1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
// Persistence Of Vision raytracer sample file.
// File: splinefollow.pov
// Desc: Spline demo animation that shows how to make an object or
// the camera fly along a spline. This is a cyclic animation.
// Date: August 30 2001
// Auth: Rune S. Johansen
// Use these command line settings to view the animation
// in REGULAR MODE:
//
// +kf0.1666 +kff20 +kc declare=fp=0
// Use these command line settings to view the animation
// in FIRST PERSON MODE:
//
// +kff120 +kc declare=fp=1
#version 3.7;
global_settings {assumed_gamma 1.0}
#include "math.inc"
#include "transforms.inc"
// #declare FirstPerson = yes;
#ifndef(FirstPerson)
#ifdef(fp)
#declare FirstPerson = fp;
#else
#declare FirstPerson = no;
#end
#end
// Overview camera
#if (FirstPerson=no)
camera {
location <2,12-2,-10+2>
right x*image_width/image_height
look_at <0,2,3>
}
#end
sky_sphere {
pigment {
planar poly_wave 2
color_map {
[0.0, color <0.2,0.5,1.0>]
[1.0, color <0.8,0.9,1.0>]
}
}
}
light_source {< 1,2,-2>*1000, color 1.0}
light_source {<-1,2, 1>*1000, color 0.7 shadowless}
plane { // checkered plane
y, 0
pigment {checker color rgb 1.0, color rgb 0.9 scale 2}
}
cylinder { // start/stop location
0, y, 2
pigment {color rgb 0.7}
}
torus { // yellow ring
1.3, 0.3
pigment {color <1,1,0>}
rotate 90*x rotate 45*y
translate <5,3,0>
}
cylinder { // green pole
0, 7*y, 0.4
pigment {color <0,1,0>}
translate 7*z
}
torus { // blue ring
1.3, 0.3
pigment {color <0,0,1>}
rotate 90*x rotate -45*y
translate <-5,3,0>
}
// The spline that the aircracfts fly along
#declare MySpline =
spline {
cubic_spline
-2, <-5, 3, 0>, // control point
-1, <-2, 2, 0>, // control point
00, < 0, 2, 0>, // start
01, < 2, 2, 0>,
02, < 5, 3, 0>, // through yellow ring
03, < 5, 4, 4>,
04, < 0, 5, 5>, // around
05, <-2, 4, 9>, // the
06, < 2, 3, 9>, // green
07, < 0, 2, 5>, // pole
08, <-5, 2, 4>,
09, <-5, 3, 0>, // through blue ring
10, <-2, 2, 0>,
11, < 0, 2, 0>, // stop
12, < 2, 2, 0>, // control point
13, < 5, 3, 0>, // control point
}
// The aircraft object
#declare Aircraft =
union {
#declare Part =
union {
cone {-1.0*z, 0.7, -0.7*z, 1.0}
cone {-0.7*z, 1.0, 2.0*z, 0.3}
}
object {Part scale <0.5,0.4,0.7>}
object {Part scale <+0.25,0.3,0.3> translate <+0.6,-0.1,-0.3>}
object {Part scale <-0.25,0.3,0.3> translate <-0.6,-0.1,-0.3>}
sphere {
0, 1 scale <0.3,0.25,0.5> rotate 12*x translate <0,0.22,0.15>
pigment {color <0,1,1>}
finish {phong 0.3 phong_size 10}
}
pigment {color <1.0,0.3,0.3>}
finish {brilliance 2 phong 0.3}
}
// The Spline_Trans macro has the following parameters:
// Spline_Trans (Spline, Time, SkyVector, ForeSight, Banking)
// Make 6 aircrafts fly along the spline.
// the mod() function is used for the Time value to make it cycle
// through the spline. The time is then multiplied with 11 to make
// it match the time values specified in the spline.
object { Aircraft Spline_Trans (MySpline, mod( (clock+0/6) ,1)*11, y, 0.5, 0.5) }
object { Aircraft Spline_Trans (MySpline, mod( (clock+1/6) ,1)*11, y, 0.5, 0.5) }
object { Aircraft Spline_Trans (MySpline, mod( (clock+2/6) ,1)*11, y, 0.5, 0.5) }
object { Aircraft Spline_Trans (MySpline, mod( (clock+3/6) ,1)*11, y, 0.5, 0.5) }
object { Aircraft Spline_Trans (MySpline, mod( (clock+4/6) ,1)*11, y, 0.5, 0.5) }
object { Aircraft Spline_Trans (MySpline, mod( (clock+5/6) ,1)*11, y, 0.5, 0.5) }
// First-person-view camera
// Follows the same path as the first aircraft
#if (FirstPerson=yes)
camera {
location 0
look_at z
translate <0,0.4,0.4>
Spline_Trans (MySpline, clock*11, y, 0.5, 0.5)
}
#end
// The yellow wire that shows the spline path.
union {
#declare C = 0;
#declare Cmax= 50;
#while (C<=Cmax)
#declare Value1 = C/Cmax*11;
#declare Value2 = (C+1)/Cmax*11;
#declare Point1 = -0.5*y+MySpline(Value1);
#declare Point2 = -0.5*y+MySpline(Value2);
sphere {Point1, 0.1}
cylinder {Point1, Point2, 0.1}
#declare C = C+1;
#end
pigment {color <1,1,0>}
}
|