNT];
DBL Distance[MAX_NEAREST_COUNT];
*/
#ifdef OCTREE_PERFORMANCE_DEBUG
int Lookup_Count; // Count of points supplied by tree lookup
int AcceptPass_Count; // Count of points accepted by test for pass & tile ID
int AcceptQuick_Count; // Count of points accepted by quick range test
int AcceptGeometry_Count; // Count of points accepted by test for interfering geometry
int AcceptNormal_Count; // Count of points accepted by surface curvature test
int AcceptInFront_Count; // Count of points accepted by "in front" test
int AcceptEpsilon_Count; // Count of points accepted by borderline-case test (weight < EPSILON)
#endif
};
inline unsigned int GetRadiosityQualityFlags(const SceneRadiositySettings& rs, const unsigned int basicQualityFlags)
{
unsigned int qf = basicQualityFlags;
qf &= ~Q_AREA_LIGHT;
if(!rs.media)
qf &= ~Q_VOLUME;
if(!rs.subsurface)
qf &= ~Q_SUBSURFACE;
return qf;
}
// --------------------------------------------------------------------------------
// Compute secondary parameters for the radiosity algorithm
// --------------------------------------------------------------------------------
RadiosityRecursionSettings* SceneRadiositySettings::GetRecursionSettings(bool final) const
{
RadiosityRecursionSettings* recSettings = new RadiosityRecursionSettings[recursionLimit];
for (unsigned int depth = 0; depth < recursionLimit; depth ++)
{
// --------------------------------------------------------------------------------
// Number of rays to shoot per sample:
// Reduce by factor of 2 per recursion; shoot at least 5 rays
// Rationale:
// The deeper we recurse, the higher the error we can accept; the original paper
// by Ward et al. suggests to reduce the number of rays by 50% per bounce, based
// on an estimated average reflectivity of 50% throughout the scene; the version
// 3.6 code enforced a minimum of 5 rays, possibly for some hidden reason, so we
// follow this example.
// Compatibility:
// POV-Ray 3.6 reduced by factor 3 for 1st recursion, and again by factor 2 for
// 2nd recursion, using that same value for all consecutive recursions; in any
// case, at least 5 rays were shot.
recSettings[depth].raysPerSample = max(5, int(count * pow(0.5, (double)depth)));
// --------------------------------------------------------------------------------
// Minimum number of samples to re-use to compute a point's diffuse illumination:
// Reduce to 2 for 1st recursion, to 1 for all consecutive recursions
// Rationale:
// The rays picking up deeper bounce samples will be more or less random and
// averaged anyway, so we can be lazy about this at deeper bounces.
// Compatibility:
// POV-Ray 3.6 reduced to 2 for 1st recursion, 1 for all consecutive recursions
switch (depth)
{
case 0: recSettings[depth].reuseCount = nearestCount; break;
case 1: recSettings[depth].reuseCount = min(2,(int)nearestCount); break;
default: recSettings[depth].reuseCount = 1; break;
}
// --------------------------------------------------------------------------------
// Factor governing spacing of samples in general:
// Increase by factor of 2.0 per recursion
// Rationale:
// The deeper we recurse, the higher the error we can accept; the original paper
// from Ward et al. suggests to increase the error bound by 40% per bounce, based
// on an estimated average reflectivity of 50% throughout the scene; however, we
// follow the more radical example of POV-Ray 3.6.
// Compatibility:
// POV-Ray 3.6 increased by factor 2 per recursion
recSettings[depth].errorBoundFactor = 1.0 * pow(2.0, (double)depth);
// --------------------------------------------------------------------------------
// Factor governing minimum & maximum spacing of samples:
// Increase by factor of 2.0 per recursion
// Rationale:
// The deeper we recurse, the less we want to go into details; The factor is an
// arbitrary value. (NOTE: The effect of this *multiplies* with that of
// errorBoundFactor!)
// Compatibility:
// POV-Ray 3.6 increased by factor 2 per recursion
recSettings[depth].minReuseFactor = minimumReuse * pow(2.0, (double)depth);
recSettings[depth].maxReuseFactor = maximumReuse * pow(2.0, (double)depth);
// --------------------------------------------------------------------------------
// Factor governing octree lookup performance:
// Set to 1 for top-level samples; set to 8 for 1st and higher recursion
// Rationale:
// Octree lookup performance must be well-balanced between "false positives"
// (samples produced by lookup but actually unsuitable for re-use) and "false
// negatives" (re-usable samples not found by lookup); false positives will cost
// performance, while false negatives will cause artifacts at octree cell bounds.
// The higher this number, the more false negatives (but the fewer false positives)
// will occur; the lowest sensible value is 1, preventing false negatives
// altogether.
// For top-level samples we are going for artifact-free render; for any other
// recursion depth, we are going for optimum performance. 8 has proven a good
// value in this respect.
// Compatibility:
// POV-Ray 3.6 used 1 for top-level samples, increasing by factor of 2 [?] per
// recursion; there is reason to believe that this was unintentional.
if (depth == 0)
recSettings[depth].octreeOverfillFactor = 1.0;
else
recSettings[depth].octreeOverfillFactor = 8.0;
// --------------------------------------------------------------------------------
// Base trace level to use for secondary rays:
// Set to ~1.5 for top-level samples; increase by ~1.5 per recursion
// Base weight to use for secondary rays:
// Set to 50% * brightness for top-level samples; reduce by factor of
// 50% * brightness per recursion
// Rationale:
// Radiosity secondary rays should take into account trace level and weight of
// primary rays; however, these may be different depending on the path the primary
// ray has taken, so estimates must be used instead of the actual values.
// Primary rays are expected to come in after 0 or 1 reflections on average, at
// an average weight of 50%. The values additionally take into account one trace
// level increment per radiosity recursion, and the basic radiosity brightness
// factor.
// Compatibility:
// POV-Ray 3.6 used the trace level of the primary ray that happened to cause the
// sample to be taken, causing artifacts in scenes with reflective surfaces.
recSettings[depth].traceLevel = int((1.5 * ((double)depth + 1)));
recSettings[depth].weight = pow(0.5 * brightness, (double)depth + 1);
// --------------------------------------------------------------------------------
// Precomputed Values:
// These are not "tweakables", but instead are just values pre-computed from the
// above settings
recSettings[depth].maxErrorBound = errorBound * recSettings[depth].errorBoundFactor;
recSettings[depth].octreeAddressFactor = recSettings[depth].maxErrorBound / recSettings[depth].octreeOverfillFactor;
}
return recSettings;
}
RadiosityFunction::RadiosityFunction(shared_ptr<SceneData> sd, TraceThreadData *td, const SceneRadiositySettings& rs,
RadiosityCache& rc, Trace::CooperateFunctor& cf, bool ft, const Vector3d& camera) :
threadData(td),
trace(sd, td, GetRadiosityQualityFlags(rs, QUALITY_9), cf, media, *this), // TODO FIXME - we can only use hard-coded QUALITY_9 because Radiosity happens to be disabled at lower settings!
media(td, &trace, &photonGatherer),
photonGatherer(&sd->surfacePhotonMap, sd->photonSettings),
radiosityCache(rc),
errorBound(rs.errorBound),
isFinalTrace(ft),
cameraPosition(camera),
pretraceStep(PRETRACE_INVALID),
recursionParameters(new RecursionParameters[rs.recursionLimit]),
topLevelQueryCount(0),
topLevelReuse(0.0),
tileId(0),
cacheBlockPool(NULL),
settings(rs),
recursionSettings(rs.GetRecursionSettings(ft))
{
if (!isFinalTrace)
errorBound *= rs.lowErrorFactor;
}
RadiosityFunction::~RadiosityFunction()
{
if (cacheBlockPool != NULL) // shouldn't happen normally, but does happen when render is aborted
{
radiosityCache.ReleaseBlockPool(cacheBlockPool);
cacheBlockPool = NULL;
}
delete[] recursionSettings;
delete[] recursionParameters;
}
void RadiosityFunction::GetTopLevelStats(long& queryCount, float& reuse)
{
queryCount = topLevelQueryCount;
reuse = topLevelReuse;
}
void RadiosityFunction::ResetTopLevelStats()
{
topLevelQueryCount = 0;
topLevelReuse = 0.0;
}
void RadiosityFunction::BeforeTile(int id, unsigned int pts)
{
/*
if (isFinalTrace)
assert( pts == FINAL_TRACE );
else
assert( (pts >= PRETRACE_FIRST) && (pts <= PRETRACE_MAX) );
*/
// different pretrace step than last tile
if (pts != pretraceStep)
{
// Recursion Level 0
recursionParameters[0].statsId = (isFinalTrace ? Radiosity_SamplesTaken_Final_R0 : (IntStatsIndex)(Radiosity_SamplesTaken_PTS1_R0 + min(4u,pts-PRETRACE_FIRST)*5));
recursionParameters[0].queryCountStatsId = Radiosity_QueryCount_R0;
recursionParameters[0].weightStatsId = Radiosity_Weight_R0;
// Recursion Level 1+
for (unsigned int depth = 1; depth < settings.recursionLimit; depth ++)
{
recursionParameters[depth].statsId = (IntStatsIndex)(recursionParameters[0].statsId + min(4u,depth));
recursionParameters[depth].queryCountStatsId = (IntStatsIndex)(recursionParameters[0].queryCountStatsId + min(4u,depth));
recursionParameters[depth].weightStatsId = (FPStatsIndex) (recursionParameters[0].weightStatsId + min(4u,depth));
}
}
pretraceStep = pts;
tileId = id;
// next tile, so we start the sample direction pattern all over again
for (unsigned int depth = 0; depth < settings.recursionLimit; depth ++)
recursionParameters[depth].directionGenerator.Reset(settings.directionPoolSize);
assert (cacheBlockPool == NULL);
cacheBlockPool = radiosityCache.AcquireBlockPool();
}
void RadiosityFunction::AfterTile()
{
// release block pool, just in case this happens to be the last tile for this thread
radiosityCache.ReleaseBlockPool(cacheBlockPool);
cacheBlockPool = NULL;
}
void RadiosityFunction::ComputeAmbient(const Vector3d& ipoint, const Vector3d& raw_normal, const Vector3d& layer_normal, RGBColour& ambient_colour, DBL weight, Trace::TraceTicket& ticket)
{
DBL temp_error_bound = errorBound;
const RecursionParameters& param = recursionParameters[ticket.radiosityRecursionDepth];
const RadiosityRecursionSettings& recSettings = recursionSettings[ticket.radiosityRecursionDepth];
DBL reuse;
Vector3d effectiveNormal(settings.normal ? layer_normal : raw_normal);
threadData->Stats()[param.queryCountStatsId] ++;
threadData->Stats()[param.weightStatsId] += weight;
// TODO CLARIFY - what exactly is the rationale behind this formula?
if(weight < WEIGHT_ERROR_BOUND_OFFSET)
temp_error_bound += (WEIGHT_ERROR_BOUND_OFFSET - weight);
reuse = radiosityCache.FindReusableBlock(threadData->Stats(), temp_error_bound * recSettings.errorBoundFactor, ipoint, effectiveNormal, ambient_colour, ticket.radiosityRecursionDepth, pretraceStep, tileId);
if (ticket.radiosityRecursionDepth == 0)
{
topLevelQueryCount ++;
topLevelReuse += reuse*4;
}
// allow more samples on final trace (rather than radiosity pretrace) - unless user says not to
if((reuse*4 >= recSettings.reuseCount) || ((isFinalTrace == true) && (settings.alwaysSample == false) && (reuse > 0)))
{
threadData->Stats()[Radiosity_ReuseCount]++;
if (ticket.radiosityRecursionDepth == 0)
{
threadData->Stats()[Radiosity_TopLevel_ReuseCount]++;
}
if (isFinalTrace)
{
threadData->Stats()[Radiosity_Final_ReuseCount]++;
}
#ifdef LOW_COUNT_BRIGHT // this will highlight areas of low density if no extra samples are taken in the final pass - not on by default [trf]
// use this for testing - it will tell you where too few are found
if(reuse*4 < param.reuseCount)
ambient_colour.set(4.0f);
#endif
}
else
{
RGBColour tmpColour;
double quality = GatherLight(ipoint, raw_normal, effectiveNormal, tmpColour, ticket);
// If we already found samples nearby (and we just decided to take more), make use of them.
if (reuse > 0)
ambient_colour = (ambient_colour * reuse + tmpColour * quality) / (reuse + quality);
else
ambient_colour = tmpColour;
reuse += quality;
threadData->Stats()[Radiosity_GatherCount]++;
threadData->Stats()[param.statsId]++;
if (ticket.radiosityRecursionDepth == 0)
{
threadData->Stats()[Radiosity_TopLevel_GatherCount]++;
}
if (isFinalTrace)
{
threadData->Stats()[Radiosity_Final_GatherCount]++;
}
}
ticket.radiosityQuality = min((float)(4*reuse)/recSettings.reuseCount, ticket.radiosityQuality);
// note grey spelling: american options structure with worldbeat calculations!
ambient_colour = (ambient_colour * (1.0f - settings.grayThreshold)) + (settings.grayThreshold * ambient_colour.greyscale());
// Scale up by current brightness factor prior to return
ambient_colour *= settings.brightness;
}
// returns true if radiosity can be traced, false otherwise (that is, if the radiosity max trace level was already reached)
bool RadiosityFunction::CheckRadiosityTraceLevel(const Trace::TraceTicket& ticket)
{
return (ticket.radiosityRecursionDepth < settings.recursionLimit);
}
/*****************************************************************************
*
* FUNCTION
*
* ra_gather
*
* INPUT
* ipoint - a point at which the illumination is needed
* raw_normal - the surface normal (not perturbed by the current layer) at that point
* illuminance - a place to put the return result
* weight - the weight of this point in final output, to drive ADC_Bailout
*
* OUTPUT
* The average colour of light of objects visible from the specified point.
* The colour is returned in the illuminance parameter.
*
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
* Gather up the incident light and average it.
* Return the results in illuminance, and also cache them for later.
* Note that last parameter is similar to weight parameter used
* to control ADC_Bailout as a parameter to Trace(), but it also
* takes into account that this subsystem calculates only ambient
* values. Therefore, coming in at the top level, the value might
* be 0.3 if the first object hit had an ambient of 0.3, whereas
* Trace() would have been passed a parameter of 1.0 (since it
* calculates the whole pixel value).
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
double RadiosityFunction::GatherLight(const Vector3d& ipoint, const Vector3d& raw_normal, const Vector3d& layer_normal, RGBColour& illuminance, Trace::TraceTicket& ticket)
{
unsigned int cur_sample_count;
Vector3d direction, up, min_dist_vec;
int save_Max_Trace_Level;
RGBColour dxs, dys, dzs;
RGBColour colour_sums, temp_colour;
DBL inverse_distance_sum, mean_dist,
smallest_dist,
sum_of_inverse_dist, sum_of_dist, gradient_count;
DBL save_adc_bailout;
DBL save_radiosityQuality;
unsigned int save_trace_level;
RecursionParameters& param = recursionParameters[ticket.radiosityRecursionDepth];
const RadiosityRecursionSettings& recSettings = recursionSettings[ticket.radiosityRecursionDepth];
DBL to_eye = Vector3d(this->cameraPosition - ipoint).length();
DBL reuse_dist_min = to_eye * recSettings.minReuseFactor;
DBL maximum_distance = to_eye * recSettings.maxReuseFactor;
if (recSettings.maxReuseFactor >= HUGE_VAL)
maximum_distance = HUGE_VAL;
cur_sample_count = recSettings.raysPerSample;
/* Save some global stuff which we have to change for now */
save_Max_Trace_Level = ticket.maxAllowedTraceLevel;
save_trace_level = ticket.traceLevel;
save_adc_bailout = ticket.adcBailout;
save_radiosityQuality = ticket.radiosityQuality;
// adjust the max_trace_level
// [CLi] Set max trace level to a value independent of "ray history" (except for the current radiosity bounce depth of course),
// and basically start a new ray from scratch
ticket.traceLevel = recSettings.traceLevel;
ticket.maxAllowedTraceLevel = max(ticket.maxAllowedTraceLevel, ticket.traceLevel + 1);
ticket.adcBailout = settings.adcBailout;
// Since we'll be calculating averages, zero the accumulators
inverse_distance_sum = 0.0;
smallest_dist = BOUND_HUGE;
DBL weight = max(ticket.adcBailout + EPSILON, recSettings.weight);
// Initialized the accumulators for the integrals which will be come the rad gradient
sum_of_inverse_dist = sum_of_dist = gradient_count = 0.0;
unsigned int okCount = 0;
unsigned int okCountRaw = 0;
bool use_raw_normal = similar(raw_normal, layer_normal); // if the normal isn't pertubed, go for the raw normal right away because it makes life easier
double qualitySum = 0.0;
param.directionGenerator.InitSequence(cur_sample_count, raw_normal, layer_normal, use_raw_normal);
for(unsigned int i = 0, hit = 0; i < cur_sample_count; i++)
{
bool ray_ok = param.directionGenerator.GetDirection(direction);
if (!ray_ok && !use_raw_normal)
{
// out of good sample directions, but we may still re-try with the raw normal
use_raw_normal = true;
param.directionGenerator.InitSequence(cur_sample_count, raw_normal, layer_normal, use_raw_normal);
ray_ok = param.directionGenerator.GetDirection(direction);
}
if (!ray_ok)
// out of good sample directions, this time really
break;
okCount ++;
if (use_raw_normal) okCountRaw ++;
ticket.radiosityQuality = 1.0;
Ray nray(*ipoint, *direction, Ray::OtherRay, false, false, true); // Build a ray pointing in the chosen direction
ticket.radiosityRecursionDepth++;
ticket.radiosityImportanceQueried = (float)i / (float)(cur_sample_count-1);
bool alphaBackground = ticket.alphaBackground;
ticket.alphaBackground = false;
Colour temp_full_colour;
DBL depth = trace.TraceRay(nray, temp_full_colour, weight, ticket, false); // Go down in recursion, trace the result, and come back up
RGBColour temp_colour = RGBColour(temp_full_colour);
ticket.radiosityRecursionDepth--;
ticket.alphaBackground = alphaBackground;
// only post-process the current sample ray if it has the appropriate importance
if (ticket.radiosityImportanceFound >= ticket.radiosityImportanceQueried)
{
DBL quality = ticket.radiosityQuality;
if (ticket.radiosityImportanceFound < 1.0)
{
unsigned int lastI = floor(ticket.radiosityImportanceFound * (cur_sample_count-1));
quality *= (float)(cur_sample_count) / (float)(lastI+1);
}
// NK rad - each sample is limited to a user-specified brightness
// this is necessary to fix problems splotchiness caused by very
// bright objects
// changed lighting.c to ignore phong/specular if tracing radiosity beam
COLC max_ill = max3(temp_colour[pRED], temp_colour[pGREEN], temp_colour[pBLUE]);
if((max_ill > settings.maxSample) && (settings.maxSample > 0.0))
temp_colour *= (settings.maxSample / max_ill);
// suppress rays having encountered low-quality radiosity samples
qualitySum += quality;
temp_colour *= quality;
#ifdef RAD_GRADIENT
// Add into illumination gradient integrals
double deemed_depth = depth;
if(deemed_depth < maximum_distance * 10.0)
{
DBL depth_weight_for_this_gradient = 1.0 / deemed_depth;
sum_of_inverse_dist += 1.0 / deemed_depth;
sum_of_dist += deemed_depth;
gradient_count++;
dxs += (temp_colour * depth_weight_for_this_gradient * direction[X] * fabs(direction[X]));
dys += (temp_colour * depth_weight_for_this_gradient * direction[Y] * fabs(direction[Y]));
dzs += (temp_colour * depth_weight_for_this_gradient * direction[Z] * fabs(direction[Z]));
}
#endif
// Add into total illumination integral
colour_sums += temp_colour;
}
// we always get the distance, so we'll use it
if(depth > HUGE_VAL)
depth = HUGE_VAL;
else
{
#ifdef RADSTATS
hit++;
#endif
}
if(depth < smallest_dist)
{
smallest_dist = depth;
min_dist_vec = direction;
}
inverse_distance_sum += 1.0 / depth;
} // end ray sampling loop
threadData->Stats()[Radiosity_RayCount] += okCount;
if (ticket.radiosityRecursionDepth == 0)
threadData->Stats()[Radiosity_TopLevel_RayCount] += okCount;
if (isFinalTrace)
threadData->Stats()[Radiosity_Final_RayCount] += okCount;
// Use the accumulated values to calculate the averages needed. The sphere
// of influence of this primary-method sample point is based on the
// harmonic mean distance to the points encountered. (An harmonic mean is
// the inverse of the mean of the inverses).
if (qualitySum == 0)
illuminance = colour_sums;
else
illuminance = colour_sums / qualitySum;
mean_dist = okCount / inverse_distance_sum;
// Keep a running total of the final Illuminances we calculated
if(ticket.radiosityRecursionDepth == 0)
{
// TODO FIXME - stats: Gather_Total += illuminance;
// TODO FIXME - stats: Gather_Total_Count++;
}
// We want to cached this block for later reuse. But,
// if ground units not big enough, meaning that the value has very
// limited reuse potential, forget it.
// [CLi] an exceptionally low distance indicates that we've almost hit two objects at once,
// so that the sampled rays may be flawed with numeric precision issues
if(smallest_dist > (maximum_distance * 0.0001)) // TODO FIXME - Should this be similar to RAD_EPSILON? Otherwise select some other *meaningful* constant! [trf]
{
// Theory: We don't want to calculate a primary method ray loop at every
// point along the inside edges, so a minimum effectivity is practical.
// It is expressed as a fraction of the distance to the eyepoint. 1/2%
// is a good number. This enhancement was Greg Ward's idea, but the use
// of % units is my idea. [JDM]
if(mean_dist < reuse_dist_min)
mean_dist = reuse_dist_min;
if(mean_dist > maximum_distance)
mean_dist = maximum_distance;
#ifdef RADSTATS
ot_blockcount++; // TODO FIXME - I guess this is duplicate
#endif
#ifdef RAD_GRADIENT
// beta
// TODO FIXME - this has gradient kick in abruptly
if(gradient_count > 10)
{
DBL constant_term = gradient_count / (sum_of_inverse_dist * sum_of_dist); // TODO - check validity of this change [trf]
dxs *= constant_term;
dys *= constant_term;
dzs *= constant_term;
}
else
{
dxs = 0;
dys = 0;
dzs = 0;
}
#endif
// After end of ray loop, we've decided that this point is worth storing
// Allocate a block, and fill it with values for reuse in cacheing later
// TODO CLARIFY - [CLi] not perfectly sure yet when to use raw_normal instead of layer_normal; maybe just interpolate
unsigned int okCountNonRaw = okCount - okCountRaw;
bool fileUnderRawNormal = (okCountRaw > okCountNonRaw);
radiosityCache.AddBlock(cacheBlockPool, &(threadData->Stats()), ipoint, (fileUnderRawNormal ? raw_normal : layer_normal), min_dist_vec,
dxs, dys, dzs, illuminance, mean_dist, smallest_dist, qualitySum/okCount,
ticket.radiosityRecursionDepth, pretraceStep, tileId);
}
else
{
threadData->Stats()[Radiosity_UnsavedCount]++;
}
// Put things back where they were in recursion depth
ticket.maxAllowedTraceLevel = save_Max_Trace_Level;
ticket.traceLevel = save_trace_level;
ticket.adcBailout = save_adc_bailout;
ticket.radiosityQuality = max(save_radiosityQuality, qualitySum/okCount);
return qualitySum/okCount;
}
/*****************************************************************************
*
* DESCRIPTION
* A bit of theory: The goal is to create a set of "random" direction rays
* so that the probability of close-to-normal versus close-to-tangent rolls
* off in a cos-theta curve, where theta is the deviation from normal.
* That is, lots of rays close to normal, and very few close to tangent.
* You also want to have all of the rays be evenly spread, no matter how
* many you want to use. The lookup array has an array of points carefully
* chosen to meet all of these criteria.
*
******************************************************************************/
RadiosityFunction::SampleDirectionGenerator::SampleDirectionGenerator() :
rawNormalMode(false),
rawNormal(0,1,0),
frameX(1,0,0),
frameY(0,1,0),
frameZ(0,0,1)
{}
void RadiosityFunction::SampleDirectionGenerator::Reset(unsigned int samplePoolCount)
{
if (!sampleDirections)
sampleDirections = GetSubRandomCosWeightedDirectionGenerator(0, samplePoolCount);
}
void RadiosityFunction::SampleDirectionGenerator::InitSequence(unsigned int& sample_count, const Vector3d& raw_normal, const Vector3d& layer_normal, bool use_raw_normal)
{
size_t sequenceSize = sampleDirections->CycleLength();
sample_count = (unsigned int)min((size_t)sample_count, sequenceSize);
if (use_raw_normal)
// when working with the raw normal, everything should work smooth (and we don't have any fallback solution anyway). No limits.
remainingDirections = sequenceSize;
else
// when working with the pertubed normal, in pathological cases we may want to abort and try with the raw normal instead,
// so limit the number of tries to something sensible.
// TODO OPTIMIZE
// Is it really possible that we find less than (sample_count) "good" directions among (sample_count*5) directions?
// By how much can raw_normal and layer_normal differ? Even at 90 degree tilt, we could expect to find (sample_count)
// "good" directions among (sample_count*2).
remainingDirections = min(((size_t)sample_count) * 5, sequenceSize);
rawNormalMode = use_raw_normal;
rawNormal = raw_normal;
// set up a co-ordinate system to map our pre-computed sampling directions to:
// - pre-computed "X" will be mapped to some direction we'll call "frameX"
// - pre-computed "Y" will be mapped to layer_normal ("frameY")
// - pre-computed "Z" will be mapped to some direction we'll call "frameZ"
// we choose "frameX" and "frameZ" as follows:
// - "frameX" to be perpendicular to layer_normal and Z axis
// - "frameZ" to be perpendicular to layer_normal and "frameX"
// in case layer_normal and Z axis are uncomfortably close, we fallback to the following choice:
// - "frameX" to be perpendicular to layer_normal and Y axis
// - "frameZ" to be perpendicular to layer_normal and "frameX"
frameY = (use_raw_normal ? raw_normal : layer_normal);
Vector3d offY;
if(fabs(frameY[Z]) > 0.9)
offY = Vector3d(0,1,0); // too close to "Z" for comfort
else
offY = Vector3d(0,0,1);
frameX = cross(frameY, offY).normalized();
frameZ = cross(frameX, frameY).normalized();
}
bool RadiosityFunction::SampleDirectionGenerator::GetDirection(Vector3d& direction)
{
if (!remainingDirections)
// we're out of samples for sure
return false;
Vector3d random_vec;
DBL ray_ok = -1.0;
// loop through here choosing rays until we get one that is not behind the surface
// TODO OPTIMIZE
// - Checking for almost-exact match with other axes might be beneficial as well, because we could just swap the co-ordinates;
// the -Y direction would be the "hottest" candidate again (think roofs); the others might be more common than other directions
// as well (think walls or boxes)
do
{
///Increase_Counter(stats[Gather_Performed_Count]);
random_vec = (*sampleDirections)();
if(frameY[Y] > 1.0 - RAD_EPSILON)
// within 2.56 degree of Y, so we'll cheat a bit by using precomputed vectors as-is
direction = random_vec;
else if(frameY[Y] < -1.0 + RAD_EPSILON)
// within 2.56 degree of -Y, so we'll cheat a bit by using precomputed vectors simply inverted
direction = -random_vec;
else
// somewhere else, we need to do some math
direction = ((frameX * random_vec[X]) + (frameY * random_vec[Y]) + (frameZ * random_vec[Z]));
if (rawNormalMode)
ray_ok = 1.0; // no need to check - we know it's good
else
ray_ok = dot(direction, rawNormal); // make sure we don't go behind raw_normal
remainingDirections --;
}
while((ray_ok <= 0.0) && (remainingDirections));
return (ray_ok > 0.0);
}
/*****************************************************************************
*
* FUNCTION Initialize_Radiosity_Code
*
* INPUT Nothing.
*
* OUTPUT Sets various global states used by radiosity. Notably,
* ot_fd - the file identifier of the file used to save radiosity values
*
* RETURNS 1 for Success, 0 for failure (e.g., could not open cache file)
*
* AUTHOUR Jim McElhiney
*
* DESCRIPTION
*
* CHANGES
*
* --- Jan 1996 : Creation.
*
******************************************************************************/
RadiosityCache::RadiosityCache(const SceneRadiositySettings& radset) :
ra_reuse_count(0),
ra_gather_count(0),
ot_fd(NULL),
Gather_Total_Count(0),
recursionSettings(radset.GetRecursionSettings(true)) // be prepared for the main render
{
#ifdef RADSTATS
ot_seenodecount = 0;
ot_seeblockcount = 0;
ot_doblockcount = 0;
ot_dotokcount = 0;
ot_lastcount = 0;
ot_lowerrorcount = 0;
#endif
}
bool RadiosityCache::Load(const Path& inputFile)
{
bool ok = false;
IStream* fd = NewIStream(inputFile, POV_File_Data_RCA);
if(fd != NULL)
{
BlockPool* pool = AcquireBlockPool();
bool got_eof;
int line_num = 0;
int depth, tx, ty, tz;
Vector3d point;
Vector3d normal;
Vector3d to_nearest;
RGBColour dx, dy, dz;
RGBColour illuminance;
double harmonic_mean;
double nearest;
int goodreads = 0;
int count;
bool goodparse = true;
DBL brightness;
char normal_string[30], to_nearest_string[30];
char line[101];
//info->Gather_Total.clear();
//info->Gather_Total_Count = 0;
while (!(got_eof = fd->getline (line, 99).eof ()) && goodparse)
{
switch ( line[0] )
{
case 'B': // the file contains the old radiosity_brightness value
{
if ( sscanf(line, "B%lf\n", &brightness) == 1 )
{
//info->Brightness = brightness;
}
break;
}
case 'P': // the file made it to the point that the Preview was done
{
//info->FirstRadiosityPass = true;
break;
}
case 'C':
{
count = sscanf(line, "C%d %lf %lf %lf %s %f %f %f %lf %lf %s\n", // tw
&depth,
&point[X], &point[Y], &point[Z],
normal_string,
&illuminance[X], &illuminance[Y], &illuminance[Z],
&harmonic_mean,
&nearest, to_nearest_string
);
if ( count == 11 )
{
depth = depth - 1; // file format still uses 1-based bounce depth counting
// normals aren't very critical for direction precision, so they are packed
sscanf(normal_string, "%02x%02x%02x", &tx, &ty, &tz);
normal[X] = ((double)tx * (1./ 254.))*2.-1.;
normal[Y] = ((double)ty * (1./ 254.))*2.-1.;
normal[Z] = ((double)tz * (1./ 254.))*2.-1.;
normal.normalize();
sscanf(to_nearest_string, "%02x%02x%02x", &tx, &ty, &tz);
to_nearest[X] = ((double)tx * (1./ 254.))*2.-1.;
to_nearest[Y] = ((double)ty * (1./ 254.))*2.-1.;
to_nearest[Z] = ((double)tz * (1./ 254.))*2.-1.;
to_nearest.normalize();
line_num++;
AddBlock(pool, NULL, point, normal, to_nearest, dx, dy, dz, illuminance, harmonic_mean, nearest, 1.0 /* TODO FIXME */, depth, PRETRACE_STEP_LOADED, 0);
goodreads++;
}
break;
}
default:
{
// wrong leading character on line, just try again on next line
}
} // end switch
} // end while-reading loop
if ( !got_eof || !goodparse )
{
;// TODO MESSAGE PossibleError("Cannot process radiosity cache file at line %d.", (int)line_num);
ok = false;
}
else
{
if ( goodreads > 0 )
;// TODO MESSAGE Debug_Info("Reloaded %d values from radiosity cache file.\n", goodreads);
else
;// TODO MESSAGE PossibleError("Unable to read any values from the radiosity cache file.");
ok = true;
}
ReleaseBlockPool(pool);
delete fd;
}
return ok;
}
void RadiosityCache::InitAutosave(const Path& outputFile, bool append)
{
ot_fd = NewOStream(outputFile, POV_File_Data_RCA, append);
}
/*****************************************************************************
*
* FUNCTION Deinitialize_Radiosity_Code()
*
* INPUT Nothing.
*
* OUTPUT Sets various global states used by radiosity. Notably,
* ot_fd - the file identifier of the file used to save radiosity values
*
* RETURNS 1 for total success, 0 otherwise (e.g., could not save cache tree)
*
* AUTHOUR Jim McElhiney
*
* DESCRIPTION
* Wrap up and free any radiosity-specific features.
* Note that this function is safe to call even if radiosity was not on.
*
* CHANGES
*
* --- Jan 1996 : Creation.
*
******************************************************************************/
RadiosityCache::~RadiosityCache()
{
// TODO FIXME - I guess the mutexing shouldn't be necessary here
{ // mutex scope
boost::mutex::scoped_lock lock(fileMutex);
// finish up cache file
if(ot_fd != NULL)
{
// close cache file
ot_fd->close();
delete ot_fd;
ot_fd = NULL;
}
}
{ // mutex scope
boost::mutex::scoped_lock lockTree(octree.treeMutex);
boost::mutex::scoped_lock lockBlock(octree.blockMutex);
if (octree.root != NULL)
ot_free_tree(&octree.root);
}
{ // mutex scope
boost::mutex::scoped_lock lock(blockPoolsMutex);
while (!blockPools.empty())
{
delete blockPools.back();
blockPools.pop_back();
}
}
delete[] recursionSettings;
}
RadiosityCache::BlockPool* RadiosityCache::AcquireBlockPool()
{
boost::mutex::scoped_lock lock(blockPoolsMutex);
if (blockPools.empty())
return new BlockPool();
else
{
BlockPool* pool = blockPools.back();
blockPools.pop_back();
return pool;
}
}
void RadiosityCache::ReleaseBlockPool(RadiosityCache::BlockPool* pool)
{
{ // mutex scope
boost::mutex::scoped_lock lock(fileMutex);
pool->Save(ot_fd);
}
{ // mutex scope
boost::mutex::scoped_lock lock(blockPoolsMutex);
blockPools.push_back(pool);
}
}
OT_BLOCK *RadiosityCache::BlockPool::NewBlock()
{
OT_BLOCK *block = NULL;
if(head == NULL || nextFreeBlock >= BLOCK_POOL_UNIT_SIZE)
{
head = new PoolUnit(head);
nextFreeBlock = 0;
}
block = &(head->blocks[nextFreeBlock]);
nextFreeBlock++;
return block;
}
RadiosityCache::BlockPool::BlockPool() :
head(NULL),
savedHead(NULL),
nextFreeBlock(0),
nextUnsavedBlock(0)
{
// nothing else to do
}
void RadiosityCache::BlockPool::Save(OStream* fd)
{
if (fd != NULL)
{
PoolUnit* unit = head;
while (unit != NULL && unit != savedHead)
{
unsigned int from = 0;
unsigned int to = BLOCK_POOL_UNIT_SIZE;
if (unit->next == savedHead)
// last unsaved pool unit in chain, maybe already partially saved
from = nextUnsavedBlock;
if (unit == head)
// first pool unit in chain, maybe only partially filled
to = nextFreeBlock;
// save current pool unit
for (int i = from; i < to; i ++)
ot_write_block(&(unit->blocks[i]), fd);
unit = unit->next;
}
}
// no else; if we're not writing to a file, still pretend we saved so the destructor doesn't assert
if (head != NULL)
{
// update the variables indicating how far we have saved
savedHead = head->next; // the head is incomplete, so it cannot be saved completely...
nextUnsavedBlock = nextFreeBlock; // ... but all blocks in it so far have been saved.
}
else
{
assert(savedHead == NULL);
assert(nextUnsavedBlock == 0);
}
}
RadiosityCache::BlockPool::~BlockPool()
{
// require that block has been saved by now
assert (head == NULL || ((savedHead == head->next) && (nextUnsavedBlock == nextFreeBlock)));
while(head != NULL)
{
PoolUnit *b = head;
head = head->next;
delete b;
}
}
void RadiosityCache::AddBlock(BlockPool* pool, RenderStatistics* stats, const Vector3d& point, const Vector3d& normal, const Vector3d& toNearestSurface,
const RGBColour& dx, const RGBColour& dy, const RGBColour& dz, const RGBColour& illuminance,
DBL harmonicMeanDistance, DBL nearestDistance, DBL quality, int bounceDepth, int pretraceStep, int tileId)
{
OT_BLOCK* block = pool->NewBlock();
OT_ID id;
OT_NODE* node;
const RadiosityRecursionSettings& recSettings = recursionSettings[bounceDepth];
assert((bounceDepth >= 0) && (bounceDepth <= OT_DEPTH_MAX));
assert(((pretraceStep >= OT_PASS_FIRST) && (pretraceStep <= OT_PASS_MAX)) || (pretraceStep == OT_PASS_FINAL));
// An overflow in tileId will only impact reproducibility, so we're not asserting on it.
block->Illuminance = illuminance;
block->To_Nearest_Surface = toNearestSurface;
#ifdef RAD_GRADIENT
block->dx = dx;
block->dy = dy;
block->dz = dz;
#endif
block->Harmonic_Mean_Distance = SNGL(harmonicMeanDistance);
block->Nearest_Distance = SNGL(nearestDistance);
block->Quality = SNGL(quality);
block->Bounce_Depth = OT_DEPTH(bounceDepth);
block->Pass = OT_PASS(pretraceStep);
block->TileId = OT_TILE(tileId);
block->Point = point;
block->S_Normal = normal;
block->next = NULL;
// figure out the block id
ot_index_sphere(point, harmonicMeanDistance * recSettings.octreeAddressFactor, &id);
// get the corresponding node
node = RadiosityCache::GetNode(stats, id);
// add the info block
InsertBlock(node, block);
}
OT_NODE *RadiosityCache::GetNode(RenderStatistics* stats, const OT_ID& id)
{
int target_size, dx, dy, dz, index;
OT_NODE *temp_node, *this_node, *temp_root;
OT_ID temp_id;
boost::mutex::scoped_lock treeLock(octree.treeMutex, boost::defer_lock_t()); // we may need to lock this mutex - but not now.
#ifdef RADSTATS
ot_inscount++;
#endif
// If there is no root yet, create one. This is a first-time-through
if (octree.root == NULL)
{
// CLi moved C99_COMPATIBLE_RADIOSITY check from ot_newroot() to ot_ins() NULL root handling section
// (no need to do this again and again for every new node inserted)
#if(C99_COMPATIBLE_RADIOSITY == 0)
if((sizeof(int) != 4) || (sizeof(float) != 4))
{
throw POV_EXCEPTION_STRING("Radiosity is not available in this unofficial version because\n"
"the person who made this unofficial version available did not\n"
"properly check for compatibility on your platform.\n"
"Look for C99_COMPATIBLE_RADIOSITY in the source code to find\n"
"out how to correct this.");
}
#endif
// now is the time to lock the tree for modification
treeLock.lock();
// Now that we have exclusive write access, make sure we REALLY don't have a root
// (some other thread might have created it just as we were waiting to get the lock)
if (octree.root == NULL)
{
octree.root = (OT_NODE *)POV_CALLOC(1, sizeof(OT_NODE), "octree node");
#ifdef OCTREE_PERFORMANCE_DEBUG
if (stats != NULL) (*stats)[Radiosity_OctreeNodes]++;
#endif
#ifdef RADSTATS
ot_nodecount = 1;
#endif
// Might as well make it the right size for our first data block
octree.root->Id = id;
// Having constructed the node to match our needs, we're already in the right place;
// let's take the shortest route out of here
return octree.root;
}
// no else
// Still here? Well, fooled by the pitfalls of multithreading, are we!
// The root is there now, but we didn't create it ourselves, so we need to go the long way
// As this is an exceptional case (happens at most once per task), we pay the price of releasing
// and possibly re-acquiring the lock, for the sake of code simplicity
}
// no else
// What if the thing we're inserting is bigger than the biggest node in the
// existing tree? Add a new top to the tree till it's big enough.
if (octree.root->Id.Size < id.Size)
{
// now is the time to lock the tree for modification, in case we haven't yet
if (!treeLock.owns_lock())
treeLock.lock();
// (Note that the following can't be a do...while() loop because we may not have had a lock when we first tested,
// and some other task may have modified the root while we were not looking)
while (octree.root->Id.Size < id.Size)
{
// root too small
ot_newroot(&octree.root);
}
}
// What if the new block is the right size, but for an area of space which
// does not overlap with the current tree? New bigger root, until the
// areas overlap.
// Build a temp id, like a cursor to move around with
temp_id = id;
// make sure we're using a stable root to work with
temp_root = octree.root;
// First, find the parent of our new node which is as big as root
while (temp_id.Size < temp_root->Id.Size)
{
ot_parent(&temp_id, &temp_id);
}
if((temp_id.x != temp_root->Id.x) ||
(temp_id.y != temp_root->Id.y) ||
(temp_id.z != temp_root->Id.z))
{
// now is the time to lock the tree for modification, in case we haven't yet
if (!treeLock.owns_lock())
{
treeLock.lock();
// Acquired the lock just now, so some other task may have changed the root since last time we looked
while (temp_id.Size < octree.root->Id.Size)
{
ot_parent(&temp_id, &temp_id);
}
}
// (Note that the following can't be a do...while() loop because we may not have had a lock when we first tested,
// and some other task may have modified the root while we were not looking)
while((temp_id.x != octree.root->Id.x) ||
(temp_id.y != octree.root->Id.y) ||
(temp_id.z != octree.root->Id.z))
{
// while separate subtrees...
ot_newroot(&octree.root); // create bigger root
ot_parent(&temp_id, &temp_id); // and move cursor up one, too
}
}
// At this point, the new node is known to fit under the current tree
// somewhere. Go back down the tree to the right level, making new nodes
// as you go.
this_node = octree.root; // start at the root
while (this_node->Id.Size > id.Size)
{
// First, pick the node id of the child we are talking about
target_size = this_node->Id.Size - 1; // this is the size we want
temp_id = id; // start with the new one
while (temp_id.Size < target_size)
{
ot_parent(&temp_id, &temp_id); // climb up till one below here
}
// Now we have to pick which child number we are talking about
dx = (temp_id.x & 1) * 4;
dy = (temp_id.y & 1) * 2;
dz = (temp_id.z & 1);
index = dx + dy + dz;
if (this_node->Kids[index] == NULL)
{
// Next level down doesn't exist yet, so create it
// now is the time to lock the tree for modification, in case we haven't yet
if (!treeLock.owns_lock())
treeLock.lock();
// We may have acquired the lock just now, so some other task may have changed the root since last time we looked
if (this_node->Kids[index] == NULL)
{
temp_node = (OT_NODE *)POV_CALLOC(1, sizeof(OT_NODE), "octree node");
#ifdef OCTREE_PERFORMANCE_DEBUG
if (stats!= NULL) (*stats)[Radiosity_OctreeNodes]++;
#endif
#ifdef RADSTATS
ot_nodecount++;
#endif
// Fill in the data
temp_node->Id = temp_id;
// (all other data fields are automatically zeroed by the allocation function)
// Add it onto the tree
this_node->Kids[index] = temp_node;
}
}
// Now follow it down and repeat
this_node = this_node->Kids[index];
}
// Finally, we're in the right place, so return a pointer to the block
return this_node;
}
void RadiosityCache::InsertBlock(OT_NODE *node, OT_BLOCK *block)
{
boost::mutex::scoped_lock lock(octree.blockMutex);
block->next = node->Values;
node->Values = block;
}
/*****************************************************************************
*
* FUNCTION
*
* ra_reuse
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
*
* Returns whether or not there were some prestored values close enough to
* reuse.
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
DBL RadiosityCache::FindReusableBlock(RenderStatistics& stats, DBL errorbound, const Vector3d& ipoint, const Vector3d& snormal, RGBColour& illuminance, int recursionDepth, int pretraceStep, int tileId)
{
if(octree.root != NULL)
{
WT_AVG gather;
gather.Weights = 0.0;
gather.P = ipoint;
gather.N = snormal;
gather.Weights_Count = 0;
gather.Good_Count = 0;
gather.Current_Error_Bound = errorbound;
gather.Pass = pretraceStep;
gather.TileId = tileId;
#ifdef OCTREE_PERFORMANCE_DEBUG
gather.Lookup_Count = 0;
gather.AcceptPass_Count = 0;
gather.AcceptQuick_Count = 0;
gather.AcceptGeometry_Count = 0;
gather.AcceptNormal_Count = 0;
gather.AcceptInFront_Count = 0;
gather.AcceptEpsilon_Count = 0;
#endif
// Go through the tree calculating a weighted average of all of the usable points near this one
// [CLi] inspection of octree.cpp tree code indicates that tree traversal is perfectly safe
// regarding insertions by other threads, so no locking is needed
ot_dist_traverse(octree.root, ipoint, recursionDepth, AverageNearBlock, (void *)&gather);
#ifdef OCTREE_PERFORMANCE_DEBUG
stats[Radiosity_OctreeLookups] += gather.Lookup_Count;
stats[Radiosity_OctreeAccepts0] += gather.AcceptPass_Count;
stats[Radiosity_OctreeAccepts1] += gather.AcceptQuick_Count;
stats[Radiosity_OctreeAccepts2] += gather.AcceptGeometry_Count;
stats[Radiosity_OctreeAccepts3] += gather.AcceptNormal_Count;
stats[Radiosity_OctreeAccepts4] += gather.AcceptInFront_Count;
stats[Radiosity_OctreeAccepts5] += gather.AcceptEpsilon_Count;
#endif
// Did we get any nearby points we could reuse?
if(gather.Weights > 0)
{
// NK rad - Average together all of the samples (sums were returned by
// ot_dist_traverse). We are using nearest_count as a lower bound,
// not an upper bound.
illuminance = gather.Weights_Times_Illuminances / gather.Weights;
}
return gather.Weights;
}
else
{
return 0; // No tree, so no reused values
}
}
/*****************************************************************************
*
* FUNCTION
*
* ra_average_near
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOUR
*
* Jim McElhiney
*
* DESCRIPTION
*
* Tree traversal function used by ra_reuse()
* Calculate the weight of this cached value, taking into account how far
* it is from our test point, and the difference in surface normal angles.
*
* Given a node with an old cached value, check to see if it is reusable, and
* aggregate its info into the weighted average being built during the tree
* traversal. block contains Point, Normal, Illuminance,
* Harmonic_Mean_Distance
*
* CHANGES
*
* --- 1994 : Creation.
*
******************************************************************************/
bool RadiosityCache::AverageNearBlock(OT_BLOCK *block, void *void_info)
{
WT_AVG *info = (WT_AVG *)void_info;
#ifdef OCTREE_PERFORMANCE_DEBUG
info->Lookup_Count ++;
#endif
// for the sake of reproducibility, do not use samples gathered during the same pass in other tiles
if ((block->Pass == info->Pass) && (block->TileId != info->TileId))
return true; // we always return true
Vector3d delta(info->P - block->Point); // a = b - c, which is test p minus old pt
DBL square_dist = delta.lengthSqr();
DBL quickcheck_rad = (DBL)block->Harmonic_Mean_Distance * info->Current_Error_Bound;
#ifdef RADSTATS
ot_doblockcount++;
#endif
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptPass_Count ++;
#endif
// first we do a tuning test--this func gets called a LOT
if(square_dist < (quickcheck_rad * quickcheck_rad))
{
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptQuick_Count ++;
#endif
DBL dist = sqrt(square_dist);
DBL ri = (DBL)block->Harmonic_Mean_Distance;
bool dist_greater_epsilon = (dist > AVG_NEAR_EPSILON);
Vector3d delta_unit;
if(dist_greater_epsilon == true)
{
delta_unit = delta / dist; // normalise
// This block reduces the radius of influence when it points near the nearest
// surface found during sampling.
// TODO FIXME
// This is a good idea, but what if there are multiple objects that close?
// This is probably what leads to light seeping through walls at corners.
// Maybe a well-chosen mean (arithmetic? geometric? harmonic?) of all the sample vectors
// will give us a better idea what directions to be careful about.
DBL cos_diff_from_nearest = dot(block->To_Nearest_Surface, delta_unit);
if(cos_diff_from_nearest > 0.0)
ri = (cos_diff_from_nearest * (DBL)block->Nearest_Distance) + ((1.0 - cos_diff_from_nearest) * ri);
}
if(dist < (ri * info->Current_Error_Bound))
{
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptGeometry_Count ++;
#endif
DBL dir_diff = dot(info->N, block->S_Normal);
// NB error_reuse varies from 0 to 3.82 (1+ 2 root 2)
DBL error_reuse_translate = dist / ri;
DBL error_reuse_rotate = 2.0 * sqrt(fabs(1.0 - dir_diff));
DBL error_reuse = error_reuse_translate + error_reuse_rotate;
// is this old point within a reasonable error distance?
if(error_reuse < info->Current_Error_Bound)
{
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptNormal_Count ++;
#endif
DBL in_front = 1.0;
#ifdef RADSTATS
ot_lowerrorcount++;
#endif
// TODO
// The test for "in-front" points, as described by Greg Ward et al.,
// seems to be problematic in practice; can a better solution be found
// to address the "potentially shadowed" issue?
if(dist_greater_epsilon == true)
{
// Make sure that the old point is not in front of this point, the
// old surface might shadow this point and make the result meaningless
Vector3d half(info->N + block->S_Normal);
// [CLi] the following statement is equivalent to normalizing "half", then computing the dot product with "delta_unit",
// making sure that in_front is in the range of -1..1:
in_front = dot(delta_unit, half) / half.length();
}
// Theory: eliminate the use of old points well in front of our
// new point we are calculating, but not ones which are just a little
// tiny bit in front. This (usually) avoids eliminating points on the
// same surface by accident.
if(in_front > IN_FRONT_LIMIT)
{
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptInFront_Count ++;
#endif
DBL weight;
#ifdef RADSTATS
ot_dotokcount++;
#endif
if(info->Pass != RadiosityFunction::FINAL_TRACE || block->Bounce_Depth > 0)
{
// this is not final trace recursion 0, so a simple averaging method will do - use linear averaging.
weight = 1.0 - (error_reuse / info->Current_Error_Bound); // 0 < t < 1
}
else
{
// this is final trace recursion 0, so we want a nice and smooth averaging.
#ifdef SIGMOID_METHOD
weight = error_reuse / info->Current_Error_Bound; // 0 < t < 1
weight = (cos(weight * M_PI) + 1.0) * 0.5; // 0 < w < 1
#endif
#ifdef PSEUDO_SIGMOID_METHOD
weight = error_reuse / info->Current_Error_Bound; // 0 < t < 1
if (weight < 0.5)
weight = 1.0 - Sqr(weight*2.0)/2.0;
else
weight = Sqr(( 1.0-weight )*2.0)/2.0;
#endif
#ifdef SAW_METHOD
weight = 1.0 - (error_reuse / info->Current_Error_Bound); // 0 < t < 1
#ifdef SAW_METHOD_ROOT
#if (SAW_METHOD_ROOT == 1)
// no modification
#elif (SAW_METHOD_ROOT == 2)
weight = sqrt(weight);
#elif (SAW_METHOD_ROOT == 4)
// TODO OPTIMIZE - maybe pow(weight,1.0/4) is more efficient here
weight = sqrt(sqrt(weight)); // less splotchy
#elif (SAW_METHOD_ROOT == 8)
// TODO OPTIMIZE - maybe pow(weight,1.0/8) is more efficient here
weight = sqrt(sqrt(sqrt(weight))); // maybe even less splotchy
#else
weight = pow(weight, 1.0/SAW_METHOD_ROOT);
#endif
#endif
//weight = weight*weight*weight*weight*weight; more splotchy
#endif
}
if (in_front <= 0) // avoid hard break at in_front value of -0.05
{
DBL in_front_weight = 1 - (in_front / IN_FRONT_LIMIT); // [IN_FRONT_LIMIT..0] -> [0..1]
weight = weight * in_front_weight;
}
if(weight > RAD_EPSILON) // avoid floating point oddities near zero
{
#ifdef OCTREE_PERFORMANCE_DEBUG
info->AcceptEpsilon_Count ++;
#endif
// This is the block where we use the gradient to improve the prediction
#ifdef RAD_GRADIENT
RGBColour d((block->dx * delta[X]) + (block->dy * delta[Y]) + (block->dz * delta[Z]));
#else
RGBColour d(0.0f);
#endif
RGBColour prediction;
// NK 6-May-2003 removed clipping - not sure why it was here in the
// first place, but it sure causes problems for HDR scenes, and removing
// it doesn't seem to cause problems for non-HRD scenes.
// But we want to make sure that our deltas don't cause a positive illumination
// to go below zero, while allowing negative illuminations to stay negative.
if((d[pRED] + block->Illuminance[pRED] < 0.0) && (block->Illuminance[pRED]> 0.0))
d[pRED] = -block->Illuminance[pRED];
if((d[pGREEN] + block->Illuminance[pGREEN] < 0.0) && (block->Illuminance[pGREEN] > 0.0))
d[pGREEN] = -block->Illuminance[pGREEN];
if((d[pBLUE] + block->Illuminance[pBLUE] < 0.0) && (block->Illuminance[pBLUE] > 0.0))
d[pBLUE] = -block->Illuminance[pBLUE];
prediction = block->Illuminance + d;
#ifdef SHOW_SAMPLE_SPOTS
// TODO FIXME - distance_maximum no longer exists
if(dist < radset.Dist_Max * 0.015)
prediction.set(3.0);
#endif
weight *= block->Quality;
// The predicted colour is an extrapolation based on the old value
info->Weights_Times_Illuminances += (prediction * weight);
info->Weights += weight;
info->Weights_Count++;
info->Good_Count++;
// NK rad - it fit in the error bound, so keep it. We use all
// that fit the error bounding criteria. There is no need to put
// a maximum on the number of samples that are averaged.
}
}
}
}
}
return true;
}
} // end of namespace
|