File: t2_3.html

package info (click to toggle)
povray 1%3A3.7.0.10-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 147,232 kB
  • sloc: cpp: 845,011; ansic: 122,118; sh: 34,204; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,389; cs: 879; awk: 590; perl: 245; xml: 95
file content (11182 lines) | stat: -rw-r--r-- 447,736 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<!--  This file copyright Persistence of Vision Raytracer Pty. Ltd. 2009-2011  -->

<html lang="en">
<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
<title>Tutorial Section 3</title>
<link rel="StyleSheet" href="povray37.css" type="text/css">
<link rel="shortcut icon" href="favicon.ico">

<!--  NOTE: In order to help users find information about POV-Ray using web      -->
<!--  search engines, we ask that you *not* let them index documentation         -->
<!--  mirrors because effectively, when searching, users will get hundreds of    -->
<!--  results containing the same information! For this reason, these meta tags  -->
<!--  below disable archiving of this page by search engines.                    -->

<meta name="robots" content="noarchive">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="expires" content="0">
</head>
<body>

<div class="Page">

<!-- NavPanel Begin -->
<div class="NavPanel">
<table class="NavTable">
<tr>
  <td class="FixedPanelHeading"><a title="2.3" href="#t2_3">Advanced Features</a></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.1" href="#t2_3_1">Spline Based Shapes</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.1" href="#t2_3_1_1">Lathe Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.1.1.1" href="#t2_3_1_1_1">Understanding The Concept of Splines</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.2" href="#t2_3_1_2">Surface of Revolution Object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.3" href="#t2_3_1_3">Prism Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.1.3.1" href="#t2_3_1_3_1">Teaching An Old Spline New Tricks</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.1.3.2" href="#t2_3_1_3_2">Smooth Transitions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.1.3.3" href="#t2_3_1_3_3">Multiple Sub-Shapes</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.1.3.4" href="#t2_3_1_3_4">Conic Sweeps And The Tapering Effect</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.4" href="#t2_3_1_4">Sphere Sweep Object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.5" href="#t2_3_1_5">Bicubic Patch Object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.1.6" href="#t2_3_1_6">Text Object</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.2" href="#t2_3_2">Polygon Based Shapes</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.2.1" href="#t2_3_2_1">Mesh Object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.2.2" href="#t2_3_2_2">Mesh2 Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.2.2.1" href="#t2_3_2_2_1">Smooth triangles and mesh2</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.2.2.2" href="#t2_3_2_2_2">UV mapping and mesh2</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.2.2.3" href="#t2_3_2_2_3">A separate texture per triangle</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.2.3" href="#t2_3_2_3">Polygon Object</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.3" href="#t2_3_3">Other Shapes</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.3.1" href="#t2_3_3_1">Blob Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.1.1" href="#t2_3_3_1_1">Component Types and Other New Features</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.1.2" href="#t2_3_3_1_2">Complex Blob Constructs and Negative Strength</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.3.2" href="#t2_3_3_2">Height Field Object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.3.3" href="#t2_3_3_3">Isosurface Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.1" href="#t2_3_3_3_1">Simple functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.2" href="#t2_3_3_3_2">Several surfaces</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.3" href="#t2_3_3_3_3">Non-linear functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.4" href="#t2_3_3_3_4">Specifying functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.5" href="#t2_3_3_3_5">Internal functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.6" href="#t2_3_3_3_6">Combining isosurface functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.7" href="#t2_3_3_3_7">Noise and pigment functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.8" href="#t2_3_3_3_8">Conditional directives and loops</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.9" href="#t2_3_3_3_9">Transformations on functions</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.3.10" href="#t2_3_3_3_10">Improving Isosurface Speed</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.3.4" href="#t2_3_3_4">Poly Object</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.4.1" href="#t2_3_3_4_1">Creating the polynomial function</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.4.2" href="#t2_3_3_4_2">Writing the polynomial vector</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.3.4.3" href="#t2_3_3_4_3">Polynomial made easy</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.3.5" href="#t2_3_3_5">Superquadric Ellipsoid Object</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.4" href="#t2_3_4">Gamma Handling</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.1" href="#t2_3_4_1">Setting Up Your Display</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.2" href="#t2_3_4_2">Setting Up POV-Ray</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.3" href="#t2_3_4_3">Gamma in Output Images</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.4" href="#t2_3_4_4">Setting Up Your Scene</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.5" href="#t2_3_4_5">Gamma in Literal Colors</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.6" href="#t2_3_4_6">Gamma in Input Images</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.4.7" href="#t2_3_4_7">Gamma in Legacy Scenes</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.5" href="#t2_3_5">Advanced Texture Options</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.1" href="#t2_3_5_1">Pigments</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.1.1" href="#t2_3_5_1_1">Using Color List Pigments</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.1.2" href="#t2_3_5_1_2">Using Pigment and Patterns</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.1.3" href="#t2_3_5_1_3">Using Pattern Modifiers</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.1.4" href="#t2_3_5_1_4">Using Transparent Pigments and Layered Textures</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.1.5" href="#t2_3_5_1_5">Using Pigment Maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.2" href="#t2_3_5_2">Normals</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.2.1" href="#t2_3_5_2_1">Using Basic Normal Modifiers</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.2.2" href="#t2_3_5_2_2">Blending Normals</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.2.3" href="#t2_3_5_2_3">Slope Map Tutorial</a></div></td>
</tr>
<tr>
  <td><div class="divh5"><a title="2.3.5.2.3.1" href="#t2_3_5_2_3_1">Slopes, what are they?</a></div></td>
</tr>
<tr>
  <td><div class="divh5"><a title="2.3.5.2.3.2" href="#t2_3_5_2_3_2">Syntax of a slope map</a></div></td>
</tr>
<tr>
  <td><div class="divh5"><a title="2.3.5.2.3.3" href="#t2_3_5_2_3_3">Examples of slope maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.3" href="#t2_3_5_3">Finishes</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.3.1" href="#t2_3_5_3_1">Using Ambient</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.3.2" href="#t2_3_5_3_2">Using Emission</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.3.3" href="#t2_3_5_3_3">Using Surface Highlights</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.3.4" href="#t2_3_5_3_4">Using Reflection, Metallic and Metallic</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.3.5" href="#t2_3_5_3_5">Using Iridescence</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.4" href="#t2_3_5_4">Working With Pigment Maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.5" href="#t2_3_5_5">Working With Normal Maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.6" href="#t2_3_5_6">Working With Texture Maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.7" href="#t2_3_5_7">Working With List Textures</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.8" href="#t2_3_5_8">What About Tiles?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.9" href="#t2_3_5_9">Average Function</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.10" href="#t2_3_5_10">Working With Layered Textures</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.10.1" href="#t2_3_5_10_1">Declaring Layered Textures</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.5.10.2" href="#t2_3_5_10_2">Another Layered Textures Example</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.11" href="#t2_3_5_11">When All Else Fails: Material Maps</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.5.12" href="#t2_3_5_12">Limitations Of Special Textures</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.6" href="#t2_3_6">Using Atmospheric Effects</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.6.1" href="#t2_3_6_1">The Background</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.6.2" href="#t2_3_6_2">The Sky Sphere</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.2.1" href="#t2_3_6_2_1">Creating a Sky with a Color Gradient</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.2.2" href="#t2_3_6_2_2">Adding the Sun</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.2.3" href="#t2_3_6_2_3">Adding Some Clouds</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.6.3" href="#t2_3_6_3">The Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.1" href="#t2_3_6_3_1">A Constant Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.2" href="#t2_3_6_3_2">Setting a Minimum Translucency</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.3" href="#t2_3_6_3_3">Creating a Filtering Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.4" href="#t2_3_6_3_4">Adding Some Turbulence to the Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.5" href="#t2_3_6_3_5">Using Ground Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.6" href="#t2_3_6_3_6">Using Multiple Layers of Fog</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.3.7" href="#t2_3_6_3_7">Fog and Hollow Objects</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.6.4" href="#t2_3_6_4">The Rainbow</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.4.1" href="#t2_3_6_4_1">Starting With a Simple Rainbow</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.4.2" href="#t2_3_6_4_2">Increasing the Rainbow's Translucency</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.6.4.3" href="#t2_3_6_4_3">Using a Rainbow Arc</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.7" href="#t2_3_7">Simple Media Tutorial</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.1" href="#t2_3_7_1">Types of media</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.2" href="#t2_3_7_2">Some media concepts</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.3" href="#t2_3_7_3">Simple media examples</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.7.3.1" href="#t2_3_7_3_1">Emitting media</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.7.3.2" href="#t2_3_7_3_2">Absorbing media</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.7.3.3" href="#t2_3_7_3_3">Scattering media</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.4" href="#t2_3_7_4">Multiple medias inside the same object</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.5" href="#t2_3_7_5">Media and transformations</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.6" href="#t2_3_7_6">A more advanced example of scattering media</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.7.7" href="#t2_3_7_7">Media and photons</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.8" href="#t2_3_8">Radiosity</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.8.1" href="#t2_3_8_1">Introduction</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.8.2" href="#t2_3_8_2">Radiosity with conventional lighting</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.8.3" href="#t2_3_8_3">Radiosity without conventional lighting</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.8.4" href="#t2_3_8_4">Normals and Radiosity</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.8.5" href="#t2_3_8_5">Performance considerations</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.9" href="#t2_3_9">Making Animations</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.9.1" href="#t2_3_9_1">The Clock Variable: Key To It All</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.9.2" href="#t2_3_9_2">Clock Dependant Variables And Multi-Stage Animations</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.9.3" href="#t2_3_9_3">The Phase Keyword</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.9.4" href="#t2_3_9_4">Do Not Use Jitter Or Crand</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.9.5" href="#t2_3_9_5">INI File Settings</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.10" href="#t2_3_10">While-loop tutorial</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.1" href="#t2_3_10_1">What a while-loop is and what it is not</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.2" href="#t2_3_10_2">How does a single while-loop work?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.3" href="#t2_3_10_3">How do I make a while-loop?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.4" href="#t2_3_10_4">What is a condition and how do I make one?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.5" href="#t2_3_10_5">What about loop types other than simple for-loops?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.6" href="#t2_3_10_6">What about nested loops?</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.7" href="#t2_3_10_7">Mixed-type nested loops</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.10.8" href="#t2_3_10_8">Other things to note</a></div></td>
</tr>
<tr>
  <td><div class="divh2"><strong><a title="2.3.11" href="#t2_3_11">SDL tutorial: A raytracer</a></strong></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.1" href="#t2_3_11_1">Introduction</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.2" href="#t2_3_11_2">The idea and the code</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.3" href="#t2_3_11_3">Short introduction to raytracing</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.4" href="#t2_3_11_4">Global settings</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.5" href="#t2_3_11_5">Scene definition</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.6" href="#t2_3_11_6">Initializing the raytracer</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.7" href="#t2_3_11_7">Ray-sphere intersection</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.7.1" href="#t2_3_11_7_1">Inner workings of a macro</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.7.2" href="#t2_3_11_7_2">The ray-sphere intersection macro</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.8" href="#t2_3_11_8">The Trace macro</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.1" href="#t2_3_11_8_1">Calculating the closest intersection</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.2" href="#t2_3_11_8_2">If the ray doesn't hit anything</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.3" href="#t2_3_11_8_3">Initializing color calculations</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.4" href="#t2_3_11_8_4">Going through the light sources</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.5" href="#t2_3_11_8_5">Shadow test</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.6" href="#t2_3_11_8_6">Diffuse lighting</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.7" href="#t2_3_11_8_7">Specular lighting</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.8.8" href="#t2_3_11_8_8">Reflection Calculation</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.9" href="#t2_3_11_9">Calculating the image</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.10" href="#t2_3_11_10">Creating the colored mesh</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.10.1" href="#t2_3_11_10_1">The structure of the mesh</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.10.2" href="#t2_3_11_10_2">Creating the mesh</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.10.3" href="#t2_3_11_10_3">Creating the vertex points</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.10.4" href="#t2_3_11_10_4">Creating the textures</a></div></td>
</tr>
<tr>
  <td><div class="divh4"><a title="2.3.11.10.5" href="#t2_3_11_10_5">Creating the triangles</a></div></td>
</tr>
<tr>
  <td><div class="divh3"><a title="2.3.11.11" href="#t2_3_11_11">The Camera-setup</a></div></td>
</tr>
<tr>
  <td><div class="divh1">&nbsp;</div></td>
</tr>
<tr>
  <td><div class="divh1">&nbsp;</div></td>
</tr>
</table>
</div>
<!-- NavPanel End -->

<div class="Content">
<table class="HeaderFooter" width="100%">
<tr>
  <td colspan=5 align="left" class="HeaderFooter">
    POV-Ray for Unix <strong class="HeaderFooter">version 3.7</strong>
  </td>
</tr>
<tr >
  <td colspan=5>
    <hr align="right" width="70%">
  </td>
</tr>
<tr>
  <td width="30%"></td>
  <td class="NavBar"><a href="index.html" title="The Front Door">Home</a></td>
  <td class="NavBar"><a href="u1_0.html" title="Unix Table of Contents">POV-Ray for Unix</a></td>
  <td class="NavBar"><a href="t2_0.html" title="Tutorial Table of Contents">POV-Ray Tutorial</a></td>
  <td class="NavBar"><a href="r3_0.html" title="Reference Table of Contents">POV-Ray Reference</a></td>
</tr>
</table>

<a name="t2_3"></a>
<div class="content-level-h2" contains="Advanced Features" id="t2_3">
<h2>2.3 Advanced Features</h2>
</div>
<a name="t2_3_1"></a>
<div class="content-level-h3" contains="Spline Based Shapes" id="t2_3_1">
<h3>2.3.1 Spline Based Shapes</h3>
<p>After we have gained some experience with the simpler shapes available in
POV-Ray it is time to go on to the more advanced, thrilling shapes.</p>
<p>
We should be aware that the shapes described in this and the following two chapters are not trivial to
understand. We need not be worried though if we do not know how to use
them or how they work. We just try the examples and play with the features
described in the reference chapter. There is nothing better than learning by
doing.</p>
<p>
You may wish to skip to the chapter <a href="t2_2.html#t2_2_5">Simple Texture Options</a>
before proceeding with these advanced shapes.</p>

</div>
<a name="t2_3_1_1"></a>
<div class="content-level-h4" contains="Lathe Object" id="t2_3_1_1">
<h4>2.3.1.1 Lathe Object</h4>
<p>In the real world, <code><a href="r3_4.html#r3_4_5_1_8">lathe</a></code> refers to a process of making patterned rounded shapes by spinning the source material in place and carving pieces out as it turns. The results can be elaborate, smoothly rounded, elegant looking artefacts such as table legs, pottery, etc. In POV-Ray, a lathe object is used for creating much the same kind of items, although we are referring to the object itself rather than the means of production.</p>
<p>
Here is some source for a really basic lathe.</p>
<pre>
  #include &quot;colors.inc&quot;
  background{White}
  camera {
    angle 10
    location &lt;1, 9, -50&gt;
    look_at &lt;0, 2, 0&gt;
  }
  light_source {
    &lt;20, 20, -20&gt; color White
  }
  lathe {
    linear_spline
    6,
    &lt;0,0&gt;, &lt;1,1&gt;, &lt;3,2&gt;, &lt;2,3&gt;, &lt;2,4&gt;, &lt;0,4&gt;
    pigment { Blue }
    finish {
      ambient .3
      phong .75
    }
  }
</pre>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p>We render this, and what we see is a fairly simply type of lathe, which looks like a child's top. Let's take a look at how this code produced the effect.</p>
    <p>First, a set of six points is declared which the raytracer connects with lines. We note that there are only two components in the vectors which describe these points. The lines that are drawn are assumed to be in the x-y-plane, therefore it is as if all the z-components were assumed to be zero. The use of a two-dimensional vector is mandatory, attempting to use a 3D vector would trigger an error... with one exception, which we will explore later in the discussion of splines.</p>
    <p>Once the lines are determined, the ray-tracer rotates this line around the y-axis, and we can imagine a trail being left through space as it goes, with the surface of that trail being the surface of our object.</p>
    <p>The specified points are connected with straight lines because we used the <code>linear_spline</code> keyword. There are other types of splines available with the lathe, which will result in smooth curving lines, and even rounded curving points of transition, but we will get back to that in a moment.</p>
  </td>
  <td>
    <img class="center" width="320px" src="images/6/61/TutImgLatheobj.png">
  </td>
</tr>
<tr>
  <td>
  </td>
  <td>
    <p class="caption">A simple lathe object.</p>
</td>
</tr>
</table>


<p>
First, we would like to digress a moment to talk about the difference
between a lathe and a surface of revolution object (SOR). The SOR object,
described in a separate tutorial, may seem terribly similar to the lathe at
first glance. It too declares a series of points and connects them with
curving lines and then rotates them around the y-axis. The lathe has certain
advantages, such as different kinds of splines, linear, quadratic and cubic,
and one more thing:</p>
<p>
The simpler mathematics used by a SOR does not allow the curve to double
back over the same y-coordinates, thus, if using a SOR, any sudden twist
which cuts back down over the same heights that the curve previously covered
will trigger an error. For example, suppose we wanted a lathe to arc up from
&lt;0,0&gt; to &lt;2,2&gt;, then to dip back down to &lt;4,0&gt;. Rotated
around the y-axis, this would produce something like a gelatin mold - a
rounded semi torus, hollow in the middle. But with the SOR, as soon as the
curve doubled back on itself in the y-direction, it would become an illegal
declaration.</p>
<p>
Still, the SOR has one powerful strong point: because it uses simpler order
mathematics, it generally tends to render faster than an equivalent lathe. So
in the end, it is a matter of: we use a SOR if its limitations will allow, but
when we need a more flexible shape, we go with the lathe instead.</p>
</div>
<a name="t2_3_1_1_1"></a>
<div class="content-level-h5" contains="Understanding The Concept of Splines" id="t2_3_1_1_1">
<h5>2.3.1.1.1 Understanding The Concept of Splines</h5>
<p>It would be helpful, in order to understand splines, if we had a sort of <em>Spline Workshop</em> where we could practice manipulating types and points of splines and see what the effects were like. So let's make one! Now that we know how to create a basic lathe, it will be easy:</p>
<pre>
#include &quot;colors.inc&quot;
  camera {
    orthographic
    up &lt;0, 5, 0&gt;
    right &lt;5, 0, 0&gt;
    location &lt;2.5, 2.5, -100&gt;
    look_at &lt;2.5, 2.5, 0&gt;
  }
  /* set the control points to be used */
  #declare Red_Point    = &lt;1.00, 0.00&gt;;
  #declare Orange_Point = &lt;1.75, 1.00&gt;;
  #declare Yellow_Point = &lt;2.50, 2.00&gt;;
  #declare Green_Point  = &lt;2.00, 3.00&gt;;
  #declare Blue_Point   = &lt;1.50, 4.00&gt;;
  /* make the control points visible */
  cylinder { Red_Point, Red_Point - &lt;0,0,20&gt;, .1
    pigment { Red }
    finish { ambient 1 }
  }
  cylinder { Orange_Point, Orange_Point - &lt;0,0,20&gt;, .1
    pigment { Orange }
    finish { ambient 1 }
  }
  cylinder { Yellow_Point, Yellow_Point - &lt;0,0,20&gt;, .1
    pigment { Yellow }
    finish { ambient 1 }
  }
  cylinder { Green_Point, Green_Point - &lt;0,0,20&gt;, .1
    pigment { Green }
    finish { ambient 1 }
  }
  cylinder { Blue_Point, Blue_Point- &lt;0,0,20&gt;, .1
    pigment { Blue }
    finish { ambient 1 }
  }
  /* something to make the curve show up */
  lathe {
    linear_spline
    5,
    Red_Point,
    Orange_Point,
    Yellow_Point,
    Green_Point,
    Blue_Point
    pigment { White }
    finish { ambient 1 }
  }
</pre>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/b/b4/TutImgSpline.png">
  </td>
  <td>
    <p>Now, we take a deep breath. We know that all looks a bit weird, but with some simple explanations, we can easily see what all this does.</p>
    <p>First, we are using the orthographic camera. If we have not read up on that yet, a quick summary is: it renders the scene <em>flat</em>, eliminating perspective distortion so that in a side view. The objects look like they were drawn on a piece of graph paper, like in the side view of a modeler or CAD package. There are several uses for this practical type of camera, but here it is allowing us to see our lathe and cylinders <em>edge on</em>, so that what we see is almost like a cross section of the curve which makes the lathe, rather than the lathe itself. To further that effect, we eliminated shadowing with the <code>ambient 1</code> finish, which of course also eliminates the need for lighting. We have also positioned this particular side view so that &lt;0,0&gt; appears at the lower left of our scene.</p> 
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A simple Spline Workshop</p>
  </td>
  <td>
  </td>
</tr>
</table>

<p>Next, we declared a set of points. We note that we used 3D vectors for these points rather than the 2D vectors we expect in a lathe. That is the exception we mentioned earlier. When we declare a 3D point, then use it in a lathe, the lathe only uses the first two components of the vector, and whatever is in the third component is simply ignored. This is handy here, since it makes this example possible.</p>

<p>Next we do two things with the declared points. First we use them to place small diameter cylinders at the locations of the points with the circular caps facing the camera. Then we re-use those same vectors to determine the lathe.</p>

<p>Since trying to declare a 2D vector can have some odd results, and is not really what our cylinder declarations need anyway, we can take advantage of the lathe's tendency to ignore the third component by just setting the z-coordinate in these 3D vectors to zero.</p>

<p>The end result is: when we render this code, we see a white lathe against a black background showing us how the curve we have declared looks, and the circular ends of the cylinders show us where along the x-y-plane our control points are. In this case, it is very simple. The linear spline has been used so our curve is just straight lines zig-zagging between the points.</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/6/61/TutImgMvspline.png">
  </td>
  <td>
    <p>We change the declarations of <code>Red_Point</code> and <code>Blue_Point</code> to read as follows:</p>

<pre>
  #declare Red_Point  = &lt;2.00, 0.00&gt;;
  #declare Blue_Point = &lt;0.00, 4.00&gt;;
</pre>

    <p>We re-render and, as we can see, all that happens is that the straight line segments just move to accommodate the new position of the red and blue points. Linear splines are so simple, we could manipulate them in our sleep, no?</p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Moving some points of the spline.</p>
  </td>
  <td>
  </td>
</tr>
</table>
<p>Now let's examine the different types of splines that the lathe object supports: </p>
<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/6/66/TutImgQuspline.png">
  </td>
  <td>
    <p>First, we change the points to the following.</p>
<pre>
  #declare Red_Point    = &lt;1.00, 0.00&gt;;
  #declare Orange_Point = &lt;2.00, 1.00&gt;;
  #declare Yellow_Point = &lt;3.50, 2.00&gt;;
  #declare Green_Point  = &lt;2.00, 3.00&gt;;
  #declare Blue_Point   = &lt;1.50, 4.00&gt;;
</pre>
    <p>We then find the lathe declaration and change <code>linear_spline</code> to <code>quadratic_spline</code>. We re-render and what do we have? Well, there is a couple of things worthy of note this time. First, we will see that instead of straight lines we have smooth arcs connecting the points. These arcs are made from quadratic curves, so our lathe looks much more
interesting this time. Also, <code>Red_Point</code> is no longer connected to the curve. What happened?</p>
  </td>
<tr>
  <td>
    <p class="caption">A quadratic spline lathe.</p>
  </td>
  <td>
  </td>
</tr>
</table>

<p>Well, while any two points can determine a straight line, it takes three to determine a quadratic curve. POV-Ray looks not only to the two points to be connected, but to the point immediately preceding them to determine the formula of the quadratic curve that will be used to connect them. The problem comes in at the beginning of the curve. Beyond the first point in the curve there is no <em>previous</em> point. So we need to declare one. Therefore, when using a quadratic spline, we must remember that the first point we specify is only there so that POV-Ray can determine what curve to connect the first two points with. It will not show up as part of the actual curve.</p>

<p>There is just one more thing about this lathe example. Even though our curve is now put together with smooth curving lines, the transitions between those lines is... well, kind of choppy, no? This curve looks like the lines between each individual point have been terribly mismatched. Depending on what we are trying to make, this could be acceptable, or, we might need a more smoothly curving shape. Fortunately, if the latter is true, we have another option.</p>

<p>The quadratic spline takes longer to render than a linear spline. The math is more complex. Taking longer still is the cubic spline, yet for a really smoothed out shape this is the only way to go. We go back into our example, and simply replace <code>quadratic_spline</code> with <code>cubic_spline</code>.  We render one more time, and take a look at what we have.</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/0/09/TutImgCuspline.png">
  </td>
  <td>
    <p> While a quadratic spline takes three points to determine the curve, a cubic needs four. So, as we might expect, <code>Blue_Point</code> has now dropped out of the curve, just as <code>Red_Point</code> did, as the first and last points of our curve are now only control points for shaping the curves between the remaining points. But look at the transition from <code>
Orange_Point</code> to <code>Yellow_Point</code> and then back to <code>Green_Point</code>. Now, rather than looking mismatched, our curve segments look like one smoothly joined curve.</p>
  </td>
<tr>
  <td>
    <p class="caption">A cubic spline lathe.</p>
  </td>
  <td></td>
</tr>
</table>

<p>Finally there is another kind of quadratic spline, the <code>bezier_spline</code>. This one takes four points per section. The start point, the end points and in between, two control points. To use it, we will have to make a few changes to our work shop. Delete the Yellow point, delete the Yellow cylinder. Change the points to:</p>
<pre>
  #declare Red_Point    = &lt;2.00, 1.00&gt;;
  #declare Orange_Point = &lt;3.00, 1.50&gt;;
  #declare Green_Point  = &lt;3.00, 3.50&gt;;
  #declare Blue_Point   = &lt;2.00, 4.00&gt;;
</pre>
<p>And change the lathe to:</p>
<pre>
  lathe {
    bezier_spline
    4,
    Red_Point,
    Orange_Point,
    Green_Point,
    Blue_Point
    pigment { White }
    finish { ambient 1 }
  }
</pre>
<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/e/ed/TutImgBezspline1.png">
  </td>
  <td>
    <p> The green and orange control points are not connected to the curve. Move them around a bit, for example:</p>
<pre>
#declare Orange_Point = &lt;1.00, 1.50&gt;;
</pre>
<p>The line that can be drawn from the start point to its closest control point (red to orange) shows the tangent of the curve at the start point. Same for the end point, blue to green.</p>
  </td>
<tr>
  <td>
    <p class="caption">A bezier spline lathe.</p>
  </td>
  <td></td>
</tr>
</table>

<p> One spline segment is nice, two is nicer. So we will add another segment and connect it to the blue point. One segment has four points, so two segments have eight. The first point of the second segment is the same as the last point of the first segment. The blue point. So we only have to declare three more points. Also we have to move the camera a bit and add more cylinders. Here is the complete scene again:</p>
<pre>
#include &quot;colors.inc&quot;
  camera {
    orthographic
    up &lt;0, 7, 0&gt;
    right &lt;7, 0, 0&gt;
    location &lt;3.5, 4, -100&gt;
    look_at &lt;3.5, 4, 0&gt;
  }
  /* set the control points to be used */
  #declare Red_Point    = &lt;2.00, 1.00&gt;;
  #declare Orange_Point = &lt;1.00, 1.50&gt;;
  #declare Green_Point  = &lt;3.00, 3.50&gt;;
  #declare Blue_Point   = &lt;2.00, 4.00&gt;;
  #declare Green_Point2 = &lt;3.00, 4.50&gt;;
  #declare Orange_Point2= &lt;1.00, 6.50&gt;;
  #declare Red_Point2   = &lt;2.00, 7.00&gt;;
  /* make the control points visible */

  cylinder { Red_Point, Red_Point - &lt;0,0,20&gt;, .1
    pigment { Red } finish { ambient 1 }
  }
  cylinder { Orange_Point, Orange_Point - &lt;0,0,20&gt;, .1
    pigment { Orange } finish { ambient 1 }
  }
  cylinder { Green_Point, Green_Point - &lt;0,0,20&gt;, .1
    pigment { Green } finish { ambient 1 }
  }
  cylinder { Blue_Point, Blue_Point- &lt;0,0,20&gt;, .1
    pigment { Blue } finish { ambient 1 }
  }
  cylinder { Green_Point2, Green_Point2 - &lt;0,0,20&gt;, .1
    pigment { Green } finish { ambient 1 }
  }
  cylinder { Orange_Point2, Orange_Point2 - &lt;0,0,20&gt;, .1
    pigment { Orange } finish { ambient 1 }
  }
  cylinder { Red_Point2, Red_Point2 - &lt;0,0,20&gt;, .1
    pigment { Red } finish { ambient 1 }
  }  
  /* something to make the curve show up */
  lathe {
    bezier_spline
    8,
    Red_Point, Orange_Point, Green_Point, Blue_Point
    Blue_Point, Green_Point2, Orange_Point2, Red_Point2
    pigment { White }
    finish { ambient 1 }
  }
</pre>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/d/db/TutImgBezspline2.png">
  </td>
  <td>
    <p>A nice curve, but what if we want a smooth curve? Let us have a look at the tangents on the <code>Blue_Point</code>, draw the lines <code>Green_Point</code>, <code>Blue_Point</code> and <code>Green_Point2</code>, <code>Blue_Point</code>. Look at the angle they make, it is as sharp as the dent in the curve. What if we make the angle bigger? What if we make the angle 180°?</p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Two bezier spline segments, not smooth.</p>
  </td>
  <td></td>
</tr>
</table>
<p> Try a few positions for <code>Green_Point2</code> and end with:</p>
<pre>
#declare Green_Point2 = &lt;1.00, 4.50&gt;;
</pre>
<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/6/61/TutImgBezspline3.png">
  </td>
  <td>
    <p>It's a smooth curve. If we make sure that the two control points and the connection point are on one line, the curve is perfectly smooth.</p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A smooth bezier spline lathe.</p>
  </td>
  <td></td>
</tr>
</table>
<p>In general this can be achieved by:</p>
<pre>
#declare Green_Point2 = Blue_Point&nbsp;+&nbsp;(Blue_Point&nbsp;-&nbsp;Green_Point);
</pre>
<p>The concept of splines is a handy and necessary one, which will be seen again in the prism and polygon objects. It's easy to see, that with a little tinkering, how quickly we can get a feel for working with splines.</p>

</div>
<a name="t2_3_1_2"></a>
<div class="content-level-h4" contains="Surface of Revolution Object" id="t2_3_1_2">
<h4>2.3.1.2 Surface of Revolution Object</h4>
<p>Bottles, vases and glasses make nice objects in ray-traced scenes. We want
to create a golden cup using the <em>surface of revolution</em> object (SOR
object).</p>
<p>
We first start by thinking about the shape of the final object. It is quite
difficult to come up with a set of points that describe a given curve without
the help of a modeling program supporting POV-Ray's surface of revolution
object. If such a program is available we should take advantage of it.</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="640px" src="images/e/e7/TutImgPtcubobj.gif"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">The point configuration of our cup object.</p>
    </td>
  </tr>
</table>

<p>We will use the point configuration shown in the figure above. There are eight points describing the curve that will be rotated about the y-axis to get our cup. The curve was calculated using the method described in the
reference section (see <a href="r3_4.html#r3_4_5_1_15">Surface of Revolution</a>).</p>
<p>
Now it is time to come up with a scene that uses the above SOR object. We
create a file called <code>sordemo.pov</code> and enter the following text.</p>
<pre>
  #include &quot;colors.inc&quot;
  #include &quot;golds.inc&quot;
  camera {
    location &lt;10, 15, -20&gt;
    look_at &lt;0, 5, 0&gt;
    angle 45
  }
  background { color rgb&lt;0.2, 0.4, 0.8&gt;  }
  light_source { &lt;100, 100, -100&gt; color rgb 1 }
  plane {
    y, 0
    pigment { checker color Red, color Green scale 10 }
  }
  sor {
    8,
    &lt;0.0,  -0.5&gt;,
    &lt;3.0,   0.0&gt;,
    &lt;1.0,   0.2&gt;,
    &lt;0.5,   0.4&gt;,
    &lt;0.5,   4.0&gt;,
    &lt;1.0,   5.0&gt;,
    &lt;3.0,  10.0&gt;,
    &lt;4.0,  11.0&gt;
    open
    texture { T_Gold_1B }
  }
</pre>

<p>The scene contains our cup object resting on a checkered plane. Tracing
this scene results in the image below.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/9/9f/TutImgSorobj.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A surface of revolution object.</p>
    </td>
  </tr>
</table>

<p>The surface of revolution is described by starting with the number of
points followed by the points. Points from second to last but one are listed
with ascending heights. Each of them determines the radius of the curve for
a given height. E. g. the first valid point (second listed) tells POV-Ray
that at height 0.0 the radius is 3. We should take care that each point has
a larger height than its predecessor. If this is not the case the program
will abort with an error message. First and last point from the list are
used to determine slope at beginning and end of curve and can be defined for
any height.</p>

</div>
<a name="t2_3_1_3"></a>
<div class="content-level-h4" contains="Prism Object" id="t2_3_1_3">
<h4>2.3.1.3 Prism Object</h4>
<p>The prism is essentially a polygon or closed curve which is swept along a
linear path. We can imagine the shape so swept leaving a trail in space, and
the surface of that trail is the surface of our prism. The curve or polygon
making up a prism's face can be a composite of any number of sub-shapes,
can use any kind of three different splines, and can either keep a constant
width as it is swept, or slowly tapering off to a fine point on one end. But
before this gets too confusing, let's start one step at a time with the
simplest form of prism. We enter and render the following POV code (see file
<code>prismdm1.pov</code>).</p>
<pre>
  #include &quot;colors.inc&quot;
  background{White}
  camera {
    angle 20
    location &lt;2, 10, -30&gt;
    look_at &lt;0, 1, 0&gt;
  }
  light_source { &lt;20, 20, -20&gt; color White }
  prism {
    linear_sweep
    linear_spline
    0, // sweep the following shape from here ...
    1, // ... up through here
    7, // the number of points making up the shape ...
    &lt;3,5&gt;, &lt;-3,5&gt;, &lt;-5,0&gt;, &lt;-3,-5&gt;, &lt;3, -5&gt;, &lt;5,0&gt;, &lt;3,5&gt;
    pigment { Green }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/4/45/TutImgHexprism.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A hexagonal prism shape.</p>
    </td>
  </tr>
</table>

<p>This produces a hexagonal polygon, which is then swept from y=0 through
y=1. In other words, we now have an extruded hexagon. One point to note is
that although this is a six sided figure, we have used a total of seven
points. That is because the polygon is supposed to be a closed shape, which
we do here by making the final point the same as the first. Technically, with
linear polygons, if we did not do this, POV-Ray would automatically join
the two ends with a line to force it to close, although a warning would be
issued. However, this only works with linear splines, so we must not get
too casual about those warning messages!</p>

</div>
<a name="t2_3_1_3_1"></a>
<div class="content-level-h5" contains="Teaching An Old Spline New Tricks" id="t2_3_1_3_1">
<h5>2.3.1.3.1 Teaching An Old Spline New Tricks</h5>
<p>If we followed the section on splines covered under the lathe tutorial
(see the section <a href="t2_3.html#t2_3_1_1_1">Understanding The Concept of Splines</a>), we know that
there are two additional kinds of splines besides linear: the quadratic and
the cubic spline. Sure enough, we can use these with prisms to make a more
free form, smoothly curving type of prism.</p>
<p>
There is just one catch, and we should read this section carefully to keep
from tearing our hair out over mysterious <em>too few points in prism</em>
messages which keep our prism from rendering. We can probably guess where
this is heading: how to close a non-linear spline. Unlike the linear spline,
which simply draws a line between the last and first points if we forget to
make the last point equal to the first, quadratic and cubic splines are a
little more fussy.</p>
<p>
First of all, we remember that quadratic splines determine the equation of
the curve which connects any two points based on those two points and the
previous point, so the first point in any quadratic spline is just <em>
control point</em> and will not actually be part of the curve. What this
means is: when we make our shape out of a quadratic spline, we must match the
second point to the last, since the first point is not on the curve -
it is just a control point needed for computational purposes.</p>
<p>
Likewise, cubic splines need both the first and last points to be control
points, therefore, to close a shape made with a cubic spline, we must match
the second point to the second from last point. If we do not match the
correct points on a quadratic or cubic shape, that is when we will get the
<em>too few points in prism</em> error. POV-Ray is still waiting for us to
close the shape, and when it runs out of points without seeing the closure,
an error is issued.</p>
<p>
Confused? Okay, how about an example? We replace the prism in our last bit
of code with this one (see file <code>prismdm2.pov</code>).</p>
<pre>
  prism {
    cubic_spline
    0, // sweep the following shape from here ...
    1, // ... up through here
    6, // the number of points making up the shape ...
    &lt; 3, -5&gt;, // point#1 (control point... not on curve)
    &lt; 3,  5&gt;, // point#2  ... THIS POINT ...
    &lt;-5,  0&gt;, // point#3
    &lt; 3, -5&gt;, // point#4
    &lt; 3,  5&gt;, // point#5 ... MUST MATCH THIS POINT
    &lt;-5,  0&gt;  // point#6 (control point... not on curve)
    pigment { Green }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/b/b9/TutImgCubprism.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A cubic, triangular prism shape.</p>
    </td>
  </tr>
</table>

<p>This simple prism produces what looks like an extruded triangle with its
corners sanded smoothly off. Points two, three and four are the corners of
the triangle and point five closes the shape by returning to the location of
point two. As for points one and six, they are our control points, and
are not part of the shape - they are just there to help compute what
curves to use between the other points.</p>
</div>
<a name="t2_3_1_3_2"></a>
<div class="content-level-h5" contains="Smooth Transitions" id="t2_3_1_3_2">
<h5>2.3.1.3.2 Smooth Transitions</h5>
<p>Now a handy thing to note is that we have made point one equal point four,
and also point six equals point three. Yes, this is important. Although this
prism would still be legally closed if the control points were not what
we have made them, the curve transitions between points would not be as
smooth. We change points one and six to &lt;4,6&gt; and &lt;0,7&gt;
respectively and re-render to see how the back edge of the shape is altered
(see file <code>prismdm3.pov</code>).</p>
<p>
To put this more generally, if we want a smooth closure on a cubic spline,
we make the first control point equal to the third from last point, and the
last control point equal to the third point. On a quadratic spline, the trick
is similar, but since only the first point is a control point, make that
equal to the second from last point.</p>

</div>
<a name="t2_3_1_3_3"></a>
<div class="content-level-h5" contains="Multiple Sub-Shapes" id="t2_3_1_3_3">
<h5>2.3.1.3.3 Multiple Sub-Shapes</h5>
<p>Just as with the polygon object (see section
<a href="t2_3.html#t2_3_2_3">Polygon Object</a>)
the prism is very flexible, and allows us to make one prism out of several
sub-prisms. To do this, all we need to do is keep listing points after we
have already closed the first shape. The second shape can be simply an add on
going off in another direction from the first, but one of the more
interesting features is that if any even number of sub-shapes overlap, that
region where they overlap behaves as though it has been cut away from both
sub-shapes. Let's look at another example. Once again, same basic code as
before for camera, light and so forth, but we substitute this complex prism
(see file <code>prismdm4.pov</code>).</p>
<pre>
  prism {
    linear_sweep
    cubic_spline
    0,  // sweep the following shape from here ...
    1,  // ... up through here
    18, // the number of points making up the shape ...
    &lt;3,-5&gt;, &lt;3,5&gt;, &lt;-5,0&gt;, &lt;3, -5&gt;, &lt;3,5&gt;, &lt;-5,0&gt;,//sub-shape #1
    &lt;2,-4&gt;, &lt;2,4&gt;, &lt;-4,0&gt;, &lt;2,-4&gt;, &lt;2,4&gt;, &lt;-4,0&gt;, //sub-shape #2
    &lt;1,-3&gt;, &lt;1,3&gt;, &lt;-3,0&gt;, &lt;1, -3&gt;, &lt;1,3&gt;, &lt;-3,0&gt; //sub-shape #3
    pigment { Green }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/d/dc/TutImgSubshape.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Using sub-shapes to create a more complex shape.</p>
    </td>
  </tr>
</table>

<p>For readability purposes, we have started a new line every time we moved
on to a new sub-shape, but the ray-tracer of course tells where each shape
ends based on whether the shape has been closed (as described earlier). We
render this new prism, and look what we have got. It is the same
familiar shape, but it now looks like a smaller version of the shape has been
carved out of the center, then the carved piece was sanded down even smaller
and set back in the hole.</p>
<p>
Simply, the outer rim is where only sub-shape one exists, then the carved
out part is where sub-shapes one and two overlap. In the extreme center, the
object reappears because sub-shapes one, two, and three overlap, returning us
to an odd number of overlapping pieces. Using this technique we could make
any number of extremely complex prism shapes!</p>

</div>
<a name="t2_3_1_3_4"></a>
<div class="content-level-h5" contains="Conic Sweeps And The Tapering Effect" id="t2_3_1_3_4">
<h5>2.3.1.3.4 Conic Sweeps And The Tapering Effect</h5>
<p>In our original prism, the keyword <code>linear_sweep</code> is actually
optional. This is the default sweep assumed for a prism if no type of sweep
is specified. But there is another, extremely useful kind of sweep: the conic
sweep. The basic idea is like the original prism, except that while we are
sweeping the shape from the first height through the second height, we are
constantly expanding it from a single point until, at the second height, the
shape has expanded to the original points we made it from. To give a small
idea of what such effects are good for, we replace our existing prism with
this (see file <code>prismdm4.pov</code>):</p>
<pre>
  prism {
    conic_sweep
    linear_spline
    0, // height 1
    1, // height 2
    5, // the number of points making up the shape...
    &lt;4,4&gt;,&lt;-4,4&gt;,&lt;-4,-4&gt;,&lt;4,-4&gt;,&lt;4,4&gt;
    rotate &lt;180, 0, 0&gt;
    translate &lt;0, 1, 0&gt;
    scale &lt;1, 4, 1&gt;
    pigment { gradient y scale .2 }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/9/92/TutImgPyrsweep.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Creating a pyramid using conic sweeping.</p>
    </td>
  </tr>
</table>

<p>The gradient pigment was selected to give some definition to our object
without having to fix the lights and the camera angle right at this moment,
but when we render it, what have we created? A horizontally striped
pyramid! By now we can recognize the linear spline connecting the four points
of a square, and the familiar final point which is there to close the
spline.</p>
<p>
Notice all the transformations in the object declaration. That is going
to take a little explanation. The rotate and translate are easy. Normally, a
conic sweep starts full sized at the top, and tapers to a point at y=0, but
of course that would be upside down if we are making a pyramid. So we flip
the shape around the x-axis to put it right side up, then since we actually
orbited around the point, we translate back up to put it in the same position
it was in when we started.</p>
<p>
The scale is to put the proportions right for this example. The base is
eight units by eight units, but the height (from y=1 to y=0) is only one
unit, so we have stretched it out a little. At this point, we are
probably thinking, why not just sweep up from y=0 to y=4 and avoid this
whole scaling thing?</p>
<p>
That is a very important gotcha! with conic sweeps. To see what is wrong
with that, let's try and put it into practice (see file <code>
prismdm5.pov</code>). We must make sure to remove the scale statement, and
then replace the line which reads</p>
<pre>
  1, // height 2
</pre>

<p>with</p>
<pre>
  4, // height 2
</pre>

<p>This sets the second height at y=4, so let's re-render and see if the
effect is the same.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/6/6b/TutImgImprswep.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Choosing a second height larger than one for the conic sweep.</p>
    </td>
  </tr>
</table>

<p>Whoa! Our height is correct, but our pyramid's base is now huge! What
went wrong here? Simple. The base, as we described it with the points we used
actually occurs at y=1 no matter what we set the second height for. But if we
do set the second height higher than one, once the sweep passes y=1, it keeps
expanding outward along the same lines as it followed to our original base,
making the actual base bigger and bigger as it goes.</p>
<p>
To avoid losing control of a conic sweep prism, it is usually best to let
the second height stay at y=1, and use a scale statement to adjust the height
from its unit size. This way we can always be sure the base's corners
remain where we think they are.</p>
<p>
That leads to one more interesting thing about conic sweeps. What if we for
some reason do not want them to taper all the way to a point? What if
instead of a complete pyramid, we want more of a ziggurat step? Easily done.
After putting the second height back to one, and replacing our scale
statement, we change the line which reads</p>
<pre>
  0, // height 1
</pre>

<p>to</p>
<pre>
  0.251, // height 1
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/0/0d/TutImgSweepinc.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Increasing the first height for the conic sweep.</p>
    </td>
  </tr>
</table>

<p>When we re-render, we see that the sweep stops short of going all the way
to its point, giving us a pyramid without a cap. Exactly how much of the cap
is cut off depends on how close the first height is to the second height.</p>

</div>
<a name="t2_3_1_4"></a>
<div class="content-level-h4" contains="Sphere Sweep Object" id="t2_3_1_4">
<h4>2.3.1.4 Sphere Sweep Object</h4>
<p>A Sphere Sweep Object is the space a sphere occupies during its movement along a spline.
<br>So we need to specify the kind of spline we want and a list of control points to define
that spline. To help POV-Ray we tell how many control points will be used. In addition, we also
define the radius the moving sphere should have when passing through each of these control
points.</p>

<p>The syntax of the sphere_sweep object is:</p>
<pre>
  sphere_sweep {
    linear_spline | b_spline | cubic_spline
    NUM_OF_SPHERES,

    CENTER, RADIUS,
    CENTER, RADIUS,
    ...
    CENTER, RADIUS
    [tolerance DEPTH_TOLERANCE]
    [OBJECT_MODIFIERS]
  }
</pre>

<p>An example for a linear Sphere Sweep would be:</p>
<pre>
  sphere_sweep {
    linear_spline
    4,
    &lt;-5, -5, 0&gt;, 1
    &lt;-5,  5, 0&gt;, 1
    &lt; 5, -5, 0&gt;, 1
    &lt; 5,  5, 0&gt;, 1
  }
</pre>
<p>This object is described by four spheres. You can use as many spheres as you like to
describe the object, but you will need at least two spheres for a linear Sphere Sweep, and
four spheres for one approximated with a cubic_spline or b_spline.</p>

<p>The example above would result in an object shaped like the letter &quot;N&quot;. The
sphere sweep goes through <em>all</em> points which are connected with straight
cones.</p>
<p>Changing the kind of interpolation to a cubic_spline produces a quite different,
slightly bent, object. It then starts at the second sphere and ends at the last but one. Since
the first and last points are used to control the spline, you need two more points to get a
shape that can be compared to the linear sweep. Let's add them:</p>
<pre>
  sphere_sweep {
    cubic_spline
    6,
    &lt;-4, -5, 0&gt;, 1
    &lt;-5, -5, 0&gt;, 1
    &lt;-5,  5, 0&gt;, 0.5
    &lt; 5, -5, 0&gt;, 0.5
    &lt; 5,  5, 0&gt;, 1
    &lt; 4,  5, 0&gt;, 1
    tolerance 0.1
 }
</pre>
<p>So the cubic sweep creates a smooth sphere sweep actually going through
all points (except the first and last one). In this example the radius of the second and third
spheres have been changed. We also added the <code>tolerance</code> keyword, because
dark spots appeared on the surface with the default value (0.000001).</p>

<p>When using a b_spline, the resulting object is somewhat similar to the cubic
sweep, but does not actually go through the control points. It lies somewhere between them.</p>

</div>
<a name="t2_3_1_5"></a>
<div class="content-level-h4" contains="Bicubic Patch Object" id="t2_3_1_5">
<h4>2.3.1.5 Bicubic Patch Object</h4>
<p>
Bicubic patches are useful surface representations because they allow an easy definition
of surfaces using only a few control points. The control points serve to determine the shape
of the patch. Instead of defining the vertices of triangles, we simply give the coordinates
of the control points. A single patch has 16 control points, one at each corner, and the rest
positioned to divide the patch into smaller sections. POV-Ray does not ray trace the patches
directly, they are approximated using triangles as described in the <a href="r3_4.html#r3_4_5_2_1">Scene Description Language</a> section.
</p>
<p>
Bicubic patches are almost always created by using a third party modeler, but for this tutorial
we will manipulate them by hand. Modelers that support Bicubic patches and export to POV-Ray
can be found in the <a href="http://www.povray.org/resources/links/">links collection on our server</a><br>
Let's set up a basic scene and start exploring the Bicubic patch.
</p>
<pre>
#version 3.5;
global_settings {assumed_gamma 1.0}
background {rgb &lt;1,0.9,0.9&gt;}
camera {location &lt;1.6,5,-6&gt; look_at &lt;1.5,0,1.5&gt; angle 40}
light_source {&lt;500,500,-500&gt; rgb 1 }

#declare B11=&lt;0,0,3&gt;; #declare B12=&lt;1,0,3&gt;; //
#declare B13=&lt;2,0,3&gt;; #declare B14=&lt;3,0,3&gt;; // row 1

#declare B21=&lt;0,0,2&gt;; #declare B22=&lt;1,0,2&gt;; //
#declare B23=&lt;2,0,2&gt;; #declare B24=&lt;3,0,2&gt;; // row 2

#declare B31=&lt;0,0,1&gt;; #declare B32=&lt;1,0,1&gt;; //
#declare B33=&lt;2,0,1&gt;; #declare B34=&lt;3,0,1&gt;; // row 3

#declare B41=&lt;0,0,0&gt;; #declare B42=&lt;1,0,0&gt;; //
#declare B43=&lt;2,0,0&gt;; #declare B44=&lt;3,0,0&gt;; // row 4

bicubic_patch {
   type 1 flatness 0.001
   u_steps 4 v_steps 4
   uv_vectors
   &lt;0,0&gt; &lt;1,0&gt; &lt;1,1&gt; &lt;0,1&gt;
   B11, B12, B13, B14
   B21, B22, B23, B24
   B31, B32, B33, B34
   B41, B42, B43, B44
   uv_mapping
   texture {
      pigment {
         checker 
         color rgbf &lt;1,1,1,0.5&gt; 
         color rgbf &lt;0,0,1,0.7&gt; 
         scale 1/3
      }
      finish {phong 0.6 phong_size 20}
   }
   no_shadow
}
</pre>
<p>
The points B11, B14, B41, B44 are the corner points of the patch.
All other points are control points. The names of the declared points are as follows:
B for the colour of the patch, the first digit gives the row number, the second digit
the column number. If you render the above scene, you will get a blue &amp; white
checkered square, not very exciting. First we will add some spheres to make the control
points visible. As we do not want to type the code for 16 spheres, we will use
an array and a while loop to construct the spheres.
</p>
<pre>
#declare Points=array[16]{
   B11, B12, B13, B14
   B21, B22, B23, B24
   B31, B32, B33, B34
   B41, B42, B43, B44
}
#declare I=0;
#while (I&lt;16)
   sphere {
      Points[I],0.1 
      no_shadow 
      pigment{
         #if (I=0|I=3|I=12|I=15)
            color rgb &lt;1,0,0&gt;
         #else
            color rgb &lt;0,1,1&gt;
         #end
      }
   }
   #declare I=I+1;
#end
</pre>
<p>
Rendering this scene will show the patch with its corner points in red and its control
points in cyan. Now it is time to start exploring.
<br>
Change B41 to <code>&lt;-1,0,0&gt;</code> and render.<br>
Change B41 to <code>&lt;-1,1,0&gt;</code> and render.<br>
Change B41 to <code>&lt; 1,2,1&gt;</code> and render.<br>
</p>
<p>
Let's do some exercise with the control points. Start with a flat patch again.<br>
Change B42 to <code>&lt;1,2,0&gt;</code> and B43 to <code>&lt;2,-2,0&gt;</code> and render.<br>
Change B42 and B43 back to their original positions and try B34 to <code>&lt;4,2,1&gt;</code>  
and B24 to <code>&lt;2,-2,2&gt;</code> and render. Move the points around some more, also
try the control points in the middle.
</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/0/06/TutImgBpatch01.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Bicubic_patch with control points.</p>
    </td>
  </tr>
</table>

<p>
After all this we notice two things: </p>
<ul type="disc">
<li> The patch always goes through the corner points.</li>
<li> In most situations the patch does not go through the control points.</li>
</ul>
<p>
Now go back to our spline work shop and have a look at the bezier_spline again. Indeed,
the points B11, B12, B13, B14, make up a bezier_spline. So do the points B11, B21, B31, B41 
and B41, B42, B43, B44 and B14, B24, B34, B44.
</p>
<p>
So far we have only been looking at one single patch, but one of the strengths of the
Bicubic patch lays in the fact that they can be connected smoothly, to form bigger shapes.
The process of connecting is relatively simple as there are actually only two rules to
follow. It can be done by using a well set up set of macros or by using a modeler. To give
an idea what is needed we will do a simple example by hand.
</p>
<p>
First put the patch in our scene back to its flat position.</p>
<p>Next change:</p>
<pre>
#declare B14 = &lt;3,0,3&gt;;
#declare B24 = &lt;3,2,2&gt;;
#declare B34 = &lt;3.5,1,1&gt;;
#declare B44 = &lt;3,-1,0&gt;;
#declare B41 = &lt;0,-1,0&gt;;
</pre>
<p>Move the camera a bit back:</p>
<pre>camera { location &lt;3.1,7,-8&gt; look_at &lt;3,-2,1.5&gt; angle 40 }</pre>
<p>... and delete all the code for the spheres. We will now try and stitch a patch to the right side of the current one. Off course the points on the left side (column 1) of the new patch have to be in the same position as the points on the right side (column 4) of the blue one.</p>
<p>
Render the scene, including our new patch:
</p>
<pre>
#declare R11=B14; #declare R12=&lt;4,0,3&gt;;     //
#declare R13=&lt;5,0,3&gt;; #declare R14=&lt;6,0,3&gt;; // row 1

#declare R21=B24; #declare R22=&lt;4,0,2&gt;;     //
#declare R23=&lt;5,0,2&gt;; #declare R24=&lt;6,0,2&gt;; // row 2

#declare R31=B34; #declare R32=&lt;4,0,1&gt;;     //
#declare R33=&lt;5,0,1&gt;; #declare R34=&lt;6,0,1&gt;; // row 3

#declare R41=B44; #declare R42=&lt;4,0,0&gt;;     //
#declare R43=&lt;5,0,0&gt;; #declare R44=&lt;6,0,0&gt;; // row 4

bicubic_patch {
   type 1 flatness 0.001
   u_steps 4 v_steps 4
   uv_vectors
   &lt;0,0&gt; &lt;1,0&gt; &lt;1,1&gt; &lt;0,1&gt;
   R11, R12, R13, R14
   R21, R22, R23, R24
   R31, R32, R33, R34
   R41, R42, R43, R44
   uv_mapping
   texture {
      pigment {
         checker 
         color rgbf &lt;1,1,1,0.5&gt; 
         color rgbf &lt;1,0,0,0.7&gt; 
         scale 1/3
      }
      finish {phong 0.6 phong_size 20}
   }
   no_shadow
}
</pre>
<p>
This is a rather disappointing result. The patches are connected, but not exactly smooth.
In connecting patches the same principles apply as for connecting two 2D bezier splines
as we see in the <a href="t2_3.html#t2_3_1_1_1">spline workshop</a>.
Control point, connection point and the next control point should be on one line to give
a smooth result. Also it is preferred, not required, that the distances from both control
points to the connection point are the same. For the Bicubic patch we have to do the same,
for all connection points involved in the joint. So, in our case, the following points 
should be on one line:</p>
<ul type="disc">
<li> B13, B14=R11, R12</li>
<li> B23, B24=R21, R22</li>
<li> B33, B34=R31, R32</li>
<li> B43, B44=R41, R42</li>
</ul>
<p>
To achieve this we do:
</p>
<pre>
#declare R12=B14+(B14-B13); 
#declare R22=B24+(B24-B23); 
#declare R32=B34+(B34-B33); 
#declare R42=B44+(B44-B43); 
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/e/ea/TutImgBpatch02.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">patches, (un)smoothly connected.</p>
    </td>
  </tr>
</table>

<p>
This renders a smooth surface. Adding a third patch in front is relative simple now:</p>
<pre>
#declare G11=B41;      #declare G12=B42;                //
#declare G13=B43;      #declare G14=B44;                // row 1

#declare G21=B41+(B41-B31); #declare G22=B42+(B42-B32); //
#declare G23=B43+(B43-B33); #declare G24=B44+(B44-B34); // row 2

#declare G31=&lt;0,0,-2&gt;; #declare G32=&lt;1,0,-2&gt;;           //
#declare G33=&lt;2,0,-2&gt;; #declare G34=&lt;3,2,-2&gt;;           // row 3

#declare G41=&lt;0,0,-3&gt;; #declare G42=&lt;1,0,-3&gt;;           // 
#declare G43=&lt;2,0,-3&gt;; #declare G44=&lt;3,0,-3&gt;            // row 4

bicubic_patch {
   type 1 flatness 0.001
   u_steps 4 v_steps 4
   uv_vectors
   &lt;0,0&gt; &lt;1,0&gt; &lt;1,1&gt; &lt;0,1&gt;
   G11, G12, G13, G14
   G21, G22, G23, G24
   G31, G32, G33, G34
   G41, G42, G43, G44
   uv_mapping
   texture {
      pigment {
         checker 
         color rgbf &lt;1,1,1,0.5&gt; 
         color rgbf &lt;0,1,0,0.7&gt; 
         scale 1/3
      }
      finish {phong 0.6 phong_size 20}
   }
   no_shadow
}
</pre>
<p>
Finally, let's put a few spheres back in the scene and add some cylinders to visualize what
is going on. See what happens if you move for example B44, B43, B33 or B34.
</p>
<pre>
#declare Points=array[8]{B33,B34,R32,B43,B44,R42,G23,G24}
#declare I=0;
#while (I&lt;8)
   sphere {
      Points[I],0.1 
      no_shadow 
      pigment{
         #if (I=4)
            color rgb &lt;1,0,0&gt;
         #else
            color rgb &lt;0,1,1&gt;
         #end
      }
   }
   #declare I=I+1;
#end
union {
   cylinder {B33,B34,0.04} cylinder {B34,R32,0.04}
   cylinder {B43,B44,0.04} cylinder {B44,R42,0.04}
   cylinder {G23,G24,0.04} 
   cylinder {B33,B43,0.04} cylinder {B43,G23,0.04}
   cylinder {B34,B44,0.04} cylinder {B44,G24,0.04}
   cylinder {R32,R42,0.04}
   no_shadow 
   pigment {color rgb &lt;1,1,0&gt;}
}
</pre>
<p>
The hard part in using the Bicubic patch is not in connecting several patches. The 
difficulty is keeping control over the shape you want to build. As patches are added, 
in order to keep the result smooth, control over the position of many points gets restrained.
</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/4/4a/TutImgBpatch03.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">3 patches, some control points.</p>
    </td>
  </tr>
</table>

</div>
<a name="t2_3_1_6"></a>
<div class="content-level-h4" contains="Text Object" id="t2_3_1_6">
<h4>2.3.1.6 Text Object</h4>
<p>The <code>text</code> object is a primitive that can use TrueType fonts
and TrueType Collections to create text objects. These
objects can be used in CSG, transformed and textured just like any other POV
primitive.</p>
<p>
For this tutorial, we will make two uses of the text object. First,
let's just make some block letters sitting on a checkered plane. Any TTF
font should do, but for this tutorial, we will use the <code>
timrom.ttf</code> or <code>cyrvetic.ttf</code> which come bundled with
POV-Ray.</p>
<p>
We create a file called <code>textdemo.pov</code> and edit it as
follows:</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;0, 1, -10&gt;
    look_at 0
    angle 35
  }
  light_source { &lt;500,500,-1000&gt; White }
  plane {
    y,0
    pigment { checker Green White }
  }
</pre>

<p>Now let's add the text object. We will use the font <code>
timrom.ttf</code> and we will create the string &quot;POV-RAY 3.0&quot;. For
now, we will just make the letters red. The syntax is very simple. The first
string in quotes is the font name, the second one is the string to be
rendered. The two floats are the thickness and offset values. The thickness
float determines how thick the block letters will be. Values of .5 to 2 are
usually best for this. The offset value will add to the kerning distance of
the letters. We will leave this a 0 for now.</p>
<pre>
  text {
    ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 1, 0
    pigment { Red }
  }
</pre>

<p>Rendering this we notice that the letters are
off to the right of the screen. This is because they are placed so that the
lower left front corner of the first letter is at the origin. To center the
string we need to translate it -x some distance. But how far? In the docs we
see that the letters are all 0.5 to 0.75 units high. If we assume that each
one takes about 0.5 units of space on the x-axis, this means that the string
is about 6 units long (12 characters and spaces). Let's translate the
string 3 units along the negative x-axis.</p>
<pre>
  text {
    ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 1, 0
    pigment { Red }
    translate -3*x
  }
</pre>

<p>That is better. Now let's play around with some of the parameters
of the text object. First, let's raise the thickness float to something
outlandish... say 25!</p>
<pre>
  text {
    ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 25, 0
    pigment { Red }
    translate -2.25*x
  }
</pre>

<p>Actually, that is kind of cool. Now let's return the thickness
value to 1 and try a different offset value. Change the offset float from 0
to 0.1 and render it again.</p>
<p>
Wait a minute?! The letters go wandering off up at an angle! That is not
what the docs describe! It almost looks as if the offset value applies in
both the x- and y-axis instead of just the x axis like we intended. Could it
be that a vector is called for here instead of a float? Let's try it. We
replace <code>0.1</code> with <code> 0.1*x</code> and render it again.</p>
<p>
That works! The letters are still in a straight line along the x-axis, just
a little further apart. Let's verify this and try to offset just in the
y-axis. We replace <code> 0.1*x</code> with <code> 0.1*y</code>. Again, this
works as expected with the letters going up to the right at an angle with no
additional distance added along the x-axis. Now let's try the z-axis. We
replace <code> 0.1*y</code> with <code> 0.1*z</code>. Rendering this yields a
disappointment. No offset occurs! The offset value can only be applied in the
x- and y-directions.</p>
<p>
Let's finish our scene by giving a fancier texture to the block letters,
using that cool large thickness value, and adding a slight y-offset. For fun,
we will throw in a sky sphere, dandy up our plane a bit, and use a little
more interesting camera viewpoint (we render the following scene at 640x480
<code> +A0.2</code>):</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;-5,.15,-2&gt;
    look_at &lt;.3,.2,1&gt;
    angle 35
  }
  light_source { &lt;500,500,-1000&gt; White }
  plane {
    y,0
    texture {
      pigment { SeaGreen }
      finish { reflection .35 specular 1 }
      normal { ripples .35 turbulence .5 scale .25 }
    }
  }
  text {
    ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 25, 0.1*y
    pigment { BrightGold }
    finish { reflection .25 specular 1 }
    translate -3*x
  }
  #include &quot;skies.inc&quot;
  sky_sphere { S_Cloud5 }
</pre>

<p>Let's try using text in a CSG object. We will attempt to create an
inlay in a stone block using a text object. We create a new file called
<code>textcsg.pov</code> and edit it as follows:</p>
<pre>
  #include &quot;colors.inc&quot;
  #include &quot;stones.inc&quot;
  background { color rgb 1 }
  camera {
    location &lt;-3, 5, -15&gt;
    look_at 0
    angle 25
  }
  light_source { &lt;500,500,-1000&gt; White }
</pre>

<p>Now let's create the block. We want it to be about eight units across
because our text string &quot;POV-RAY 3.0&quot; is about six units long. We
also want it about four units high and about one unit deep. But we need to
avoid a potential coincident surface with the text object so we will make the
first z-coordinate 0.1 instead of 0. Finally, we will give this block a nice
stone texture.</p>
<pre>
  box {
    &lt;-3.5, -1, 0.1&gt;, &lt;3.5, 1, 1&gt;
    texture { T_Stone10 }
  }
</pre>

<p>Next, we want to make the text object. We can use the same object we used
in the first tutorial except we will use slightly different thickness and
offset values.</p>
<pre>
  text {
    ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 0.15, 0
    pigment { BrightGold }
    finish { reflection .25 specular 1 }
    translate -3*x
  }
</pre>

<p>We remember that the text object is placed by default so that its front
surface lies directly on the x-y-plane. If the front of the box begins at
z=0.1 and thickness is set at 0.15, the depth of the inlay will be 0.05
units. We place a difference block around the two objects.</p>
<pre>
  difference {
    box {
      &lt;-3.5, -1, 0.1&gt;, &lt;3.5, 1, 1&gt;
      texture { T_Stone10 }
    }
    text {
      ttf &quot;timrom.ttf&quot; &quot;POV-RAY 3.0&quot; 0.15, 0
      pigment { BrightGold }
      finish { reflection .25 specular 1 }
      translate -3*x
    }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/3/36/TutImgTxtstone.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">Text carved from stone.</p>
    </td>
  </tr>
</table>

<p>When we render this at a low resolution we can see the inlay clearly and that it is indeed a bright gold color. We can render at a higher resolution and see the results more clearly but be forewarned... this trace
will take a little time.</p>

</div>

<a name="t2_3_2"></a>
<div class="content-level-h3" contains="Polygon Based Shapes" id="t2_3_2">
<h3>2.3.2 Polygon Based Shapes</h3>
</div>
<a name="t2_3_2_1"></a>
<div class="content-level-h4" contains="Mesh Object" id="t2_3_2_1">
<h4>2.3.2.1 Mesh Object</h4>
<p>Mesh objects are very useful because they allow us to create objects
containing hundreds or thousands of triangles. Compared to a simple union of
triangles the mesh object stores the triangles more efficiently. Copies of
mesh objects need only a little additional memory because the triangles are
stored only once.</p>
<p>
Almost every object can be approximated using triangles but we may need a
lot of triangles to create more complex shapes. Thus we will only create a
very simple mesh example. This example will show a very useful feature of the
triangles meshes though: a different texture can be assigned to each triangle
in the mesh.</p>
<p>
Now let's begin. We will create a simple box with differently colored
sides. We create an empty file called <code>meshdemo.pov</code> and add the
following lines. Note that a mesh is - not surprisingly - declared using the
keyword <code><a href="r3_4.html#r3_4_5_2_3">mesh</a></code>.</p>
<pre>
  camera {
    location &lt;20, 20, -50&gt;
    look_at &lt;0, 5, 0&gt;
  }
  light_source { &lt;50, 50, -50&gt; color rgb&lt;1, 1, 1&gt; }
  #declare Red = texture {
    pigment { color rgb&lt;0.8, 0.2, 0.2&gt; }
    finish { ambient 0.2 diffuse 0.5 }
  }
  #declare Green = texture {
    pigment { color rgb&lt;0.2, 0.8, 0.2&gt; }
    finish { ambient 0.2 diffuse 0.5 }
  }
  #declare Blue = texture {
    pigment { color rgb&lt;0.2, 0.2, 0.8&gt; }
    finish { ambient 0.2 diffuse 0.5 }
  }
</pre>

<p>We must declare all textures we want to use inside the mesh before the
mesh is created. Textures cannot be specified inside the mesh due to the poor
memory performance that would result.</p>
<p>
Now we add the mesh object. Three sides of the box will use individual
textures while the other will use the <em> global</em> mesh texture.</p>
<pre>
  mesh {
    /* top side */
    triangle {
      &lt;-10, 10, -10&gt;, &lt;10, 10, -10&gt;, &lt;10, 10, 10&gt;
      texture { Red }
    }
    triangle {
      &lt;-10, 10, -10&gt;, &lt;-10, 10, 10&gt;, &lt;10, 10, 10&gt;
      texture { Red }
    }
    /* bottom side */
    triangle { &lt;-10, -10, -10&gt;, &lt;10, -10, -10&gt;, &lt;10, -10, 10&gt; }
    triangle { &lt;-10, -10, -10&gt;, &lt;-10, -10, 10&gt;, &lt;10, -10, 10&gt; }
    /* left side */
    triangle { &lt;-10, -10, -10&gt;, &lt;-10, -10, 10&gt;, &lt;-10, 10, 10&gt; }
    triangle { &lt;-10, -10, -10&gt;, &lt;-10, 10, -10&gt;, &lt;-10, 10, 10&gt; }
    /* right side */
    triangle {
      &lt;10, -10, -10&gt;, &lt;10, -10, 10&gt;, &lt;10, 10, 10&gt;
      texture { Green }
    }
    triangle {
      &lt;10, -10, -10&gt;, &lt;10, 10, -10&gt;, &lt;10, 10, 10&gt;
      texture { Green }
    }
    /* front side */
    triangle {
      &lt;-10, -10, -10&gt;, &lt;10, -10, -10&gt;, &lt;-10, 10, -10&gt;
      texture { Blue }
    }
    triangle {
      &lt;-10, 10, -10&gt;, &lt;10, 10, -10&gt;, &lt;10, -10, -10&gt;
      texture { Blue }
    }
    /* back side */
    triangle { &lt;-10, -10, 10&gt;, &lt;10, -10, 10&gt;, &lt;-10, 10, 10&gt; }
    triangle { &lt;-10, 10, 10&gt;, &lt;10, 10, 10&gt;, &lt;10, -10, 10&gt; }
    texture {
      pigment { color rgb&lt;0.9, 0.9, 0.9&gt; }
      finish { ambient 0.2 diffuse 0.7 }
    }
  }
</pre>

<p>Tracing the scene at 320x240 we will see that the top, right and front
side of the box have different textures. Though this is not a very impressive
example it shows what we can do with mesh objects. More complex examples,
also using smooth triangles, can be found under the scene directory as <code>
chesmsh.pov</code>.</p>

</div>
<a name="t2_3_2_2"></a>
<div class="content-level-h4" contains="Mesh2 Object" id="t2_3_2_2">
<h4>2.3.2.2 Mesh2 Object</h4>
<p>The <code>mesh2</code> is a representation of a mesh, that is much more
like POV-Ray's internal mesh representation than the standard <code>mesh</code>.
As a result, it parses faster and it file size is smaller.</p>
<p>Due to its nature, <code>mesh2</code> is not really suitable for 
building meshes by hand, it is intended for use by modelers and file
format converters. An other option is building the meshes by macros.
Yet, to understand the format, we will do a small example by hand and go through
all options.</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="640px" src="images/2/21/TutImgMesh2.gif"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">To be written as mesh2.</p>
    </td>
  </tr>
</table>

<p>We will turn the mesh sketched above into a <code>mesh2</code> object.
The mesh is made of 8 triangles, each with 3 vertices, many of 
these vertices are shared among the triangles. This can later be
used to optimize the mesh. First we will set it up straight forward.</p>

<p>In <code>mesh2</code> all the vertices are listed in a list named
<code>vertex_vectors{}</code>. A second list, <code>face_indices{}</code>,
tells us how to put together three vertices to create one triangle,
by pointing to the index number of a vertex. All lists in <code>mesh2</code>
are zero based, the number of the first vertex is 0. The very first
item in a list is the amount of vertices, normals or uv_vectors it contains.
<code>mesh2</code> has to be specified in the order <em>VECTORS...</em>,
<em>LISTS...</em>, <em>INDICES...</em>.</p>

<p>Lets go through the mesh above, we do it counter clockwise. The total 
amount of vertices is 24 (8 triangle * 3 vertices).</p>

<pre>
mesh2 {
   vertex_vectors {
      24,
      ...
</pre>

<p>Now we can add the coordinates of the vertices of the first triangle:</p>

<pre>
mesh2 {
   vertex_vectors {
      24, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;
      ..
</pre>

<p>Next step, is to tell the mesh how the triangle should be created;
There will be a total of 8 face_indices (8 triangles). The first
point in the first face, points to the first vertex_vector (0: &lt;0,0,0&gt;), 
the second to the second (1: &lt;0.5,0,0&gt;), etc...</p>

<pre>
mesh2 {
   vertex_vectors {
      24, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;
      ...
   }
   face_indices {
      8, 
      &lt;0,1,2&gt; 
      ...
</pre>

<p>The complete mesh:</p>

<pre>
mesh2 {
   vertex_vectors {
      24, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;, //1
      &lt;0.5,0,0&gt;, &lt;1,0,0&gt;, &lt;0.5,0.5,0&gt;, //2
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;0.5,0.5,0&gt;, //3
      &lt;1,0.5,0&gt;, &lt;1,1,0&gt;, &lt;0.5,0.5,0&gt;, //4
      &lt;1,1,0&gt;, &lt;0.5,1,0&gt;, &lt;0.5,0.5,0&gt;, //5
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;, &lt;0.5,0.5,0&gt;, //6
      &lt;0,1,0&gt;, &lt;0,0.5,0&gt;, &lt;0.5,0.5,0&gt;, //7
      &lt;0,0.5,0&gt;, &lt;0,0,0&gt;, &lt;0.5,0.5,0&gt;  //8
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;,    &lt;3,4,5&gt;,       //1 2
      &lt;6,7,8&gt;,    &lt;9,10,11&gt;,     //3 4
      &lt;12,13,14&gt;, &lt;15,16,17&gt;,    //5 6
      &lt;18,19,20&gt;, &lt;21,22,23&gt;     //7 8
   }
   pigment {rgb 1}
}
</pre>

<p>As mentioned earlier, many vertices are shared by triangles. We can 
optimize the mesh by removing all duplicate vertices but one. In the 
example this reduces the amount from 24 to 9.</p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      /*as 1*/ &lt;1,0,0&gt;,   /*as 2*/
      /*as 3*/ &lt;1,0.5,0&gt;, /*as 2*/
      /*as 4*/ &lt;1,1,0&gt;,   /*as 2*/
      /*as 5*/ &lt;0.5,1,0&gt;, /*as 2*/
      /*as 6*/ &lt;0,1,0&gt;,   /*as 2*/
      /*as 7*/ &lt;0,0.5,0&gt;, /*as 2*/
      /*as 8*/ /*as 0*/   /*as 2*/
   }
   ...
   ...
</pre>

<p>Next step is to rebuild the list of face_indices, as they now point 
to indices in the <code>vertex_vector{}</code> list that do not exist anymore.</p>

<pre>
   ...
   ...
   face_indices {
      8, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;,
      &lt;5,6,2&gt;, &lt;6,7,2&gt;,
      &lt;7,8,2&gt;, &lt;8,0,2&gt;
   }
   pigment {rgb 1}
}
</pre>

</div>
<a name="t2_3_2_2_1"></a>
<div class="content-level-h5" contains="Smooth triangles and mesh2" id="t2_3_2_2_1">
<h5>2.3.2.2.1 Smooth triangles and mesh2</h5>
<p>In case we want a smooth mesh, the same steps we did also apply to the 
normals in a mesh. For each vertex there is one normal vector listed in 
<code>normal_vectors{}</code>, duplicates can be removed. If the number
of normals equals the number of vertices then the <code>normal_indices{}</code>
list is optional and the indexes from the <code>face_indices{}</code> list
are used instead.</p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;,
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;, &lt;0,0.5,0&gt;   
   }
   normal_vectors {
      9,
     &lt;-1,-1,0&gt;,&lt;0,-1,0&gt;, &lt;0,0,1&gt;,
      /*as 1*/ &lt;1,-1,0&gt;, /*as 2*/
      /*as 3*/ &lt;1,0,0&gt;,  /*as 2*/
      /*as 4*/ &lt;1,1,0&gt;,  /*as 2*/
      /*as 5*/ &lt;0,1,0&gt;,  /*as 2*/
      /*as 6*/ &lt;-1,1,0&gt;, /*as 2*/
      /*as 7*/ &lt;-1,0,0&gt;, /*as 2*/
      /*as 8*/ /*as 0*/  /*as 2*/ 
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;,
      &lt;5,6,2&gt;, &lt;6,7,2&gt;,
      &lt;7,8,2&gt;, &lt;8,0,2&gt;
   }
   pigment {rgb 1}
}
</pre>

<p>When a mesh has a mix of smooth and flat triangles a list of 
<code>normal_indices{}</code> has to be added, where each entry points to what 
vertices a normal should be applied. In the example below only the first four
normals are actually used.</p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;,
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;,   &lt;0,0.5,0&gt;
   }
   normal_vectors {
      9,
      &lt;-1,-1,0&gt;, &lt;0,-1,0&gt;, &lt;0,0,1&gt;,
      &lt;1,-1,0&gt;, &lt;1,0,0&gt;, &lt;1,1,0&gt;,
      &lt;0,1,0&gt;, &lt;-1,1,0&gt;, &lt;-1,0,0&gt;
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;,
      &lt;5,6,2&gt;, &lt;6,7,2&gt;,
      &lt;7,8,2&gt;, &lt;8,0,2&gt;
   }
   normal_indices {
      4, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;
   }
   pigment {rgb 1}
}
</pre>

</div>
<a name="t2_3_2_2_2"></a>
<div class="content-level-h5" contains="UV mapping and mesh2" id="t2_3_2_2_2">
<h5>2.3.2.2.2 UV mapping and mesh2</h5>
<p>uv_mapping is a method of 'sticking' 2D textures on an object in such a way that it
follows the form of the object. For uv_mapping on triangles imagine it as follows; 
First you cut out a triangular section of a texture form the xy-plane. Then stretch,
shrink and deform the piece of texture to fit to the triangle and stick it on.</p>

<p>Now, in <code>mesh2</code> we first build a list of 2D-vectors that are the coordinates of the
triangular sections in the xy-plane. This is the <code>uv_vectors{}</code> list. In the example we
map the texture from the rectangular area <code>&lt;-0.5,-0.5&gt;, &lt;0.5,0.5&gt;</code> to the triangles in the mesh. 
Again we can omit all duplicate coordinates</p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;,
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;,   &lt;0,0.5,0&gt;
   }
   uv_vectors {
      9
     &lt;-0.5,-0.5&gt;,&lt;0,-0.5&gt;,  &lt;0,0&gt;,
      /*as 1*/   &lt;0.5,-0.5&gt;,/*as 2*/
      /*as 3*/   &lt;0.5,0&gt;,   /*as 2*/
      /*as 4*/   &lt;0.5,0.5&gt;, /*as 2*/
      /*as 5*/   &lt;0,0.5&gt;,   /*as 2*/
      /*as 6*/   &lt;-0.5,0.5&gt;,/*as 2*/
      /*as 7*/   &lt;-0.5,0&gt;,  /*as 2*/
      /*as 8*/   /*as 0*/   /*as 2*/       
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;,
      &lt;5,6,2&gt;, &lt;6,7,2&gt;,
      &lt;7,8,2&gt;, &lt;8,0,2&gt;
   }
   uv_mapping
   pigment {wood scale 0.2}
}
</pre>

<p>Just as with the <code>normal_vectors</code>, if the number
of <code>uv_vectors</code> equals the number of vertices then the <code>uv_indices{}</code>
list is optional and the indices from the <code>face_indices{}</code> list
are used instead.</p>

<p>In contrary to the <code>normal_indices</code> list, if the <code>uv_indices</code>
list is used, the amount of indices should be equal to the amount of <code>face_indices</code>.
In the example below only 'one texture section' is specified and used on all triangles, using the
<code>uv_indices</code>.</p>
<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;,
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;,   &lt;0,0.5,0&gt;
   }
   uv_vectors {
      3
      &lt;0,0&gt;, &lt;0.5,0&gt;, &lt;0.5,0.5&gt;    
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;, &lt;1,3,2&gt;,
      &lt;3,4,2&gt;, &lt;4,5,2&gt;,
      &lt;5,6,2&gt;, &lt;6,7,2&gt;,
      &lt;7,8,2&gt;, &lt;8,0,2&gt;
   }
   uv_indices {
      8, 
      &lt;0,1,2&gt;, &lt;0,1,2&gt;,
      &lt;0,1,2&gt;, &lt;0,1,2&gt;,
      &lt;0,1,2&gt;, &lt;0,1,2&gt;,
      &lt;0,1,2&gt;, &lt;0,1,2&gt;
   }
   uv_mapping
   pigment {gradient x scale 0.2}
}
</pre>

</div>
<a name="t2_3_2_2_3"></a>
<div class="content-level-h5" contains="A separate texture per triangle" id="t2_3_2_2_3">
<h5>2.3.2.2.3 A separate texture per triangle</h5>
<p>By using the <code>texture_list</code> it is possible to specify a texture per triangle
or even per vertex in the mesh. In the latter case the three textures per triangle will
be interpolated. To let POV-Ray know what texture to apply to a triangle, the index of a
texture is added to the <code>face_indices</code> list, after the face index it belongs to.</p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;   
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;, &lt;0,0.5,0&gt; 
   }
   texture_list {
      2,
      texture{pigment{rgb&lt;0,0,1&gt;}}
      texture{pigment{rgb&lt;1,0,0&gt;}}
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;,0,  &lt;1,3,2&gt;,1,
      &lt;3,4,2&gt;,0,  &lt;4,5,2&gt;,1,
      &lt;5,6,2&gt;,0,  &lt;6,7,2&gt;,1,
      &lt;7,8,2&gt;,0,  &lt;8,0,2&gt;,1
   }
}
</pre>

<p>To specify a texture per vertex, three <code>texture_list</code> indices are added after
the <code>face_indices</code></p>

<pre>
mesh2 {
   vertex_vectors {
      9, 
      &lt;0,0,0&gt;, &lt;0.5,0,0&gt;, &lt;0.5,0.5,0&gt;,
      &lt;1,0,0&gt;, &lt;1,0.5,0&gt;, &lt;1,1,0&gt;   
      &lt;0.5,1,0&gt;, &lt;0,1,0&gt;, &lt;0,0.5,0&gt; 
   }
   texture_list {
      3,
      texture{pigment{rgb &lt;0,0,1&gt;}}
      texture{pigment{rgb 1}}
      texture{pigment{rgb &lt;1,0,0&gt;}}
   }
   face_indices {
      8, 
      &lt;0,1,2&gt;,0,1,2,  &lt;1,3,2&gt;,1,0,2,
      &lt;3,4,2&gt;,0,1,2,  &lt;4,5,2&gt;,1,0,2,
      &lt;5,6,2&gt;,0,1,2,  &lt;6,7,2&gt;,1,0,2,
      &lt;7,8,2&gt;,0,1,2,  &lt;8,0,2&gt;,1,0,2
   }
}
</pre>

<p>Assigning a texture based on the <code>texture_list</code> and texture
interpolation is done on a per triangle base. So it is possible to mix
triangles with just one texture and triangles with three textures in a mesh.
It is even possible to mix in triangles without any texture indices, these
will get their texture from a general <code>texture</code> statement in the
<code>mesh2</code>. uv_mapping is supported for texturing using a <code>texture_list</code>.</p>

</div>
<a name="t2_3_2_3"></a>
<div class="content-level-h4" contains="Polygon Object" id="t2_3_2_3">
<h4>2.3.2.3 Polygon Object</h4>
<p>The <code><a href="r3_4.html#r3_4_5_2_5">polygon</a></code> object can be used to create any planar, n-sided shapes like squares, rectangles, pentagons, hexagons, octagons, etc.</p>
<p>
A polygon is defined by a number of points that describe its shape. Since
polygons have to be closed the first point has to be repeated at the end of
the point sequence.</p>
<p>
In the following example we will create the word &quot;POV&quot; using just
one polygon statement.</p>
<p>
We start with thinking about the points we need to describe the desired
shape. We want the letters to lie in the x-y-plane with the letter O being at
the center. The letters extend from y=0 to y=1. Thus we get the following
points for each letter (the z coordinate is automatically set to zero).</p>

<p>Letter P (outer polygon):</p>
<pre>
    &lt;-0.8, 0.0&gt;, &lt;-0.8, 1.0&gt;,
    &lt;-0.3, 1.0&gt;, &lt;-0.3, 0.5&gt;,
    &lt;-0.7, 0.5&gt;, &lt;-0.7, 0.0&gt;
</pre>

<p>Letter P (inner polygon):</p>
<pre>
    &lt;-0.7, 0.6&gt;, &lt;-0.7, 0.9&gt;,
    &lt;-0.4, 0.9&gt;, &lt;-0.4, 0.6&gt;
</pre>

<p>Letter O (outer polygon):</p>
<pre>
    &lt;-0.25, 0.0&gt;, &lt;-0.25, 1.0&gt;,
    &lt; 0.25, 1.0&gt;, &lt; 0.25, 0.0&gt;
</pre>

<p>Letter O (inner polygon):</p>
<pre>
    &lt;-0.15, 0.1&gt;, &lt;-0.15, 0.9&gt;,
    &lt; 0.15, 0.9&gt;, &lt; 0.15, 0.1&gt;
</pre>

<p>Letter V:</p>
<pre>
    &lt;0.45, 0.0&gt;, &lt;0.30, 1.0&gt;,
    &lt;0.40, 1.0&gt;, &lt;0.55, 0.1&gt;,
    &lt;0.70, 1.0&gt;, &lt;0.80, 1.0&gt;,
    &lt;0.65, 0.0&gt;
</pre>

<p>Both letters P and O have a hole while the letter V consists of only one
polygon. We will start with the letter V because it is easier to define
than the other two letters.</p>
<p>
We create a new file called <code> polygdem.pov</code> and add the following
text.</p>
<pre>
  camera {
    orthographic
    location &lt;0, 0, -10&gt;
    right 1.3 * 4/3 * x
    up 1.3 * y
    look_at &lt;0, 0.5, 0&gt;
  }
  light_source { &lt;25, 25, -100&gt; color rgb 1 }
  polygon {
    8,
    &lt;0.45, 0.0&gt;, &lt;0.30, 1.0&gt;, // Letter &quot;V&quot;
    &lt;0.40, 1.0&gt;, &lt;0.55, 0.1&gt;,
    &lt;0.70, 1.0&gt;, &lt;0.80, 1.0&gt;,
    &lt;0.65, 0.0&gt;,
    &lt;0.45, 0.0&gt;
    pigment { color rgb &lt;1, 0, 0&gt; }
  }
</pre>

<p>As noted above the polygon has to be closed by appending the first point
to the point sequence. A closed polygon is always defined by a sequence of
points that ends when a point is the same as the first point.</p>
<p>
After we have created the letter V we will continue with the letter P.
Since it has a hole we have to find a way of cutting this hole into the basic
shape. This is quite easy. We just define the outer shape of the letter P,
which is a closed polygon, and add the sequence of points that describes the
hole, which is also a closed polygon. That is all we have to do.
There will be a hole where both polygons overlap.</p>
<p>
In general we will get holes whenever an even number of sub-polygons inside
a single polygon statement overlap. A sub-polygon is defined by a closed
sequence of points.</p>
<p>
The letter P consists of two sub-polygons, one for the outer shape and one
for the hole. Since the hole polygon overlaps the outer shape polygon
we will get a hole.</p>
<p>
After we have understood how multiple sub-polygons in a single polygon
statement work, it is quite easy to add the missing O letter.</p>
<p>
Finally, we get the complete word POV.</p>
<pre>
  polygon {
    30,
    &lt;-0.8, 0.0&gt;, &lt;-0.8, 1.0&gt;,    // Letter &quot;P&quot;
    &lt;-0.3, 1.0&gt;, &lt;-0.3, 0.5&gt;,    // outer shape
    &lt;-0.7, 0.5&gt;, &lt;-0.7, 0.0&gt;,
    &lt;-0.8, 0.0&gt;,
    &lt;-0.7, 0.6&gt;, &lt;-0.7, 0.9&gt;,    // hole
    &lt;-0.4, 0.9&gt;, &lt;-0.4, 0.6&gt;,
    &lt;-0.7, 0.6&gt;
    &lt;-0.25, 0.0&gt;, &lt;-0.25, 1.0&gt;,  // Letter &quot;O&quot;
    &lt; 0.25, 1.0&gt;, &lt; 0.25, 0.0&gt;,  // outer shape
    &lt;-0.25, 0.0&gt;,
    &lt;-0.15, 0.1&gt;, &lt;-0.15, 0.9&gt;,  // hole
    &lt; 0.15, 0.9&gt;, &lt; 0.15, 0.1&gt;,
    &lt;-0.15, 0.1&gt;,
    &lt;0.45, 0.0&gt;, &lt;0.30, 1.0&gt;,    // Letter &quot;V&quot;
    &lt;0.40, 1.0&gt;, &lt;0.55, 0.1&gt;,
    &lt;0.70, 1.0&gt;, &lt;0.80, 1.0&gt;,
    &lt;0.65, 0.0&gt;,
    &lt;0.45, 0.0&gt;
    pigment { color rgb &lt;1, 0, 0&gt; }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/4/42/TutImgPolyword.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">The word &quot;POV&quot; made with one polygon statement.</p>
    </td>
  </tr>
</table>

</div>
<a name="t2_3_3"></a>
<div class="content-level-h3" contains="Other Shapes" id="t2_3_3">
<h3>2.3.3 Other Shapes</h3>
</div>
<a name="t2_3_3_1"></a>
<div class="content-level-h4" contains="Blob Object" id="t2_3_3_1">
<h4>2.3.3.1 Blob Object</h4>
<p>Blobs are described as spheres and cylinders covered with <em>goo</em> which stretches to smoothly join them (see section <a href="r3_4.html#r3_4_5_1_1">Blob</a>).</p>
<p>
Ideal for modeling atoms and molecules, blobs are also powerful tools for
creating many smooth flowing <em>organic</em> shapes.</p>
<p>
A slightly more mathematical way of describing a blob would be to say that
it is one object made up of two or more component pieces. Each piece is
really an invisible field of force which starts out at a particular strength
and falls off smoothly to zero at a given radius. Where ever these components
overlap in space, their field strength gets added together (and yes, we can
have negative strength which gets subtracted out of the total as well). We
could have just one component in a blob, but except for seeing what it looks
like there is little point, since the real beauty of blobs is the way the
components interact with one another.</p>
<p>
Let us take a simple example blob to start. Now, in fact there are a couple
different types of components but we will look at them a little later. For
the sake of a simple first example, let us just talk about spherical
components. Here is a sample POV-Ray code showing a basic camera, light, and
a simple two component blob:</p>
<pre>
  #include &quot;colors.inc&quot;
  background{White}
  camera {
    angle 15
    location &lt;0,2,-10&gt;
    look_at &lt;0,0,0&gt;
  }
  light_source { &lt;10, 20, -10&gt; color White }
  blob {
    threshold .65
    sphere { &lt;.5,0,0&gt;, .8, 1 pigment {Blue} }
    sphere { &lt;-.5,0,0&gt;,.8, 1 pigment {Pink} }
    finish { phong 1 }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/6/68/TutImgSimpblob.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A simple, two-part blob.</p>
    </td>
  </tr>
</table>

<p>The threshold is simply the overall strength value at which the blob
becomes visible. Any points within the blob where the strength matches the
threshold exactly form the surface of the blob shape. Those less than the
threshold are <em>outside</em> and those greater than are <em>inside</em> the
blob.</p>
<p>
We note that the spherical component looks a lot like a simple sphere
object. We have the sphere keyword, the vector representing the location of
the center of the sphere and the float representing the radius of the sphere.
But what is that last float value? That is the individual strength of that
component. In a spherical component, that is how strong the component's
field is at the center of the sphere. It will fall off in a linear
progression until it reaches exactly zero at the radius of the sphere.</p>
<p>
Before we render this test image, we note that we have given each component
a different pigment. POV-Ray allows blob components to be given separate
textures. We have done this here to make it clearer which parts of the blob
are which. We can also texture the whole blob as one, like the finish
statement at the end, which applies to all components since it appears at the
end, outside of all the components. We render the scene and get a basic
kissing spheres type blob.</p>
<p>
The image we see shows the spheres on either side, but they are smoothly
joined by that bridge section in the center. This bridge represents where the
two fields overlap, and therefore stay above the threshold for longer than
elsewhere in the blob. If that is not totally clear, we add the following two
objects to our scene and re-render. We
note that these are meant to be entered as separate sphere objects, not more
components in the blob.</p>
<pre>
  sphere { &lt;.5,0,0&gt;, .8
    pigment { Yellow transmit .75 }
  }
  sphere { &lt;-.5,0,0&gt;, .8
    pigment { Green transmit .75 }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/3/35/TutImgSphblob.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">The spherical components made visible.</p>
    </td>
  </tr>
</table>

<p>Now the secrets of the kissing spheres are laid bare. These
semi-transparent spheres show where the components of the blob actually are.
If we have not worked with blobs before, we might be surprised to see that
the spheres we just added extend way farther out than the spheres that
actually show up on the blobs. That of course is because our spheres have
been assigned a starting strength of one, which gradually fades to zero as we
move away from the sphere's center. When the strength drops below the
threshold (in this case 0.65) the rest of the sphere becomes part of the
outside of the blob and therefore is not visible.</p>
<p>
See the part where the two transparent spheres overlap? We note that it
exactly corresponds to the bridge between the two spheres. That is the region
where the two components are both contributing to the overall strength of the
blob at that point. That is why the bridge appears: that region has a high
enough strength to stay over the threshold, due to the fact that the combined
strength of two spherical components is overlapping there.</p>

</div>
<a name="t2_3_3_1_1"></a>
<div class="content-level-h5" contains="Component Types and Other New Features" id="t2_3_3_1_1">
<h5>2.3.3.1.1 Component Types and Other New Features</h5>
<p>The shape shown so far is interesting, but limited. POV-Ray has a few
extra tricks that extend its range of usefulness however. For example, as we
have seen, we can assign individual textures to blob components, we can also
apply individual transformations (translate, rotate and scale) to stretch,
twist, and squash pieces of the blob as we require. And perhaps most
interestingly, the blob code has been extended to allow cylindrical
components.</p>
<p>
Before we move on to cylinders, it should perhaps be mentioned that the old
style of components used in previous versions of POV-Ray still work. Back
then, all components were spheres, so it was not necessary to say sphere or
cylinder. An old style component had the form:</p>
<p>
component Strength, Radius, &lt;Center&gt;</p>

<p>This has the same effect as a spherical component, just as we already saw
above. This is only useful for backwards compatibility. If we already have
POV-Ray files with blobs from earlier versions, this is when we would need to
recognize these components. We note that the old style components did not put
braces around the strength, radius and center, and of course, we cannot
independently transform or texture them. Therefore if we are modifying an
older work into a new version, it may arguably be of benefit to convert old
style components into spherical components anyway.</p>
<p>
Now for something new and different: cylindrical components. It could be
argued that all we ever needed to do to make a roughly cylindrical portion of
a blob was string a line of spherical components together along a straight
line. Which is fine, if we like having extra to type, and also assuming that
the cylinder was oriented along an axis. If not, we would have to work out
the mathematical position of each component to keep it is a straight line.
But no more! Cylindrical components have arrived.</p>
<p>
We replace the blob in our last example with the following and re-render. We
can get rid of the transparent spheres too, by the way.</p>
<pre>
  blob {
    threshold .65
    cylinder { &lt;-.75,-.75,0&gt;, &lt;.75,.75,0&gt;, .5, 1 }
    pigment { Blue }
    finish { phong 1 }
  }
</pre>

<p>We only have one component so that we can see the basic shape of the
cylindrical component. It is not quite a true cylinder - more of a sausage
shape, being a cylinder capped by two hemispheres. We think of it as if it
were an array of spherical components all closely strung along a straight
line.</p>
<p>
As for the component declaration itself: simple, logical, exactly as we
would expect it to look (assuming we have been awake so far): it looks pretty
much like the declaration of a cylinder object, with vectors specifying the
two endpoints and a float giving the radius of the cylinder. The last float,
of course, is the strength of the component. Just as with spherical
components, the strength will determine the nature and degree of this
component's interaction with its fellow components. In fact, next let us
give this fellow something to interact with, shall we?</p>
</div>
<a name="t2_3_3_1_2"></a>
<div class="content-level-h5" contains="Complex Blob Constructs and Negative Strength" id="t2_3_3_1_2">
<h5>2.3.3.1.2 Complex Blob Constructs and Negative Strength</h5>
<p>Beginning a new POV-Ray file, we enter
this somewhat more complex example:</p>
<pre>
#include &quot;colors.inc&quot;
background{White}
camera {
  angle 20
  location&lt;0,2,-10&gt;
  look_at&lt;0,0,0&gt;
}
light_source { &lt;10, 20, -10&gt; color White }
blob {
  threshold .65
  sphere{&lt;-.23,-.32,0&gt;,.43, 1 scale &lt;1.95,1.05,.8&gt;}   //palm
  sphere{&lt;+.12,-.41,0&gt;,.43, 1 scale &lt;1.95,1.075,.8&gt;}  //palm
  sphere{&lt;-.23,-.63,0&gt;, .45, .75 scale &lt;1.78, 1.3,1&gt;} //midhand
  sphere{&lt;+.19,-.63,0&gt;, .45, .75 scale &lt;1.78, 1.3,1&gt;} //midhand
  sphere{&lt;-.22,-.73,0&gt;, .45, .85 scale &lt;1.4, 1.25,1&gt;} //heel
  sphere{&lt;+.19,-.73,0&gt;, .45, .85 scale &lt;1.4, 1.25,1&gt;} //heel
  cylinder{&lt;-.65,-.28,0&gt;, &lt;-.65,.28,-.05&gt;, .26, 1}    //lower pinky
  cylinder{&lt;-.65,.28,-.05&gt;, &lt;-.65, .68,-.2&gt;, .26, 1}  //upper pinky
  cylinder{&lt;-.3,-.28,0&gt;, &lt;-.3,.44,-.05&gt;, .26, 1}      //lower ring
  cylinder{&lt;-.3,.44,-.05&gt;, &lt;-.3, .9,-.2&gt;, .26, 1}     //upper ring
  cylinder{&lt;.05,-.28,0&gt;, &lt;.05, .49,-.05&gt;, .26, 1}     //lower middle
  cylinder{&lt;.05,.49,-.05&gt;, &lt;.05, .95,-.2&gt;, .26, 1}    //upper middle
  cylinder{&lt;.4,-.4,0&gt;, &lt;.4, .512, -.05&gt;, .26, 1}      //lower index
  cylinder{&lt;.4,.512,-.05&gt;, &lt;.4, .85, -.2&gt;, .26, 1}    //upper index
  cylinder{&lt;.41, -.95,0&gt;, &lt;.85, -.68, -.05&gt;, .25, 1}  //lower thumb
  cylinder{&lt;.85,-.68,-.05&gt;, &lt;1.2, -.4, -.2&gt;, .25, 1}  //upper thumb
  pigment{ Flesh }
}
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/3/30/TutImgBlobhand.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A hand made with blobs.</p>
    </td>
  </tr>
</table>

<p>As we can guess from the comments, we are building a hand here. After we
render this image, we can see there are a few problems with it. The palm and
heel of the hand would look more realistic if we used a couple dozen smaller
components rather than the half dozen larger ones we have used, and each
finger should have three segments instead of two, but for the sake of a
simplified demonstration, we can overlook these points. But there is one
thing we really need to address here: This poor fellow appears to have
horrible painful swelling of the joints!</p>
<p>
A review of what we know of blobs will quickly reveal what went wrong. The
joints are places where the blob components overlap, therefore the combined
strength of both components at that point causes the surface to extend
further out, since it stays over the threshold longer. To fix this, what we
need are components corresponding to the overlap region which have a negative
strength to counteract part of the combined field strength. We add the
following components to our blob.</p>
<pre>
sphere{&lt;-.65,.28,-.05&gt;, .26, -1} //counteract pinky knucklebulge
sphere{&lt;-.65,-.28,0&gt;, .26, -1}   //counteract pinky palm bulge
sphere{&lt;-.3,.44,-.05&gt;, .26, -1}  //counteract ring knuckle bulge
sphere{&lt;-.3,-.28,0&gt;, .26, -1}    //counteract ring palm bulge
sphere{&lt;.05,.49,-.05&gt;, .26, -1}  //counteract middle knuckle bulge
sphere{&lt;.05,-.28,0&gt;, .26, -1}    //counteract middle palm bulge
sphere{&lt;.4,.512,-.05&gt;, .26, -1}  //counteract index knuckle bulge
sphere{&lt;.4,-.4,0&gt;, .26, -1}      //counteract index palm bulge
sphere{&lt;.85,-.68,-.05&gt;, .25, -1} //counteract thumb knuckle bulge
sphere{&lt;.41,-.7,0&gt;, .25, -.89}   //counteract thumb heel bulge
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/e/ed/TutImgImprhand.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">The hand without the swollen joints.</p>
    </td>
  </tr>
</table>

<p>Much better! The negative strength of the spherical components counteracts
approximately half of the field strength at the points where to components
overlap, so the ugly, unrealistic (and painful looking) bulging is cut out
making our hand considerably improved. While we could probably make a yet
more realistic hand with a couple dozen additional components, what we get
this time is a considerable improvement. Any by now, we have enough basic
knowledge of blob mechanics to make a wide array of smooth, flowing organic
shapes!</p>
</div>
<a name="t2_3_3_2"></a>
<div class="content-level-h4" contains="Height Field Object" id="t2_3_3_2">
<h4>2.3.3.2 Height Field Object</h4>
<p>A <code>height_field</code> is an object that has a surface that is
determined by the color value or palette index number of an image designed
for that purpose. With height fields, realistic mountains and other types of
terrain can easily be made. First, we need an image from which to create the
height field. It just so happens that POV-Ray is ideal for creating such an
image.</p>
<p>
We make a new file called <code>image.pov</code> and edit it to contain the
following:</p>
<pre>
  #include &quot;colors.inc&quot;
  global_settings {
    assumed_gamma 2.2
    hf_gray_16
  }
</pre>

<p>The <code><a href="r3_4.html#r3_4_1_4">hf_gray_16</a></code> keyword causes the output to be in a special 16 bit grayscale that is perfect for generating height fields. The normal 8 bit output will lead to less smooth surfaces.</p>
<p>
Now we create a camera positioned so that it points directly down the z-axis
at the origin.</p>
<pre>
  camera {
    location &lt;0, 0, -10&gt;
    look_at 0
  }
</pre>

<p>We then create a plane positioned like a wall at z=0. This plane will
completely fill the screen. It will be colored with white and gray
wrinkles.</p>
<pre>
  plane { z, 10
    pigment {
      wrinkles
      color_map {
       [0 0.3*White]
       [1 White]
      }
    }
  }
</pre>

<p>Finally, create a light source.</p>
<pre>
  light_source { &lt;0, 20, -100&gt; color White }
</pre>

<p>We render this scene at 640x480 <code>+A0.1</code> <code>+FT</code>.
We will get an image that will produce an excellent height field. We create a
new file called <code>hfdemo.pov</code> and edit it as follows:</p>
<p class="Note"><strong>Note:</strong> Unless you specify <code>+FT</code> as above, you will get a <em>PNG</em> file, the default cross-platform output file type. In this case you will need to use <code>png</code> instead of <code>tga</code> in the <code>height_field</code> statement below.</p>
<pre>
  #include &quot;colors.inc&quot;
</pre>

<p>We add a camera that is two units above the origin and ten units back ...</p>
<pre>
  camera{
    location &lt;0, 2, -10&gt;
    look_at 0
    angle 30
  }
</pre>

<p>... and a light source.</p>
<pre>
  light_source{ &lt;1000,1000,-1000&gt; White }
</pre>

<p>Now we add the height field. In the following syntax, a Targa image file
is specified, the height field is smoothed, it is given a simple white
pigment, it is translated to center it around the origin and it is scaled so
that it resembles mountains and fills the screen.</p>
<pre>
  height_field {
    tga &quot;image.tga&quot;
    smooth
    pigment { White }
    translate &lt;-.5, -.5, -.5&gt;
    scale &lt;17, 1.75, 17&gt;
  }
</pre>

<p>We save the file and render it at 320x240 <code>-A</code>. Later, when we
are satisfied that the height field is the way we want it, we render it at a
higher resolution with anti-aliasing.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
  <tr>
    <td><img class="center" width="320px" src="images/9/9f/TutImgPvhfield.png"></td>
  </tr>
  <tr>
    <td>
      <p class="caption">A height field created completely with POV-Ray.</p>
    </td>
  </tr>
</table>

<p>Wow! The Himalayas have come to our computer screen!</p>

</div>
<a name="t2_3_3_3"></a>
<div class="content-level-h4" contains="Isosurface Object" id="t2_3_3_3">
<h4>2.3.3.3 Isosurface Object</h4>
<p>Isosurfaces are shapes described by mathematical functions.</p>

<p>In contrast to the other mathematically based shapes in POV-Ray, isosurfaces
are approximated during rendering and therefore they are sometimes more
difficult to handle. However, they offer many interesting possibilities, like real deformations and surface displacements</p>

<p>Some knowledge about mathematical functions and geometry is useful,
but not necessarily required to work with isosurfaces.</p>

</div>


<a name="t2_3_3_3_1"></a>
<div class="content-level-h5" contains="Simple functions" id="t2_3_3_3_1">
<h5>2.3.3.3.1 Simple functions</h5>
<p>Let's begin with something simple. In this first series of images, let's explore the <a href="r3_3.html#r3_3_1_8">user defined function</a> shown as <code>function&nbsp;{&nbsp;x&nbsp;}</code> that we see in the code example below. It produces the first image on the left, a simple box. The container, which is a requirement for the isosurface object, is represented by the box object and the <code>contained_by</code> keyword in the isosurface definition.</p>

<pre>
  isosurface {
    function { x }
    contained_by { box { -2, 2 } }
  }
</pre>

<p>You should have also noticed that in the image on the left, only half the box was produced, that's because the <code>threshold</code> keyword was omitted, so the <em>default value</em> 0 was used to evaluate the x-coordinate.</p>
<p>In this next code example <code>threshold 1</code> was added to produce the center image.</p>

<pre>
  isosurface {
    function { x }
    threshold 1
    contained_by { box { -2, 2 } }
  }
</pre>

<p>It is also possible to <em>remove</em> the visible surfaces of the container by adding the <code>open</code> keyword to the isosurface definition. </p>
<p>For the final image on the right, the following code example was used. Notice that the <em>omission</em> of the <code>threshold</code> keyword causes the x-coordinate to be again evaluated to zero.</p>

<pre>
  isosurface {
    function { x }
    open
    contained_by { box { -2, 2 } }
  }
</pre>

<table class="centered" width="770px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/7/71/TutImgIso_01.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/ee/TutImgIso_02.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/a/a6/TutImgIso_03.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">function { x }</p>
  </td>
  <td>
    <p class="caption">function { x } with threshold 1</p>
  </td>
  <td>
    <p class="caption">function { x } with open</p>
  </td>
</tr>
</table>

<p class="Hint"><strong>Hint:</strong> The checkered ground plane is scaled to one unit squares.</p>

<p>For the last series of images in this section, let's try something different. These next two code examples were used to show the results of changing the user defined function to <code>function&nbsp;{&nbsp;x+y&nbsp;}</code> and <code>function&nbsp;{&nbsp;x+y+z&nbsp;}</code> respectively. They describe planes going through the origin, the function just describes the normal vector of the plane.</p>

<pre>
  isosurface {
    function { x+y }
    max_gradient 4
    contained_by { box { -2, 2 } }
  }
</pre>

<p class="Note"><strong>Note:</strong> To properly render these examples <code>max_gradient 4</code> was added to the isosurface definition, and will be explained later.</p>

<pre>
  isosurface {
    function { x+y+z }
    max_gradient 4
    contained_by { box { -2, 2 } }
  }
</pre>

<table class="centered" width="460px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/5/56/TutImgIso_04.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/6/67/TutImgIso_05.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">plane function { x+y }</p>
  </td>
  <td>
    <p class="caption">plane function { x+y+z }</p>
  </td>
</tr>
</table>

<p class="Note"><strong>Note:</strong> When appropriate, to better visualize the difference between the isosurface and the container object, the images in this tutorial have been color coded.</p>

</div>
<a name="t2_3_3_3_2"></a>
<div class="content-level-h5" contains="Several surfaces" id="t2_3_3_3_2">
<h5>2.3.3.3.2 Several surfaces</h5>
<p>Now that you're starting to become familiar with <code>isosurface</code> syntax, there really isn't any need to show a code example for each and every image. You can always look back at the earlier examples when needed. The image captions will most often contain additional keyword hints when appropriate.</p>
<p class="Note"><strong>Note:</strong> The user defined function portion will <em>always</em> use this color coded format: <code>function&nbsp;{&nbsp;x+y+z&nbsp;}</code></p>

<p>For the first image on the left, these two functions lead to identical results: <code>function&nbsp;{&nbsp;abs(x)-1&nbsp;}</code> and <code>function&nbsp;{&nbsp;sqrt(x*x)-1&nbsp;}</code> because both of these formulas have the same solution where the function value is 0, specifically <code>x=-1</code> and <code>x=1</code> in this example.</p>
<p>You can easily mix any of these elements in different combinations, but the results always produce planar surfaces. The last two images in this series used <code>function&nbsp;{&nbsp;abs(x)-1+y&nbsp;}</code> and <code>function&nbsp;{&nbsp;abs(x)+abs(y)+abs(z)-2&nbsp;}</code> respectively.</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/5/50/TutImgIso_06.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/f/f5/TutImgIso_07.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/95/TutImgIso_08.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">identical results with open</p>
  </td>
  <td>
    <p class="caption">linear functions x &amp; y axis</p>
  </td>
  <td>
    <p class="caption">linear functions x, y &amp; z axis</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_3_3_3"></a>
<div class="content-level-h5" contains="Non-linear functions" id="t2_3_3_3_3">
<h5>2.3.3.3.3 Non-linear functions</h5>
<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/a0/TutImgIso_09.png">
  </td>
  <td>
    <p class="tabletext">Curved surfaces of many different kinds can be achieved with non-linear
functions. A square function creates the parabolic shape:<br><code>function&nbsp;{&nbsp;pow(x,2)+y&nbsp;}</code></p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">a parabolic shape</p>
  </td>
  <td></td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">If you describe a circle in 2 dimensions with a constant in the 3rd dimension you get a cylinder:<br><code> function&nbsp;{&nbsp;sqrt(pow(x,2)+pow(z,2))-1&nbsp;}</code></p>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/c0/TutImgIso_10.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">the cylinder shape</p>
  </td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/f/fd/TutImgIso_11.png">
  </td>
  <td>
    <p class="tabletext">It's easy to change a cylinder into a cone, we just need
to add a linear component in y-direction:<br><code>function&nbsp;{&nbsp;sqrt(pow(x,2)+pow(z,2))+y&nbsp;}</code></p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">the cone shape</p>
  </td>
  <td></td>
  <td></td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">No worries, creating a sphere is easy too. In this example <code>2</code> specifies the radius:<br><code> function&nbsp;{&nbsp;sqrt(pow(x,2)+pow(y,2)+pow(z,2))-2&nbsp;}</code></p>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/2/2d/TutImgIso_12.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">the sphere shape</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_3_3_4"></a>
<div class="content-level-h5" contains="Specifying functions" id="t2_3_3_3_4">
<h5>2.3.3.3.4 Specifying functions</h5>
<p>Until now, we have seen, the functions used to define the isosurface were literally written in the <code>function {...}</code> block:</p>
<pre>
#declare Threshold = 1;

isosurface {
function {pow(x,2) + pow(y,2) + pow(z,2)}
  threshold Threshold
  ...
}
</pre>

<p>Let's expand on that concept, and add some flexibility. Remember that user defined functions (like equations), all float expressions and operators which are legal in POV-Ray can be used, and that functions should be declared first, and then used in the isosurface. See the section <a href="r3_3.html#r3_3_1_8">user defined function</a> for more information.</p>

<p>This next example takes the above equation, and rewrites it as a user defined function. By default a function that takes three parameters (x,y,z) does not require you to explicitly specify the parameter names when declaring it,  however when <em>using</em> the identifier, the parameters <em>must</em> be specified.</p>

<pre>
#declare Threshold = 1;

#declare Sphere = function {pow(x,2) + pow(y,2) + pow(z,2)};

isosurface {
  function { Sphere(x,y,z) }
  threshold Threshold
  ...
}
</pre>

<p>However, if you need more or less than three parameters when declaring a function, you will also have to explicitly specify the parameter names.</p>
<pre>
#declare Sphere = function (x,y,z,Radius) {pow(x,2) + pow(y,2) + pow(z,2) - pow(Radius,2)};

isosurface {
  function { Sphere(x,y,z,1) }
  ...
}
</pre>

</div>
<a name="t2_3_3_3_5"></a>
<div class="content-level-h5" contains="Internal functions" id="t2_3_3_3_5">
<h5>2.3.3.3.5 Internal functions</h5>
<p>There are a lot of internal functions available in POV-Ray. For example a sphere could also be generated with <code>function&nbsp;{&nbsp;f_sphere(x,&nbsp;y,&nbsp;z,&nbsp;2)&nbsp;}</code>, for these and other functions, see the <code>functions.inc</code> include file. Most of them are more complicated and it is usually faster to use them instead of a hand coded equivalent.</p>
<p>See the <a href="r3_4.html#r3_4_9_1_7">complete list</a> for details.</p>

<p>The following makes a torus just like POV-Ray's torus object:</p>

<pre>
  #include &quot;functions.inc&quot;

  isosurface {
    function { f_torus(x, y, z, 1.6, 0.4) }
    contained_by { box { -2, 2 } }
  }
</pre>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/9/9f/TutImgIso_13.png">
  </td>
  <td>
    <p class="tabletext">The 4th and 5th parameters are the major and minor radius, just like the corresponding values in the <code>torus{}</code> object.</p>
    <p class="tabletext">The parameters x, y and z are required, because it is a declared function. You can also declare functions yourself like it is explained in the <a href="r3_3.html#r3_3_1_8_3">reference section</a>.</p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">the torus function</p>
  </td>
  <td></td>
</tr>
</table>

</div>
<a name="t2_3_3_3_6"></a>
<div class="content-level-h5" contains="Combining isosurface functions" id="t2_3_3_3_6">
<h5>2.3.3.3.6 Combining isosurface functions</h5>
<p>We can also simulate some Constructive Solid Geometry with isosurface functions.  If you do not know about CSG we suggest you have a look at <em><a href="t2_2.html#t2_2_3_1">What is CSG?</a></em> or the corresponding part of the <a href="r3_4.html#r3_4_5_4">reference section</a> first.</p>

<p>For this next group of images, consider the two functions for a cylinder and a rotated box:</p>

<pre>
  #declare fn_A = function { sqrt(pow(y,2) + pow(z,2)) - 0.8 }
  #declare fn_B = function { abs(x)+abs(y)-1 }
</pre>

<ol>
  <li>If we combine them the following way, we get a <em>merge</em>:<br>
<code>function { min(fn_A(x, y, z), fn_B(x, y, z)) }</code></li>
  <li>An <em>intersection</em> can be obtained by using <code>max()</code> instead of <code>min()</code>:<br>
<code>function { max(fn_A(x, y, z), fn_B(x, y, z)) }</code>
</li>
  <li>A <em>difference</em> is possible, by adding a minus (-) before the second function:<br>
<code>function { max(fn_A(x, y, z), -fn_B(x, y, z)) }</code>
</li>
</ol>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/7/77/TutImgIso_14.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/6/69/TutImgIso_15.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/8/80/TutImgIso_16.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">merge example</p>
  </td>
  <td>
    <p class="caption">intersection example</p>
  </td>
  <td>
    <p class="caption">difference example</p>
  </td>
</tr>
</table>

<p>Apart from basic CSG you can also obtain smooth transits between the different surfaces, for instance the <a href="t2_3.html#t2_3_3_1">blob object</a>:</p>

<pre>
  #declare Blob_Threshold=0.01;

  isosurface {
    function {
      (1+Blob_Threshold)
      -pow(Blob_Threshold, fn_A(x,y,z))
      -pow(Blob_Threshold, fn_B(x,y,z))
    }
    max_gradient 4
    contained_by { box { -2, 2 } }
  }
</pre>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/c/c9/TutImgIso_17.png">
  </td>
  <td>
    <p class="tabletext">The <code>Blob_Threshold</code> value influences the smoothness of
the transit between the shapes.  A lower value leads to sharper edges, and it's function looks like:</p>
<pre>
function{fn_A(x,y,z) + pow(Blob_Threshold,(fn_B(x,y,z) + Strength))}
</pre>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">smooth transitions using blob</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_3_3_7"></a>
<div class="content-level-h5" contains="Noise and pigment functions" id="t2_3_3_3_7">
<h5>2.3.3.3.7 Noise and pigment functions</h5>
<p>Some of the <a href="r3_3.html#r3_3_1_8_6">internal functions</a> have a random or noise-like structure</p>

<p>Together with the pigment functions they are one of the most powerful tools for designing isosurfaces. We can add real surface displacement to the objects rather than only normal perturbation known from the <a href="r3_4.html#r3_4_6_2">normal</a> statement.</p>

<p>The relevant internal functions are:</p>

<ul>
<li><code>f_noise3d(x,y,z)</code><br>
uses the <a href="r3_4.html#r3_4_7_5_4">noise generator</a> specified in <code>global_settings</code> and generates structures like the bozo pattern.</li>
<li><code>f_noise_generator(x, y, z, noise_generator)</code><br>
generates noise with a specified noise generator.</li>
<li><code>f_ridged_mf(x, y, z, H, Lacunarity, Octaves, Offset, Gain, noise_generator)</code><br>
generates a ridged multifractal pattern.</li>
<li><code>f_ridge(x, y, z, Lambda, Octaves, Omega, Offset, Ridge, noise_generator)</code><br>
generates another noise with ridges.</li>
<li><code>f_hetero_mf(x, y, z, H, Lacunarity, Octaves, Offset, T, noise_generator)</code><br>
generates heterogenic multifractal noise.</li>
</ul>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">Using this simple noise3d function results in the image on the right. The value <code>-0.5</code> matches the default <code>threshold</code> value of zero. The <code>f_noise3d</code> function returns values between 0 and 1:</p> 
    <p class="tabletext"><code>function&nbsp;{&nbsp;f_noise3d(x,y,z)-0.5&nbsp;}</code></p>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/7/77/TutImgIso_18.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">simple noise3d function</p>
  </td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">In these next two images the noise function was added to a plane function. The x-parameter was set to 0 so the noise function is constant in x-direction. This way we achieve the typical heightfield structure.</p>
  </td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/4/49/TutImgIso_19.png">
  </td>
  <td>
    <p class="tabletext">With this and the other functions you can generate objects similar to heightfields, having the advantage that a high resolution can be achieved without high memory requirements:</p>
    <p class="tabletext"><code>function&nbsp;{&nbsp;x&nbsp;+&nbsp;f_noise3d(0,y,z)&nbsp;}</code></p> 
  </td>   
</tr>
<tr>
  <td>
    <p class="caption">a noise3d heightfield</p>
  </td>
  <td></td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">The noise function can of course also be subtracted which results in an <em>inverted</em> version:</p>
    <p class="tabletext"><code>function&nbsp;{&nbsp;x&nbsp;-&nbsp;f_noise3d(0,y,z)&nbsp;}</code></p>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/9d/TutImgIso_20.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">a noise3d heightfield - inverted</p>
  </td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/0/0e/TutImgIso_21.png">
  </td>
  <td>
    <p class="tabletext">Of course we can also add noise to any other function. If the noise function is very strong this can result in several separated surfaces.</p>
    <p class="tabletext"><code>function&nbsp;{&nbsp;f_sphere(x,y,z,1.2)&nbsp;-&nbsp;f_noise3d(x,y,z)&nbsp;}</code></p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">noise3d on a sphere</p>
  </td>
  <td>
  </td>
</tr>
</table>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">This is a noise function applied to a sphere surface, we can influence the intensity of the noise by multiplying it with a factor and change the scale by multiplying the coordinate parameters:</p>
    <p class="tabletext"><code>function&nbsp;{</code><br><code>&nbsp;&nbsp;f_sphere(x,y,z,1.6)&nbsp;-</code><br><code>&nbsp;&nbsp;&nbsp;&nbsp;f_noise3d(x*5,y*5,z* )&nbsp;*&nbsp;0.5<br>&nbsp;&nbsp;&nbsp;&nbsp;}</code></p>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/9c/TutImgIso_22.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">noise3d on a sphere - scaled</p>
  </td>
</tr>
</table>

<p>As alternative to noise functions we can also use any pigment in a function:</p>

<pre>
  #declare fn_Pigm=function {
    pigment {
      agate
      color_map {
        [0 color rgb 0]
        [1 color rgb 1]
      }
    }
  }
</pre>

<p>This is a vector function, it returns a color vector for use in isosurface functions. They <em>must</em> be pre-declared first. When using the identifier, you have to specify which component of the color vector should be used.</p>
<p>To do this, the dot notation is used. Refer to the above example: <code>fn_Pigm(x,y,z).red</code></p>

<p>A color vector has five components, their supported dot types to access these components are:</p>

<ol>
  <li><code>fn_Pigm( ).x</code> | <code>fn_Pigm( ).u</code> | <code>fn_Pigm( ).red</code><br>
to get the red value of the color vector </li>
  <li><code>fn_Pigm( ).y</code> | <code>fn_Pigm( ).v</code> | <code>fn_Pigm( ).green</code><br>
to get the green value of the color vector</li>
  <li><code>fn_Pigm( ).z</code> | <code>fn_Pigm( ).blue</code><br>
to get the blue value of the color vector</li>
  <li><code>fn_Pigm( ).filter</code> | <code>fn_Pigm( ).f</code><br>
to get the filter value of the color vector</li>
  <li><code>fn_Pigm( ).transmit</code> | <code>fn_Pigm( ).t</code><br>
to get the transmit value of the color vector</li>
</ol>

<p>And two special purpose operators, their supported dot types to access these operators are:</p>
<p class="Note"><strong>Note:</strong> The <code>.hf</code> operator is experimental and will generate a warning.</p> 

<ol>
  <li><code>fn_Pigm( ).gray</code> to get the gray value of the color vector<br>
<em>gray value</em> = Red*29.7% + Green*58.9% + Blue*11.4% </li>
  <li><code>fn_Pigm( ).hf</code> to get the height_field value of the color vector<br>
<em>hf value</em> = (Red + Green/255)*0.996093</li>
</ol>

<table class="centered" width="570px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/c/c2/TutImgIso_23.png">
  </td>
  <td>
    <p class="tabletext">There are quite a lot of things possible with pigment functions. However, it should be noted that, some functions can cause longer render times:</p>
    <p class="tabletext"><code>function {<br>&nbsp;&nbsp;f_sphere(x,&nbsp;y,&nbsp;z,&nbsp;1.6)&nbsp;-<br>&nbsp;&nbsp;&nbsp;&nbsp;fn_Pigm(x/2,&nbsp;y/2,&nbsp;z/2).gray*0.5<br>&nbsp;&nbsp;&nbsp;&nbsp;}</code></p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">noise using a pigment function</p>
  </td>
  <td></td>
</tr>
</table>

</div>
<a name="t2_3_3_3_8"></a>
<div class="content-level-h5" contains="Conditional directives and loops" id="t2_3_3_3_8">
<h5>2.3.3.3.8 Conditional directives and loops</h5>
<p>
Conditional directives are allowed in functions: 
</p>

<pre>
#declare Rough = yes;
#include &quot;functions.inc&quot;
isosurface {
  function { y #if(Rough=1)-f_noise3d(x/0.5,y/0.3,z/0.4)*0.8 #end }
  ...
}
</pre>

<p>
Loops can also be used in functions: 
</p>

<pre>
#include &quot;functions.inc&quot;
#declare Thr = 1/1000;
#declare Ang = radians(45);
#declare Offset = 1.5;
#declare Scale = 1.2;
#declare TrSph = function { f_sphere(x-Offset,y,z,0.7*Scale) }

function {
  (1-Thr)
  #declare A = 0;
  #while (A&lt;8)
  -pow(Thr, TrSph(x*cos(A*Ang) + y*sin(A*Ang),
                  y*cos(A*Ang) -x*sin(A*Ang), z) )
    #declare A=A+1;
  #end
}
</pre>

<p class="Note"><strong>Note:</strong> The loops and conditionals are evaluated at parse time, not at render time.</p>

</div>
<a name="t2_3_3_3_9"></a>
<div class="content-level-h5" contains="Transformations on functions" id="t2_3_3_3_9">
<h5>2.3.3.3.9 Transformations on functions</h5>
<p>Transforming an isosurface object is done like transforming any POV-Ray object. Simply use the object modifiers, scale, translate, and rotate. However, when you want to transform functions within the <code>contained_by</code> object, you have to substitute parameters in the functions.</p>

<p>The results <em>seem</em> inverted to what you would normally expect, here's why:</p>

<p>Remember the sphere function we created earlier in this tutorial: <code>Sphere(x,y,z)</code></p>
<p>We know it sits at the origin because <code>x=0</code>. If we want to translate it 2 units to the right to <code>x=2</code> we need to write the second equation in the same form: <code>x-2=0</code>. Now that both equations equal zero, we can replace the parameter <code>x</code> with <code>x-2</code>, call our function as: <code>Sphere(x-2,y,z)</code> and it's translated two units to the right.</p>

<p>Let's look at how to scale our test sphere by <code>0.5</code> in the <em>y direction</em>. Given the default value of <code>y=1</code> <em>one unit</em> we'd want <code>y=0.5</code>. To do this we need to have the equation in the same form as the first one, so we'll multiply both sides by two: <code>y*2 = 0.5*2</code> which gives <code>y*2=1</code>.</p>
<p>Now we can replace the <code>y</code> parameter in our sphere: <code>Sphere(x,y*2,z)</code>. This scales the <em>y-size</em> of the sphere by half.</p>

<p>Here is an overview of some useful substitutions, we'll be using a pseudo-object designated as <code>P(x,y,z)</code> in the following examples:</p>

<p><strong>Scale:</strong></p>
<p>&nbsp;&nbsp;To scale <code>x</code> replace <code>x</code> with <code>x/scale</code>:<br>&nbsp;&nbsp;<code>P(x/2,y,z)</code></p>

<p><strong>Scale Infinitely:</strong></p>
<p>&nbsp;&nbsp;To scale <code>y</code> infinitely replace <code>y</code> with <code>0</code>:<br>&nbsp;&nbsp;<code>P(x,0,z)</code></p>

<p><strong>Translate:</strong></p>
<p>&nbsp;&nbsp;To translate <code>z</code> replace <code>z</code> with <code>z&nbsp;-&nbsp;translation</code>:<br>&nbsp;&nbsp;<code>P(x,y,z-3)</code></p>

<p><strong>Shear:</strong></p>
<p>&nbsp;&nbsp;To shear in <em>xy-plane</em> replace <code>x</code> with <code>x + y*tan(radians(Angle))</code>:<br>&nbsp;&nbsp;<code>P(x+y*tan(radians(Angle)),y,z)</code></p>

<p><strong>Rotate:</strong></p>
<p class="Note"><strong>Note:</strong> These rotation substitutions work like normal POV-rotations, they already compensate for the inverse behavior.</p>

<p>To rotate around the X-axis:</p>
<p>&nbsp;&nbsp;replace <code>y</code> with <code>z*sin(radians(Angle)) + y*cos(radians(Angle))</code></p>
<p>&nbsp;&nbsp;replace <code>z</code> with <code>z*cos(radians(Angle)) - y*sin(radians(Angle))</code></p>

<p>To rotate around the Y-axis:</p>
<p>&nbsp;&nbsp;replace <code>x</code> with <code>x*cos(radians(Angle)) - z*sin(radians(Angle))</code></p>
<p>&nbsp;&nbsp;replace <code>z</code> with <code>x*sin(radians(Angle)) + z*cos(radians(Angle))</code></p>

<p>To rotate around the Z-axis:</p>
<p>&nbsp;&nbsp;replace <code>x</code> with <code>x*cos(radians(Angle)) + y*sin(radians(Angle))</code></p>
<p>&nbsp;&nbsp;replace <code>y</code> with <code>-x*sin(radians(Angle)) + y*cos(radians(Angle)) </code></p>

<p><strong>Flip:</strong></p>
<p>To flip X - Y:</p>
<p>&nbsp;&nbsp;replace <code>x</code> with <code>y</code> <em>AND</em> replace <code>y</code> with <code>-x</code></p>

<p>To flip Y - Z:</p>
<p>&nbsp;&nbsp;replace <code>y</code> with <code>z</code> <em>AND</em> replace <code>z</code> with <code>-y</code></p>

<p>To flip X - Z:</p>
<p>&nbsp;&nbsp;replace <code>x</code> with <code>-z</code> <em>AND</em> replace <code>z</code> with <code>x</code></p>

<p><strong>Twist:</strong></p>
<p>To twist N turns/unit around the <code>x</code> axis:</p>
<p>&nbsp;&nbsp;replace <code>y</code> with <code>z*sin(x*2*pi*N) + y*cos(x*2*pi*N)</code></p>
<p>&nbsp;&nbsp;replace <code>z</code> with <code>z*cos(x*2*pi*N) - y*sin(x*2*pi*N)</code></p>

</div>
<a name="t2_3_3_3_10"></a>
<div class="content-level-h5" contains="Improving Isosurface Speed" id="t2_3_3_3_10">
<h5>2.3.3.3.10 Improving Isosurface Speed</h5>
<p>To optimize the approximation of the isosurface and to get maximum rendering speed it is important to adapt certain values:</p>

<p><strong><code>accuracy</code>:</strong></p>

<p>The accuracy value influences how accurate the surface geometry is calculated. Lower values lead to a more precise, but slower result. The default value of <code>0.001</code> is fairly low. We used this value in all the previous samples, but often you can raise this quite a lot and thereby make things faster.</p>

<p><strong><code>max_gradient</code>:</strong></p>

<p>For finding the actual surface it is important for POV-Ray to know the maximum gradient of the function, meaning how fast the function value changes. We can specify a value with the <code>max_gradient</code> keyword.  Lower max_gradient values lead to faster rendering, but if the specified value is below the actual maximum gradient of the function, there can be holes or other artefact's in the surface.</p>

<p>For the same reason functions with an infinite gradient should not be used. This applies for pigment functions with brick or checker patterns for example. You should also be careful when using <code>select()</code> in isosurface functions because of this.</p>

<p>If the real maximum gradient differs too much from the specified value POV-Ray issues a warning together with the found maximum gradient. It is usually sufficient to use this number for the <code>max_gradient</code> parameter to get fast and correct results.</p>

<p>POV-Ray can also dynamically change the <code>max_gradient</code> when you specify <code>evaluate</code> with 3 parameters in the isosurface definition. Concerning the details on this and other things see the <a href="r3_4.html#r3_4_5_1_6">evaluate</a> keyword in the reference section.</p>

<p><strong><code>contained_by</code>:</strong></p>

<p>Make sure your <code>contained_by</code> object fits as tightly as possible. An oversized container can sky-rocket the render time. When the container has a lot of empty space around the actual isosurface, POV-Ray has to do a lot of superfluous sampling: especially with complex functions this can become very time consuming. On top of this, the <code>max_gradient</code> needed to get a proper surface will also increase rapidly, almost proportional to the oversize! You could use a transparent copy of the container (using exactly the same transformations) to check how it fits. Getting the <code>min_extent</code> and <code>max_extent</code> of the isosurface is not useful because it only gives the extent of the container and not of the actual isosurface.</p>

</div>
<a name="t2_3_3_4"></a>
<div class="content-level-h4" contains="Poly Object" id="t2_3_3_4">
<h4>2.3.3.4 Poly Object</h4>
<p>The polynomial object (and its <em>shortcut</em> versions: <code><a href="r3_4.html#r3_4_5_3_3">cubic</a></code>, <code><a href="r3_4.html#r3_4_5_3_4">quartic</a></code> and <code><a href="r3_4.html#r3_4_5_3_6">quadric</a></code>)
of POV-Ray is one of the most complex and mathematical primitives of the program. One could think that it is seldom
used and more or less obsolete, but we have to remember that for example the torus primitive is just a shortcut for the equivalent <code>quartic</code>, which is just a shortcut for the equivalent <code>poly</code> object. Polys are, however, seldom used in scenes due to the fact that they are so difficult to define and it is far from trivial to get the desired shape with just a polynomial equation. It is mostly used by the most mathematically oriented POV-Ray users.</p>

<p>This tutorial explains the process of making a polynomial object
in POV-Ray.</p>

<p class="Note"><strong>Note:</strong> Since version 3.5, POV-Ray includes the new <code>isosurface</code> object
which makes the polynomial object more or less obsolete. The isosurface is more versatile (you can specify any mathematical function, not
just polynomials) and easier to use. You can write the function as is, without needing to put values in a gigantic vector. Isosurfaces also often (although not always) render considerably faster than equivalent polys.</p>

<p>However, the most mathematically oriented still like polys because
isosurfaces are calculated just by approximating the right value, while
the poly is calculated in a mathematically exact way. Usually isosurfaces
are more than good enough for most applications, though.</p>

<p class="Note"><strong>Note:</strong> A maximum of 35th degree polynomial can be represented with the poly object. If a higher degree polynomial or other non-polynomial function has to be represented, then it is necessary to use the isosurface object.</p>

</div>
<a name="t2_3_3_4_1"></a>
<div class="content-level-h5" contains="Creating the polynomial function" id="t2_3_3_4_1">
<h5>2.3.3.4.1 Creating the polynomial function</h5>
<p>The first step is to create the polynomial function to be represented.
You will need some (high-school level) mathematical knowledge for this.</p>

<p><strong>1)</strong> Let's start with an easy example, a sphere:</p>

<p>The sphere function is:</p>

<table class="centered" width="190px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="170px" src="images/f/f0/TutImgPolyfunc1.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">sphere function</p>
  </td>
</tr>
</table>

<p>Now we have to convert this to polynomial form, we will need a polynomial of the 2nd degree to represent this:</p>

<table class="centered" width="205px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="185px" src="images/5/5d/TutImgPolyfunc2.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">sphere polynomial</p>
  </td>
</tr>
</table>

<p><strong>2)</strong> A more elaborated example:</p>

<p>Let's take the function:</p>

<table class="centered" width="130px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="110px" src="images/c/c2/TutImgPolyfunc3.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">function</p>
  </td>
</tr>
</table>

<p>Converting this to polynomial form we get:</p>

<table class="centered" width="215px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="195px" src="images/3/30/TutImgPolyfunc4.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">polynomial</p>
  </td>
</tr>
</table>

<p>Although the highest power is 4 we will need a 5th order polynomial to
represent this function (because we cannot represent y<sup>4</sup>z with a
4th order polynomial).</p>

<p><strong>3)</strong> And since we talked about the torus, let's also take it as an example.</p>
<p>A torus can be represented with the function:</p>

<table class="centered" width="295px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="275px" src="images/5/57/TutImgPolyfunc5.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">torus function</p>
  </td>
</tr>
</table>

<p>where r<sub>1</sub> is the major radius and r<sub>2</sub> is the minor radius.</p>

<p>Now, this is tougher to convert to polynomial form, but finally we get:</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="680px" src="images/d/d5/TutImgPolyfunc6.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">torus polynomial</p>
  </td>
</tr>
</table>

<p>A 4th order polynomial is enough to represent this.</p>

<p class="Note"><strong>Note:</strong> Not every function can be represented in polynomial form. Only functions that use addition (and substraction), multiplication (and division) and scalar powers (including rational powers, eg. the square root) can be represented. Also, the poly primitive supports only polynomials of the 35th degree at max.</p>

<p>Converting a function to polynomial form may be a very laborious task for
certain functions. Some mathematical programs are very helpful in this matter.</p>

</div>
<a name="t2_3_3_4_2"></a>
<div class="content-level-h5" contains="Writing the polynomial vector" id="t2_3_3_4_2">
<h5>2.3.3.4.2 Writing the polynomial vector</h5>
<p>Now that we have the function in polynomial form, we have to write it
in POV-Ray syntax. The syntax is specified in the sections on <a href="r3_4.html#r3_4_5_3_5">polynomial</a> and <a href="r3_4.html#r3_4_5_3_6">quadric</a> of the reference section. There is also a table in this chapter which we will be using to make the polynomial vector. It is easier to have this table printed on paper.</p>

<p class="Note"><strong>Note:</strong> It is also possible to make a little program with your favorite
programming language which will print the poly vector from the polynomial
function, but making a program like this is up to you.</p>

<p><strong>1)</strong> Let's start with the easy one, ie. the sphere.</p>

<p>Since the sphere can be represented with a polynomial of 2nd degree, we
look at the column titled <em>2nd</em> in the <a href="r3_4.html#r3_4_5_3_5">table</a>. We see that it has 10 items,
ie. we need a vector of size 10. Each item of the vector will be the factor of the term listed in the table.</p>

<p>The polynomial was:</p>

<table class="centered" width="205px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="185px" src="images/5/5d/TutImgPolyfunc2.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">sphere polynomial function</p>
  </td>
</tr>
</table>

<p>Writing the poly in this way we get:</p>

<pre>
#declare Radius=1;
poly
{ 2,
  &lt;1,0,0,0,1,
   0,0,1,0,-Radius*Radius&gt;
}
</pre>

<p>Put each group of factors (separated with lines in the table) in their
own lines.</p>

<p>In the table we see that the first item is the factor for x<sup>2</sup>,
which is 1 in the function. The next item is xy. Since it is not in the
function, its factor is 0. Likewise the next item, which is xz. And so on.
The last item is the scalar term, which is in this case -r<sup>2</sup>.</p>

<p>If we make a proper scene and render it, we get:</p>

<pre>
camera { location y*4-z*5 look_at 0 angle 35 }
light_source { &lt;100,200,-50&gt; 1 }
background { rgb &lt;0,.25,.5&gt; }

#declare Radius=1;
poly
{ 2,
  &lt;1,0,0,0,1,
   0,0,1,0,-Radius*Radius&gt;
  pigment { rgb &lt;1,.7,.3&gt; } finish { specular .5 }
}
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="320px" src="images/1/1b/TutImgPolypic1.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">sphere polynomial image</p>
  </td>
</tr>
</table>

<p></p>
<p class="Note"><strong>Note:</strong> There is a shortcut for 2nd degree polynomials: The <code><a href="r3_4.html#r3_4_5_3_6">quadric</a></code> primitive. Using a shortcut version, whenever possible, can lead to faster
renderings. We can write the sphere code described above in the following way:</p>

<pre>
quadric
{ &lt;1,1,1&gt;, &lt;0,0,0&gt;, &lt;0,0,0&gt;, -Radius*Radius
  pigment { rgb &lt;1,.7,.3&gt; } finish { specular .5 }
}
</pre>

<p><strong>2)</strong> Now lets try the second one. We do it similarly, but this time we need
to look at the column titled <em>5th</em> in the table.</p>

<p>The polynomial was:</p>

<table class="centered" width="215px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="195px" src="images/3/30/TutImgPolyfunc4.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">5th order polynomial function</p>
  </td>
</tr>
</table>

<p>Writing the poly primitive we get:</p>
<pre>
poly
{ 5,
  &lt;0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,1,0,
   0,0,0,0,0,
   -2,0,0,0,0,
   0,0,0,0,0,
   0,1,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,0&gt;
}
</pre>

<p>With the proper scene we get:</p>
<pre>
camera { location &lt;8,20,-10&gt;*.7 look_at x*.01 angle 35 }
light_source { &lt;100,200,20&gt; 1 }
background { rgb &lt;0,.25,.5&gt; }

poly
{ 5,
  &lt;0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,1,0,
   0,0,0,0,0,
   -2,0,0,0,0,
   0,0,0,0,0,
   0,1,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,
   0,0,0,0,0,0&gt;
  clipped_by { box { &lt;-4,-4,-1&gt;&lt;4,4,1&gt; } }
  bounded_by { clipped_by }
  pigment { rgb &lt;1,.7,.3&gt; } finish { specular .5 }
  rotate &lt;0,90,-90&gt;
}
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="320px" src="images/9/9c/TutImgPolypic2.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">5th order polynomial image</p>
  </td>
</tr>
</table>

<p><strong>3)</strong> And finally the torus:</p>

<p>The polynomial was:</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="680px" src="images/d/d5/TutImgPolyfunc6.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">torus polynomial function</p>
  </td>
</tr>
</table>

<p>And we get the proper 4th degree poly primitive:</p>
<pre>
camera { location y*4-z*5 look_at 0 angle 35 }
light_source { &lt;100,200,-50&gt; 1 }
background { rgb &lt;0,.25,.5&gt; }

#declare r1=1;
#declare r2=.5;
poly
{ 4,
  &lt;1,0,0,0,2,
   0,0,2,0,-2*(r1*r1+r2*r2),
   0,0,0,0,0,
   0,0,0,0,0,
   1,0,0,2,0,
   2*(r1*r1-r2*r2),0,0,0,0,
   1,0,-2*(r1*r1+r2*r2),0,pow(r1,4)+pow(r2,4)-2*r1*r1*r2*r2&gt;
  pigment { rgb &lt;1,.7,.3&gt; } finish { specular .5 }
}
</pre>

<p>When rendered we get:</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="320px" src="images/0/04/TutImgPolypic3.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">torus polynomial image</p>
  </td>
</tr>
</table>


<p>There is a shortcut for 4th order polynomials: The <code><a href="r3_4.html#r3_4_5_3_4">quartic</a></code> primitive. We can write the torus like this:</p>

<pre>
quartic
{ &lt;1,0,0,0,2,
   0,0,2,0,-2*(r1*r1+r2*r2),
   0,0,0,0,0,
   0,0,0,0,0,
   1,0,0,2,0,
   2*(r1*r1-r2*r2),0,0,0,0,
   1,0,-2*(r1*r1+r2*r2),0,pow(r1,4)+pow(r2,4)-2*r1*r1*r2*r2&gt;
  pigment { rgb &lt;1,.7,.3&gt; } finish { specular .5 }
}
</pre>

</div>
<a name="t2_3_3_4_3"></a>
<div class="content-level-h5" contains="Polynomial made easy" id="t2_3_3_4_3">
<h5>2.3.3.4.3 Polynomial made easy</h5>
<p>Since consulting the table in the section <a href="r3_4.html#r3_4_5_3_5">Polynomial</a> or writing a program to get the right poly vector can be a bit cumbersome, especially when the poly vector is not a write-once-only expression and that you want to get it back, so let's examine how those equations would be rewritten using the <em>simplified</em> syntax.</p>
<p>You should refer to the images in the previous section, as these examples produce <em>exactly</em> the same results.</p>

<p><strong>1)</strong> The sphere example can be rewritten as:</p>
<pre>
#declare Radius=1;
polynomial { 2, 
  xyz(2,0,0):1, 
  xyz(0,2,0):1,
  xyz(0,0,2):1,
  xyz(0,0,0):-Radius*Radius 
}
</pre>

<p><strong>2)</strong> Let's now see the second one:</p>
<pre>
polynomial { 5,
  xyz(2,0,1):1,
  xyz(0,4,1):1,
  xyz(1,2,0):-2
}
</pre>

<p><strong>3)</strong> And finally the torus example:</p>
<pre>
polynomial { 4,
  xyz(4,0,0):1,
  xyz(2,2,0):2,
  xyz(2,0,2):2,
  xyz(2,0,0):-2*(r1*r1+r2*r2),
  xyz(0,4,0):1,
  xyz(0,2,2):2,
  xyz(0,2,0):2*(r1*r1-r2*r2),
  xyz(0,0,4):1,
  xyz(0,0,2):-2*(r1*r1+r2*r2),
  xyz(0,0,0):pow((r1*r1-r2*r2),2)
}
</pre>

</div>


<a name="t2_3_3_5"></a>
<div class="content-level-h4" contains="Superquadric Ellipsoid Object" id="t2_3_3_5">
<h4>2.3.3.5 Superquadric Ellipsoid Object</h4>
<p>Sometimes we want to make an object that does not have perfectly sharp
edges like a box does. Then, the superquadric ellipsoid shape made by the
<code>superellipsoid</code> is a useful object. It is described by the simple
syntax:</p>
<pre>
  superellipsoid { &lt;Value_E, Value_N &gt;}
</pre>

<p>Where <em>Value_E</em> and <em>Value_N</em> are float values greater than
zero and less than or equal to one. Let's make a superellipsoid and
experiment with the values of <em>Value_E</em> and <em>Value_N</em> to see
what kind of shapes we can make. We create a file called <code>
supellps.pov</code> and edit it as follows:</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;10, 5, -20&gt;
    look_at 0
    angle 15
  }
  background { color rgb &lt;.5, .5, .5&gt; }
  light_source { &lt;10, 50, -100&gt; White }
</pre>

<p>The addition of a gray background makes it a little easier to see our
object. We now type:</p>
<pre>
  superellipsoid { &lt;.25, .25&gt;
    pigment { Red }
  }
</pre>

<p>We save the file and render it to see the shape. It will look like a box, but the edges will be rounded off. Now let's
experiment with different values of <em>Value_E</em> and <em> Value_N</em>.
For the next trace, try &lt;1, 0.2&gt;. The shape now looks like a cylinder,
but the top edges are rounded. Now try &lt;0.1, 1&gt;. This shape is an odd
one! We do not know exactly what to call it, but it is interesting.
Finally, let's try &lt;1, 1&gt;. Well, this is more familiar... a sphere!</p>
<p>
There are a couple of facts about superellipsoids we should know. First, we
should not use a value of 0 for either <em> Value_E</em> nor <em>
Value_N</em>. This will cause POV-Ray to incorrectly make a black box instead
of our desired shape. Second, very small values of <em>Value_E</em> and <em>
Value_N</em> may yield strange results so they should be avoided. Finally,
the Sturmian root solver will not work with superellipsoids.</p>
<p>
Superellipsoids are finite objects so they respond to auto-bounding and can
be used in CSG.</p>
<p>
Now let's use the superellipsoid to make something that would be useful
in a scene. We will make a tiled floor and place a couple of superellipsoid
objects hovering over it. We can start with the file we have already
made.</p>
<p>
We rename it to <code> tiles.pov</code> and edit it so that it reads as
follows:</p>
<pre>
  #include &quot;colors.inc&quot;
  #include &quot;textures.inc&quot;
  camera {
    location &lt;10, 5, -20&gt;
    look_at 0
    angle 15
  }
  background { color rgb &lt;.5, .5, .5&gt; }
  light_source{ &lt;10, 50, -100&gt; White }
</pre>

<p class="Note"><strong>Note:</strong> We have added <code>#include &quot;textures.inc&quot;</code> so
we can use pre-defined textures. Now we want to define the superellipsoid
which will be our tile.</p>
<pre>
  #declare Tile = superellipsoid { &lt;0.5, 0.1&gt;
    scale &lt;1, .05, 1&gt;
  }
</pre>

<p>Superellipsoids are roughly 2*2*2 units unless we scale them otherwise. If
we wish to lay a bunch of our tiles side by side, they will have to be offset
from each other so they do not overlap. We should select an offset value
that is slightly more than 2 so that we have some space between the tiles to
fill with grout. So we now add this:</p>
<pre>
  #declare Offset = 2.1;
</pre>

<p>We now want to lay down a row of tiles. Each tile will be offset from the
original by an ever-increasing amount in both the +z and -z directions. We
refer to our offset and multiply by the tile's rank to determine the
position of each tile in the row. We also union these tiles into a single
object called <code>Row</code> like this:</p>
<pre>
  #declare Row = union {
    object { Tile }
    object { Tile translate z*Offset }
    object { Tile translate z*Offset*2 }
    object { Tile translate z*Offset*3 }
    object { Tile translate z*Offset*4 }
    object { Tile translate z*Offset*5 }
    object { Tile translate z*Offset*6 }
    object { Tile translate z*Offset*7 }
    object { Tile translate z*Offset*8 }
    object { Tile translate z*Offset*9 }
    object { Tile translate z*Offset*10 }
    object { Tile translate -z*Offset }
    object { Tile translate -z*Offset*2 }
    object { Tile translate -z*Offset*3 }
    object { Tile translate -z*Offset*4 }
    object { Tile translate -z*Offset*5 }
    object { Tile translate -z*Offset*6 }
  }
</pre>

<p>This gives us a single row of 17 tiles, more than enough to fill the
screen. Now we must make copies of the <code>Row</code> and translate them,
again by the offset value, in both the +x and -x directions in ever
increasing amounts in the same manner.</p>
<pre>
  object { Row }
  object { Row translate x*Offset }
  object { Row translate x*Offset*2 }
  object { Row translate x*Offset*3 }
  object { Row translate x*Offset*4 }
  object { Row translate x*Offset*5 }
  object { Row translate x*Offset*6 }
  object { Row translate x*Offset*7 }
  object { Row translate -x*Offset }
  object { Row translate -x*Offset*2 }
  object { Row translate -x*Offset*3 }
  object { Row translate -x*Offset*4 }
  object { Row translate -x*Offset*5 }
  object { Row translate -x*Offset*6 }
  object { Row translate -x*Offset*7 }
</pre>

<p>Finally, our tiles are complete. But we need a texture for them. To do
this we union all of the <code>Rows</code> together and apply a <code>White
Marble</code> pigment and a somewhat shiny reflective surface to it:</p>
<pre>
  union{
    object { Row }
    object { Row translate x*Offset }
    object { Row translate x*Offset*2 }
    object { Row translate x*Offset*3 }
    object { Row translate x*Offset*4 }
    object { Row translate x*Offset*5 }
    object { Row translate x*Offset*6 }
    object { Row translate x*Offset*7 }
    object { Row translate -x*Offset }
    object { Row translate -x*Offset*2 }
    object { Row translate -x*Offset*3 }
    object { Row translate -x*Offset*4 }
    object { Row translate -x*Offset*5 }
    object { Row translate -x*Offset*6 }
    object { Row translate -x*Offset*7 }
    pigment { White_Marble }
    finish { phong 1 phong_size 50 reflection .35 }
  }
</pre>

<p>We now need to add the grout. This can simply be a white plane. We have
stepped up the ambient here a little so it looks whiter.</p>
<pre>
  plane {
    y, 0  //this is the grout
    pigment { color White }
    finish { ambient .4 diffuse .7 }
  }
</pre>

<p>To complete our scene, let's add five different superellipsoids, each
a different color, so that they hover over our tiles and are reflected in
them.</p>
<pre>
  superellipsoid {
    &lt;0.1, 1&gt;
    pigment { Red }
    translate &lt;5, 3, 0&gt;
    scale .45
  }
  superellipsoid {
    &lt;1, 0.25&gt;
    pigment { Blue }
    translate &lt;-5, 3, 0&gt;
    scale .45
  }
  superellipsoid {
    &lt;0.2, 0.6&gt;
    pigment { Green }
    translate &lt;0, 3, 5&gt;
    scale .45
  }
  superellipsoid {
    &lt;0.25, 0.25&gt;
    pigment { Yellow }
    translate &lt;0, 3, -5&gt;
    scale .45
  }
  superellipsoid {
    &lt;1, 1&gt;
    pigment { Pink }
    translate y*3
    scale .45
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="centered" width="320px" src="images/4/4f/TutImgSuperell.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Some superellipsoids hovering above a tiled floor.</p>
  </td>
</tr>
</table>

<p>We trace the scene at 320x200 <code>-A</code> to see the result. If we are
happy with that, we do a final trace at 640x480 <code>+A0.2</code>.</p>

</div>
<a name="t2_3_4"></a>
<div class="content-level-h3" contains="Gamma Handling" id="t2_3_4">
<h3>2.3.4 Gamma Handling</h3>
<p>In this section, we will explain how to use the <em>experimental</em> gamma handling framework introduced with POV-Ray version 3.7. However, first we may need to introduce the term <em>gamma</em>, and why it needs handling anyway:</p>

<p class="Note"><strong>Note:</strong> In a nutshell, <em>gamma handling</em> is the compensation for <em>non-linearities</em> in the <em>representation</em> of color values.</p>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td width="320px">
    <p class="tabletext">As a raytracing engine, POV-Ray internally needs to represent colors using <em>linear</em> brightness values to produce physically accurate results. However, the majority of contemporary digital image processing tools and file formats do <em>not</em>. This comes as a surprise to most people, probably because the human visual perception is non-linear as well, as can be demonstrated in the render to the right, generated with POV-Ray using physically realistic settings:</p>
  </td>
    <td width="320px">
    <img class="rightpanel" width="320px" src="images/3/3c/TutImgGammaShowcase_ref0.png">
  </td>
</tr>
<tr>
  <td></td>
  <td>
    <p class="caption">gamma handling reference image</p>
  </td>
</tr>
</table>

<p>Both front and second row show spheres with pigments increasing from <code>rgb 0.0</code> to <code>rgb 1.0</code>. When asked which of them increases linearly, with a <em>medium grey</em> at the center, most people will go for the front row without too much hesitation. And in fact the pigment of the front center sphere <em>does</em> correspond to what Photoshop or similar image processing software would normally call <em>50% grey</em>, but the pigment is a mere 21.8% as bright as the rightmost one. The true 50% brightness sphere sits right behind it.</p>

<p>A corresponding nonlinearity can be found in the traditional internal representation of colors in digital image processing, as implemented in file formats, graphics cards frame buffers, display APIs and so forth. Using one byte per colour component, and black and white represented by (0;0;0) and (255;255;255) respectively, a value of (128;128;128) will typically be used to encode a light intensity of just about 20%. To make matters a bit more complicated, the actual light intensity seen on the computer display may vary from one computer to the next, not only due to a historical lack of standardization in the PC display and graphics hardware market, but also due to factors such as electrical tolerances and even aging of the display. In professional environments, displays are therefore <em>calibrated</em> at regular intervals.</p>

<p>The non-linear relationship between <em>color values</em> and actual light intensity is usually approximated by (or calibrated to match) a power-law function (aka <em>gamma function</em>, hence the technical term <em>gamma</em>), i.e.:</p>

<!--- :<math>f(x)\!\,=x^{\gamma}</math> --->
<!--- cannot currently support in-line Latex when generating distribution doc sets --->
<!--- use this for now --->
<p><span class="formula">f(x) = x &#770; &#947;</span></p>

<p>where <span class="formula">x</span> is the internal representation normalized to the range [0...1], <span class="formula">f(x)</span> is the actual output light intensity, and <span class="formula">&#947;</span> is a value typically somewhere between 2.0 to 2.4, though in the professional image processing world a value of 1.8 is also common.</p>

<p>Another formula becoming more and more popular is the so-called <em>sRGB transfer function</em> as defined in the sRGB color space standard, which has been adopted as the official standard on the World Wide Web. This function roughly corresponds to a power-law gamma of 2.2.</p>

</div>
<a name="t2_3_4_1"></a>
<div class="content-level-h4" contains="Setting Up Your Display" id="t2_3_4_1">
<h4>2.3.4.1 Setting Up Your Display</h4>

<p>Using POV-Ray's gamma handling framework will not make much sense unless your display is set up properly; ideally, this would be done with a <em>colorimeter</em> and professional <em>display calibration</em> software. However, for hobbyists' purposes, less expensive solutions will suffice:</p>

<ul>
  <li>Your graphics card drivers may come with a wizard to help you adjust your display.</li>
  <li>Various versions of Photoshop shipped with a utility called &quot;Adobe Gamma&quot;.</li>
  <li>There are numerous sites on the internet dedicated to <a href="http://www.photoscientia.co.uk/Gamma.htm">getting your display settings straight</a>.</li>
</ul>
<p class="Note"><strong>Note:</strong> We disagree with the author of the site linked to above, about which display gamma to aim for, and <em>strongly recommend</em> a gamma of 2.2, unless you know exactly what you're doing.</p>

<p>As an additional sanity check of your system display settings (and also of your image viewing software) POV-Ray provides a sample scene custom-tailored to this purpose, to be found at <code>scenes/gamma/gamma_showcase.pov</code>. Render the scene twice as PNG, using the following options:</p>

<pre>
  +w640 +h480 +a0.3 +am1 +fN -d File_Gamma=sRGB Output_File_Name=gamma_showcase.png
  +w640 +h480 +a0.3 +am1 +fN -d File_Gamma=1.0  Output_File_Name=gamma_showcase_linear.png
</pre>

<p>At 100% zoom, both images should look identical in your viewing software (if they don't, then by all means get rid of that obsolete software). Moreover, all the spheres should look uniform, like in the introductory image above. It is ok if you notice stripes on the spheres, but the overall brightness and hue should not be perceived as varying between the left and right hemispheres of any single sphere.</p>

<p>If however the image appears like shown below, then your system display gamma is either higher (left) or lower (right) than what your image viewing software expects. Note that in the PC world, most contemporary software will expect the display to either have a gamma of 2.2 or comply with the sRGB transfer function, unless there's a way to tell the software otherwise.</p>

<p class="Note"><strong>Note:</strong> LCD owners should make sure their display resolution is set to match the maximum resolution of the LCD, as interpolation might mess up the intended effect. Furthermore, it is not uncommon for LCDs to exhibit variations of gamma depending on viewing angle and, as a result, also across the display area. In that case, we recommend to adjust your display so that you get the desired gamma at the center of the screen when sitting as you usually do.</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="left" width="320px" src="images/d/d7/TutImgGammaShowcase_ref1.png">
  </td>
  <td>
    <img class="right" width="320px" src="images/3/39/TutImgGammaShowcase_ref2.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">higher example</p>
  </td>
  <td>
    <p class="caption">lower example</p>
  </td>
</tr>
</table>

<p>Just for the sake of it, here's a render of that showcase scene (note however that due to conversion of the original documentation source to whatever format you are currently reading it in, whether it be PDF, HTML or whatever, the image may have undergone some conversion, and may therefore be unsuited to serve as a good reference):</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="640px" src="images/3/3a/TutImgGammaShowcase.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">refer to: scenes/gamma/gamma_showcase.pov</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_4_2"></a>
<div class="content-level-h4" contains="Setting Up POV-Ray" id="t2_3_4_2">
<h4>2.3.4.2 Setting Up POV-Ray</h4>

<p>Now that you can be sure that your operating system in general and your image viewing software in particular behave well regarding gamma, it is time to set up POV-Ray to do the same.</p>

<p>If you know that your system matches the sRGB standard, or have chosen to go for an approximate display gamma of 2.2, or used a tool that doesn't explicitly mention the gamma it has helped you to set up (in which case it will typically be 2.2 or sRGB as well), you're probably done already, as POV-Ray expects sRGB compliance by default, which is close enough to a display gamma of 2.2 for starters. Otherwise (or if you want an exact display gamma of 2.2) you should edit your master <code>povray.ini</code> to add the following line (e.g. for a display gamma of 1.8):</p>

<pre>
  Display_Gamma=1.8
</pre>

<p>Instead of a numerical value, you can also specify <code>Display_Gamma=sRGB</code> to explicitly tell POV-Ray that your system is calibrated to match the sRGB standard (which, as already mentioned, is actually the default setting).</p>

<p>Again, the gamma showcase scene can be used as a sanity check; use the following parameters:</p>

<pre>
  +w640 +h480 +a0.3 +am1 -f +d
</pre>

<p>Make sure you set the preview to windowed mode to get a 100% zoom. If everything works as expected, the preview window should look just like the PNG files already created, with each sphere again appearing to have a uniform color and brightness. If this is not the case for some mysterious reason, you may need to tweak the <code>Display_Gamma</code> setting accordingly; increase it if the left hemispheres appear too dark, or decrease it if they appear too bright. When you're done testing, update your <code>povray.ini</code> again.</p>

</div>
<a name="t2_3_4_3"></a>
<div class="content-level-h4" contains="Gamma in Output Images" id="t2_3_4_3">
<h4>2.3.4.3 Gamma in Output Images</h4>

<p>Besides being used internally in most contemporary digital image processing software, non-linear color representations are also used in most conventional image file formats. This is often called <em>gamma pre-correction</em>, in the sense that the original linear brightness information has already been transformed by a gamma function to compensate for display non-linearity. Unfortunately, due to the large variety of display gamma in the world of computing, the gamma value used for pre-correction traditionally followed no set standard either.</p>

<p>In recent years the situation has changed, partly due to the adoption of the sRGB standard as the official recommendation for the World Wide Web, with major file format specifications following suit, and partly due to the advent of new file formats like PNG designed right from the start for a standardized way of gamma handling. (For such file formats, it is customary to speak of non-linear color representation not as <em>gamma pre-correction</em>, but rather as <em>gamma encoding</em>.) By now, for virtually all contemporary file formats there exists either a clear specification of how to handle gamma, or an official recommendation to adhere to the sRGB standard.</p>

<p>POV-Ray's gamma handling defaults are set to comply with the official file format standards or recommendations, so normally you will not need to worry about gamma handling. However, should the need arise, you can tell POV-Ray to ignore gamma recommendations and pre-correct the output file for a different display gamma, using the <code>File_Gamma</code> INI file option, e.g.:</p>

<pre>
  File_Gamma=1.8
</pre>

<p>Again, <code>sRGB</code> is a valid value, specifying that POV-Ray should apply the sRGB transfer function.</p>

<p class="Note"><strong>Note:</strong> Some of the file formats supported by POV-Ray are explicitly specified to never use gamma pre-correction or gamma encoding. For such file types (currently OpenEXR and Radiance HDR), <code>File_Gamma</code> has no effect whatsoever. For certain other file types (currently PNG), <code>File_Gamma</code> does have an effect on the encoding of the image, but not on the general visual appearance.</p>

<p>For output files, POV-Ray handles gamma according to the following rules:</p>

<ul>
  <li>For OpenEXR and Radiance HDR, which are officially specified to store linear brightness values, POV-Ray <em>always</em> stores linear values, ignoring the <code>File_Gamma</code> setting.</li>
  <li>For PNG, which explicitly allows different encoding gamma values, POV-Ray will interpret the <code>File_Gamma</code> setting as the decoding gamma to encode for, and <em>always</em> write corresponding meta information into the header; as a result, the image will always look virtually identical irregardless of the <code>File_Gamma</code> setting; however, to minimize visible encoding artifacts like color banding, it is strongly recommended to use a setting of around 2.2, or <code>sRGB</code>.</li>
  <li>For all other file formats, POV-Ray will interpret the <code>File_Gamma</code> setting as the display gamma to pre-correct for; as a result, the image will look different depending on the value used. It will also look different than the preview if you use a value other than your system's display gamma.</li>
</ul>

</div>
<a name="t2_3_4_4"></a>
<div class="content-level-h4" contains="Setting Up Your Scene" id="t2_3_4_4">
<h4>2.3.4.4 Setting Up Your Scene</h4>

<p>As stated above, POV-Ray needs to work with linear colors to produce the most physically accurate output. However, if you prefer you <em>can</em> coax POV-Ray to work directly with non-linear color values. This is controlled via the <code>assumed_gamma</code> statement in the scene file's global settings, e.g.:</p>

<pre>
  global_settings { assumed_gamma 1.8 }
</pre>

<p>This enables the <em>experimental</em> gamma handling feature, and instructs POV-Ray to work with colors pre-corrected for a display gamma of whatever value you specify (in this example obviously a gamma of 1.8). You can also specify <code>srgb</code> instead of a numerical value, instructing POV-Ray to work with colors pre-corrected according to the sRGB standard.</p>

<p class="Note"><strong>Note:</strong> It is highly recommended to either set <code>assumed_gamma</code> to your system's display gamma for convenience, or set it to <code>1.0</code> for maximum realism. Using it for purely artistic purposes is strongly discouraged.</p>

POV-Ray will take this setting into account when pre-correcting the computed image according to the Display_Gamma and File_Gamma settings.

<p class="Note"><strong>Note:</strong> Sometimes you may want to use POV-Ray to generate other data than images in the strict sense, using the output image file as a mere data container, e.g. for height field data, bump maps, transparency maps or the like. In such cases, it is highly recommended to set both <code>assumed_gamma</code> and <code>File_Gamma</code> to 1.0 to avoid unexpected results.</p>

</div>
<a name="t2_3_4_5"></a>
<div class="content-level-h4" contains="Gamma in Literal Colors" id="t2_3_4_5">
<h4>2.3.4.5 Gamma in Literal Colors</h4>

<p>By default, POV-Ray will expect each and every color value you enter to match your <code>assumed_gamma</code>, normalized to a range from 0.0 to 1.0. When using <code>assumed_gamma 1.0</code> for realism, this can make it cumbersome to copy color values from other applications because those values will typically be non-linear representations of the respective colors; some people may also feel more at home with non-linear colors. To mitigate this issue, a special color literal syntax has been introduced to specify color values conforming to the sRGB standard; the syntax is as follows:</p>

<pre>
  color srgb &lt;Rp,Gp,Bp&gt;
  color srgbf &lt;Rp,Gp,Bp,F&gt;
  color srgbt &lt;Rp,Gp,Bp,T&gt;
  color srgbft &lt;Rp,Gp,Bp,F,T&gt;
</pre>

<p>where Rp, Gp and Bp are pre-corrected color component values in the range from 0.0 to 1.0, while F and T are linear color component values in the same range.</p>

<p class="Note"><strong>Note:</strong> The filter and transmit components are <em>always</em> interpreted as linear values, and the use of this alternative syntax will have no effect on them.</p>

The following is also valid and gives the expected results:

<pre>
  color srgb &lt;255,240,0&gt;/255
</pre>

<p class="Note"><strong>Note:</strong> This alternative syntax for colors does <em>not</em> constitute a new flavor of colors; instead, when encountering such a statement POV-Ray will immediately convert the specified non-linear color values into a linear ones. Any access to the individual components or computations done with the resulting color will therefore access the linear values.</p>

</div>
<a name="t2_3_4_6"></a>
<div class="content-level-h4" contains="Gamma in Input Images" id="t2_3_4_6">
<h4>2.3.4.6 Gamma in Input Images</h4>

<p>Normally, gamma handling of input image files will work fine without intervention, but in some cases it may fail. To resolve such problems, the default handling can be overridden using the <code>gamma</code> SDL keyword, e.g:</p>

<pre>
  image_map { jpeg "foo.jpg" gamma 1.8 }
</pre>

<p>Instead of a numerical value, you can also use the <code>srgb</code> keyword to inform POV-Ray that the file conforms to the sRGB standard.</p>

<p>For input files in general, the following rules apply:</p>

<ul>
  <li>When using an image file in an <code>image_map</code>, POV-Ray will always convert the image data to the scene's <code>assumed_gamma</code>, according to whatever gamma the file is presumably pre-corrected for; you can override any file-specific presumtions by explicitly specifying the <code>gamma</code> <em>you</em> presume it to be pre-corrected for.</li>
  <li>When using an image file in a <code>height_field</code>, <code>bump_map</code> or <code>image_pattern</code>, POV-Ray will convert the image data to <em>linear</em> values if you explicitly specify a <code>gamma</code> for that particular file; if you don't, no gamma adjustment will be performed (or, in other words, the file will be presued to carry linear data, regardless of file format).</li>
</ul>

<p>For <code>image_map</code> input files, the following file-specific rules apply:</p>

<ul>
  <li>For OpenEXR and Radiance HDR, POV-Ray will presume the data to be linear, as per official file format specification.</li>
  <li>For PNG, POV-Ray will presume the image data to be encoded according to file header information (currently sRGB or gAMA chunks); in the absence of such information, POV-Ray will presume sRGB-compliant encoding as per official recommendation.</li>
  <li>For PPM and PGM. POV-Ray will currently presume the image data to match the <code>assumed_gamma</code> (in other words, no gamma adjustment will be performed by default).</li>
  <li>For any other file formats, POV-Ray will presume sRGB-compliant encoding, to match either official recommendations or common practice.</li>
</ul>

<p class="Note"><strong>Note:</strong> If you explicitly specify <code>gamma</code> for a particular file, POV-Ray will ignore any file format specifications, recommendations or meta information, and <em>always</em> presume the file to be pre-corrected for the specified gamma, or encoded for the specified decoding gamma. This applies in <em>all</em> contexts and to <em>all</em> file formats without exception.</p>

</div>
<a name="t2_3_4_7"></a>
<div class="content-level-h4" contains="Gamma in Legacy Scenes" id="t2_3_4_7">
<h4>2.3.4.7 Gamma in Legacy Scenes</h4>

<p>POV-Ray version 3.6 used slightly different rules for its (optional) gamma handling, while yet earlier versions used no gamma correction at all. To provide backward compatibility with legacy scenes, POV-Ray does its best to mimic the behavior of these older versions in the following cases:</p>

<ul>
  <li>If the scene contains an <code>assumed_gamma</code> statement, and does not explicitly specify a version of 3.7 or later, gamma handling will follow the 3.6 rules.</li>
  <li>If the scene does neither specify an <code>assumed_gamma</code> statement, nor explicitly specify a version of 3.7 or later, gamma correction will be turned off.</li>
</ul>

<p>The 3.6 rules differ from standard behaviour with regards to <code>image_map</code> input files as follows:</p>

<ul>
  <li>For OpenEXR, Radiance HDR and PNG, the behaviour is the same as described above.</li>
  <li>For any other file formats, in "3.6 mode" POV-Ray will currently presume the image data to match the <code>assumed_gamma</code> (in other words, no gamma adjustment will be performed by default).</li>
</ul>

<p>As POV-Ray 3.6 did not have a File_Gamma setting, and used Display_Gamma for both purposes, you will have to set File_Gamma to whatever you used to set Display_Gamma to (or leave it undefined if you did not specify Display_Gamma either) in order to get the same output.</p>

<p>Furthermore, backward compatibility with 3.6 for PNG input files is subject to the following restrictions:</p>

<ul>
  <li>For palette-based PNG files (an uncommon flavor of PNG), backward compatibility is provided only if gamma correction is disabled (i.e. <code>assumed_gamma</code> is <em>not</em> specified). This is due to fixes in the handling of this PNG flavor.</li>
  <li>For non-palette-based PNG files, backward compatibility is provided only if gamma correction is enabled (i.e. <code>assumed_gamma</code> <em>is</em> specified). This is due to inconsistencies in POV-Ray 3.6's PNG file handling which would have been prohibitively difficult to reproduce with the architectural changes in POV-Ray 3.7.</li>
  <li>For PNG files carrying both an sRGB chunk and a fitting gAMA chunk, results will slightly differ, while for PNG files carrying an sRGB chunk but no gAMA chunk (or a wrong one), backward compatibility is not provided. This is due to POV-Ray 3.6 honoring only gAMA chunks, while POV-Ray 3.7 honors sRGB chunks as well, giving them precedence over gAMA chunks to comply with the official file format specification.</li>
</ul>

<p>If you experience problems with a PNG input file in a legacy scene, explicitly specify the decoding gamma to be applied for that particular image using the <code>gamma</code> statement may help. When using e.g. <code>assumed gamma 1.8</code>, some values worth trying would be <code>gamma 1</code>, <code>gamma 1/1.8</code>, <code>gamma 2.2/1.8</code> or <code>gamma 1.8</code>. (With POV-Ray 3.6's PNG file handling having been quite a mess, it is difficult to be more specific.)</p>

</div>
<a name="t2_3_5"></a>
<div class="content-level-h3" contains="Advanced Texture Options" id="t2_3_5">
<h3>2.3.5 Advanced Texture Options</h3>
<p>The extremely powerful texturing ability is one thing that really sets
POV-Ray apart from other raytracers. So far we have not really tried anything
too complex but by now we should be comfortable enough with the program's
syntax to try some of the more advanced texture options.</p>
<p>
Obviously, we cannot try them all. It would take a tutorial a lot more pages
to use every texturing option available in POV-Ray. For this limited
tutorial, we will content ourselves to just trying a few of them to give an
idea of how textures are created. With a little practice, we will soon be
creating beautiful textures of our own.</p>
<p class="Note"><strong>Note:</strong> Early versions of POV-Ray made a distinction between pigment and
normal patterns, i. e. patterns that could be used inside a <code>
normal</code> or <code>pigment</code> statement. Since POV-Ray 3.0 this
restriction was removed so that all patterns listed in section <a href="r3_4.html#r3_4_7">Pattern</a> can be used as a pigment or normal pattern.</p>

</div>
<a name="t2_3_5_1"></a>
<div class="content-level-h4" contains="Pigments" id="t2_3_5_1">
<h4>2.3.5.1 Pigments</h4>
<p>Every surface must have a color. In POV-Ray this color is called a <code><a href="r3_4.html#r3_4_6_1">pigment</a></code>.
It does not have to be a single color. It can be a color pattern, a color
list or even an image map. Pigments can also be layered one on top of the next
so long as the uppermost layers are at least partially transparent so the ones
beneath can show through. Let's play around with some of these kinds of
pigments.</p>
<p>
We create a file called <code>texdemo.pov</code> and edit it as
follows:</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;1, 1, -7&gt;
    look_at 0
    angle 36
  }
  light_source { &lt;1000, 1000, -1000&gt; White }
  plane {
    y, -1.5
    pigment { checker Green, White }
  }
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Red }
  }
</pre>

<p>Giving this file a quick test render we see
that it is a simple red sphere against a green and white checkered plane. We
will be using the sphere for our textures.</p>

</div>
<a name="t2_3_5_1_1"></a>
<div class="content-level-h5" contains="Using Color List Pigments" id="t2_3_5_1_1">
<h5>2.3.5.1.1 Using Color List Pigments</h5>
<p>Before we begin we should note that we have already made one kind of
pigment, the color list pigment. In the previous example we have used a
checkered pattern on our plane. There are three other kinds of color list
pigments, <code><a href="r3_4.html#r3_4_7_1_4">brick</a></code>, <code><a href="r3_4.html#r3_4_7_2_4">hexagon</a></code> and the
<code><a href="r3_4.html#r3_4_7_2_5">object</a></code> pattern.
Let's quickly try each of these. First, we change the plane's
pigment as follows:</p>
<pre>
  pigment { hexagon Green, White, Yellow }
</pre>

<p>Rendering this we see a three-color hexagonal pattern. Note that this
pattern requires three colors. Now we change the pigment to...</p>
<pre>
  pigment { brick Gray75, Red rotate -90*x scale .25 }
</pre>

<p>Looking at the resulting image we see that the plane now has a brick
pattern. We note that we had to rotate the pattern to make it appear
correctly on the flat plane. This pattern normally is meant to be used on
vertical surfaces. We also had to scale the pattern down a bit so we could
see it more easily. We can play around with these color list pigments, change
the colors, etc. until we get a floor that we like.</p>

</div>
<a name="t2_3_5_1_2"></a>
<div class="content-level-h5" contains="Using Pigment and Patterns" id="t2_3_5_1_2">
<h5>2.3.5.1.2 Using Pigment and Patterns</h5>
<p>Let's begin texturing our sphere by using a pattern and a color map
consisting of three colors. We replace the pigment block with the
following.</p>
<pre>
  pigment {
    gradient x
    color_map {
      [0.00 color Red]
      [0.33 color Blue]
      [0.66 color Yellow]
      [1.00 color Red]
    }
  }
</pre>
<p>Rendering this we see that the <code><a href="r3_4.html#r3_4_7_1_13">gradient</a></code> pattern gives us an
interesting pattern of vertical stripes. We change the gradient direction to
y. The stripes are horizontal now. We change the gradient direction to z. The
stripes are now more like concentric rings. This is because the gradient
direction is directly away from the camera. We change the direction back to x
and add the following to the pigment block.</p>
<pre>
  pigment {
    gradient x
    color_map {
      [0.00 color Red]
      [0.33 color Blue]
      [0.66 color Yellow]
      [1.00 color Red]
    }
    rotate -45*z          // &lt;- add this line
  }
</pre>
<p>The vertical bars are now slanted at a 45 degree angle. All patterns can
be rotated, scaled and translated in this manner. Let's now try some
different types of patterns. One at a time, we substitute the following
keywords for <code>gradient x</code> and render to see the result: <code><a href="r3_4.html#r3_4_7_1_3">bozo</a></code>,
<code><a href="r3_4.html#r3_4_7_1_16">marble</a></code>, <code><a href="r3_4.html#r3_4_7_1_1">agate</a></code>, <code><a href="r3_4.html#r3_4_7_1_14">granite</a></code>,
<code><a href="r3_4.html#r3_4_7_1_15">leopard</a></code>, <code><a href="r3_4.html#r3_4_7_1_27">spotted</a></code> and <code><a href="r3_4.html#r3_4_7_1_30">wood</a></code>
(if we like  we can test all patterns listed in section <a href="r3_4.html#r3_4_7">Pattern</a>).</p>
<p>
Rendering these we see that each results in a slightly different pattern.
But to get really good results each type of pattern requires the use of some
pattern modifiers.</p>

</div>
<a name="t2_3_5_1_3"></a>
<div class="content-level-h5" contains="Using Pattern Modifiers" id="t2_3_5_1_3">
<h5>2.3.5.1.3 Using Pattern Modifiers</h5>
<p>Let's take a look at some pattern modifiers. First, we change the
pattern type to bozo. Then we add the following change.</p>
<pre>
  pigment {
    bozo
    frequency 3            // &lt;- add this line
    color_map {
      [0.00 color Red]
      [0.33 color Blue]
      [0.66 color Yellow]
      [1.00 color Red]
    }
    rotate -45*z
  }
</pre>
<p>The <code>frequency</code> modifier determines the number of times the
color map repeats itself per unit of size. This change makes the <code>bozo</code>
pattern we saw earlier have many more bands in it. Now we change
the pattern type to <code>marble</code>. When we rendered this earlier, we
saw a banded pattern similar to <code>gradient y</code> that really did not
look much like marble at all. This is because marble really is a kind of
gradient and it needs another pattern modifier to look like marble. This
modifier is called <code><a href="r3_4.html#r3_4_7_5_5_9">turbulence</a></code>. We change the line <code>
frequency 3</code> to <code>turbulence 1</code> and render again. That's
better! Now let's put <code>frequency 3</code> back in right after the
turbulence and take another look. Even more interesting!</p>
<p>
But wait, it gets better! Turbulence itself has some modifiers of its own. We can adjust the turbulence several ways. First, the float that follows the <code>turbulence</code> keyword can be any value with higher values giving
us more turbulence. Second, we can use the keywords <code><a href="r3_4.html#r3_4_7_5_5_6">omega</a></code>, <code><a href="r3_4.html#r3_4_7_5_5_5">lambda</a></code> and <code><a href="r3_4.html#r3_4_7_5_5_4">octaves</a></code> to change the turbulence parameters.</p>
<p>
Let's try this now:</p>
<pre>
  pigment {
    marble
    turbulence 0.5
    lambda 1.5
    omega 0.8
    octaves 5
    frequency 3
    color_map {
      [0.00 color Red]
      [0.33 color Blue]
      [0.66 color Yellow]
      [1.00 color Red]
    }
    rotate 45*z
  }
</pre>

<p>Rendering this we see that the turbulence has changed and the pattern
looks different. We play around with the numerical values of turbulence,
lambda, omega and octaves to see what they do.</p>

</div>
<a name="t2_3_5_1_4"></a>
<div class="content-level-h5" contains="Using Transparent Pigments and Layered Textures" id="t2_3_5_1_4">
<h5>2.3.5.1.4 Using Transparent Pigments and Layered Textures</h5>
<p>Pigments are described by numerical values that give the <a href="r3_3.html#r3_3_1_7_1">rgb</a> value of the color to be used (like <code>color rgb&lt;1,0,0&gt;</code> giving us a red
color). But this syntax will give us more than just the rgb values. We can
specify filtering transparency by changing it as follows: <code>color
rgbf&lt;1,0,0,1&gt;</code>. The <em>f</em> stands for <code>filter</code>,
POV-Ray's word for <a href="r3_3.html#r3_3_1_7_1">filtered</a> transparency. A value of one means that the
color is completely transparent, but still filters the light according to
what the pigment is. In this case, the color will be a transparent red, like
red cellophane.</p>
<p>
There is another kind of transparency in POV-Ray. It is called <em>transmittance</em>
or non-filtering transparency (the keyword is <code><a href="r3_3.html#r3_3_1_7">transmit</a></code>;
see also <code><a href="r3_3.html#r3_3_1_7_1">rgbt</a></code>). It is different from <code>filter</code> in that it does not filter the light according to the pigment color. It instead allows all the light to pass through unchanged. It can be specified like this: <code>rgbt &lt;1,0,0,1&gt;</code>.</p>
<p>
Let's use some transparent pigments to create another kind of texture,
the layered texture. Returning to our previous example, declare the following
texture.</p>
<pre>
  #declare LandArea = texture {
      pigment {
        agate
        turbulence 1
        lambda 1.5
        omega .8
        octaves 8
        color_map {
          [0.00 color rgb &lt;.5, .25, .15&gt;]
          [0.33 color rgb &lt;.1, .5, .4&gt;]
          [0.86 color rgb &lt;.6, .3, .1&gt;]
          [1.00 color rgb &lt;.5, .25, .15&gt;]
        }
      }
    }
</pre>

<p>This texture will be the land area. Now let's make the oceans by
declaring the following.</p>
<pre>
  #declare OceanArea = texture {
      pigment {
        bozo
        turbulence .5
        lambda 2
        color_map {
          [0.00, 0.33 color rgb &lt;0, 0, 1&gt;
                      color rgb &lt;0, 0, 1&gt;]
          [0.33, 0.66 color rgbf &lt;1, 1, 1, 1&gt;
                      color rgbf &lt;1, 1, 1, 1&gt;]
          [0.66, 1.00 color rgb &lt;0, 0, 1&gt;
                      color rgb &lt;0, 0, 1&gt;]
        }
      }
    }
</pre>

<p class="Note"><strong>Note:</strong> Now the ocean is the opaque blue area and the land is the clear area
which will allow the underlying texture to show through.</p>
<p>
Now, let's declare one more texture to simulate an atmosphere with
swirling clouds.</p>
<pre>
  #declare CloudArea = texture {
    pigment {
      agate
      turbulence 1
      lambda 2
      frequency 2
      color_map {
        [0.0 color rgbf &lt;1, 1, 1, 1&gt;]
        [0.5 color rgbf &lt;1, 1, 1, .35&gt;]
        [1.0 color rgbf &lt;1, 1, 1, 1&gt;]
      }
    }
  }
</pre>

<p>Now apply all of these to our sphere.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    texture { LandArea }
    texture { OceanArea }
    texture { CloudArea }
  }
</pre>

<p>We render this and have a pretty good rendition of a little planetoid. But
it could be better. We do not particularly like the appearance of the
clouds. There is a way they could be done that would be much more
realistic.</p>

</div>
<a name="t2_3_5_1_5"></a>
<div class="content-level-h5" contains="Using Pigment Maps" id="t2_3_5_1_5">
<h5>2.3.5.1.5 Using Pigment Maps</h5>
<p>Pigments may be blended together in the same way as the colors in a color
map using the same pattern keywords and a <code>pigment_map</code>. Let's
just give it a try.</p>
<p>
We add the following declarations, making sure they appear before the other
declarations in the file.</p>
<pre>
  #declare Clouds1 = pigment {
      bozo
      turbulence 1
      color_map {
        [0.0 color White filter 1]
        [0.5 color White]
        [1.0 color White filter 1]
      }
    }
  #declare Clouds2 = pigment {
    agate
    turbulence 1
    color_map {
      [0.0 color White filter 1]
      [0.5 color White]
      [1.0 color White filter 1]
      }
    }
  #declare Clouds3 = pigment {
    marble
    turbulence 1
    color_map {
      [0.0 color White filter 1]
      [0.5 color White]
      [1.0 color White filter 1]
    }
  }
  #declare Clouds4 = pigment {
    granite
    turbulence 1
    color_map {
      [0.0 color White filter 1]
      [0.5 color White]
      [1.0 color White filter 1]
    }
  }
</pre>

<p>Now we use these declared pigments in our cloud layer on our planetoid. We
replace the declared cloud layer with.</p>
<pre>
  #declare CloudArea = texture {
    pigment {
      gradient y
      pigment_map {
        [0.00 Clouds1]
        [0.25 Clouds2]
        [0.50 Clouds3]
        [0.75 Clouds4]
        [1.00 Clouds1]
      }
    }
  }
</pre>

<p>We render this and see a remarkable pattern that looks very much like
weather patterns on the planet earth. They are separated into bands,
simulating the different weather types found at different latitudes.</p>

</div>
<a name="t2_3_5_2"></a>
<div class="content-level-h4" contains="Normals" id="t2_3_5_2">
<h4>2.3.5.2 Normals</h4>
<p>Objects in POV-Ray have very smooth surfaces. This is not very realistic
so there are several ways to disturb the smoothness of an object by
perturbing the surface normal. The surface normal is the vector that is
perpendicular to the angle of the surface. By changing this normal the
surface can be made to appear bumpy, wrinkled or any of the many patterns
available. Let's try a couple of them.</p>

</div>
<a name="t2_3_5_2_1"></a>
<div class="content-level-h5" contains="Using Basic Normal Modifiers" id="t2_3_5_2_1">
<h5>2.3.5.2.1 Using Basic Normal Modifiers</h5>
<p>We comment out the planetoid sphere for now and, at the bottom of the
file, create a new sphere with a simple, single color texture.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray75 }
    normal { bumps 1 scale .2 }
  }
</pre>

<p>Here we have added a <code>normal</code> block in addition to the <code>
pigment</code> block (note that these do not have to be included in a <code>
texture</code> block unless they need to be transformed together or need to
be part of a layered texture). We render this to see what it looks like. Now,
one at a time, we substitute for the keyword <code><a href="r3_4.html#r3_4_7_1_5">bumps</a></code> the following
keywords: <code><a href="r3_4.html#r3_4_7_1_9">dents</a></code>, <code><a href="r3_4.html#r3_4_7_1_31">wrinkles</a></code>,
<code><a href="r3_4.html#r3_4_7_1_23">ripples</a></code> and <code><a href="r3_4.html#r3_4_7_1_29">waves</a></code>
(we can also use any of the patterns listed in <a href="r3_4.html#r3_4_7">Pattern</a>).
We render each to see what they look like. We play around with the float value that follows the
keyword. We also experiment with the scale value.</p>
<p>
For added interest, we change the plane texture to a single color with a
normal as follows.</p>
<pre>
  plane {
    y, -1.5
    pigment { color rgb &lt;.65, .45, .35&gt; }
    normal { dents .75 scale .25 }
  }
</pre>

</div>
<a name="t2_3_5_2_2"></a>
<div class="content-level-h5" contains="Blending Normals" id="t2_3_5_2_2">
<h5>2.3.5.2.2 Blending Normals</h5>
<p>Normals can be layered similar to pigments but the results can be
unexpected. Let's try that now by editing the sphere as follows.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray75 }
      normal { radial frequency 10 }
      normal { gradient y scale .2 }
  }
</pre>

<p>As we can see, the resulting pattern is neither a radial nor a gradient.
It is instead the result of first calculating a radial pattern and then
calculating a gradient pattern. The results are simply additive. This can be
difficult to control so POV-Ray gives the user other ways to blend
normals.</p>
<p>
One way is to use normal maps. A normal map works the same way as the
pigment map we used earlier. Let's change our sphere texture as
follows.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray75 }
    normal {
      gradient y
      frequency 3
      turbulence .5
      normal_map {
        [0.00 granite]
        [0.25 spotted turbulence .35]
        [0.50 marble turbulence .5]
        [0.75 bozo turbulence .25]
        [1.00 granite]
      }
    }
  }
</pre>

<p>Rendering this we see that the sphere now has a very irregular bumpy
surface. The gradient pattern type separates the normals into bands but they
are turbulated, giving the surface a chaotic appearance. But this gives us an
idea.</p>
<p>
Suppose we use the same pattern for a normal map that we used to create the
oceans on our planetoid and applied it to the land areas. Does it follow that
if we use the same pattern and modifiers on a sphere the same size that the
shape of the pattern would be the same? Would not that make the land areas
bumpy while leaving the oceans smooth? Let's try it. First, let's
render the two spheres side-by-side so we can see if the pattern is indeed
the same. We un-comment the planetoid sphere and make the following
changes.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    texture { LandArea }
    texture { OceanArea }
    //texture { CloudArea }  // &lt;-comment this out
    translate -x             // &lt;- add this transformation
  }
</pre>

<p>Now we change the gray sphere as follows.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray75 }
    normal {
      bozo
      turbulence .5
      lambda 2
      normal_map {
        [0.4 dents .15 scale .01]
        [0.6 agate turbulence 1]
        [1.0 dents .15 scale .01]
      }
    }
    translate x // &lt;- add this transformation
  }
</pre>

<p>We render this to see if the pattern is the same. We see that indeed it
is. So let's comment out the gray sphere and add the <code>normal</code>
block it contains to the land area texture of our planetoid. We remove the
transformations so that the planetoid is centered in the scene again.</p>
<pre>
  #declare LandArea = texture {
    pigment {
      agate
      turbulence 1
      lambda 1.5
      omega .8
      octaves 8
      color_map {
        [0.00 color rgb &lt;.5, .25, .15&gt;]
        [0.33 color rgb &lt;.1, .5, .4&gt;]
        [0.86 color rgb &lt;.6, .3, .1&gt;]
        [1.00 color rgb &lt;.5, .25, .15&gt;]
      }
    }
    normal {
      bozo
      turbulence .5
      lambda 2
      normal_map {
        [0.4 dents .15 scale .01]
        [0.6 agate turbulence 1]
        [1.0 dents .15 scale .01]
      }
    }
  }
</pre>

<p>Looking at the resulting image we see that indeed our idea works! The land
areas are bumpy while the oceans are smooth. We add the cloud layer back in
and our planetoid is complete.</p>
<p>
There is much more that we did not cover here due to space constraints. On
our own, we should take the time to explore slope maps, average and bump
maps.</p>

</div>
<a name="t2_3_5_2_3"></a>
<div class="content-level-h5" contains="Slope Map Tutorial" id="t2_3_5_2_3">
<h5>2.3.5.2.3 Slope Map Tutorial</h5>
<p>One of the most powerful texturing features of POV-Ray is normal perturbation (which is specified using the <code>normal</code> block of an object texture). With this feature it's possible to emulate small surface displacement in a very efficient way, without actually having to modify the actual surface (which often would increase the complexity of the object considerably, resulting in much slower renders).</p>
<p>Slope maps are used to define more precisely how the normal perturbation is generated from a specified pattern. Slope maps are a very powerful feature often dismissed by many.</p>
<p>As an example, let's create a simple scene with an object using normal perturbation:</p>
<pre>
camera { location &lt;0, 10, -7&gt;*1.4 look_at 0 angle 35 }
light_source
{ &lt;100, 80, -30&gt;, 1 area_light z*20, y*20, 12, 12 adaptive 0 }
plane { y, 0 pigment { rgb 1 } }

cylinder
{ 0, y, 4
  pigment { rgb &lt;1, .9, .2&gt; }
  finish { specular 1 }
  normal
  { wood 1
    rotate x*90
  }
}
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/89/TutImgSlopemap1.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Normal modifier example</p>
  </td>
</tr>
</table>

<p>By default the <code>wood</code> pattern uses a ramp wave (going from 0 to 1 and then back to 0) arranged in concentric circles, as we can see from the image.</p>
<p>By default POV-Ray simply takes the values of the pattern as they are in order to calculate the normal perturbation of the surface. However, using a <code>slope_map</code> we can more precisely define how these values are interpreted. For example, if we add this <code>slope_map</code> (the meaning of the values are explained later in this tutorial) to the <code>normal</code> block in the example above:</p>
<pre>
    slope_map
    { [0 &lt;0, 0&gt;]
      [.2 &lt;1, 1&gt;]
      [.2 &lt;1, 0&gt;]
      [.8 &lt;1, 0&gt;]
      [.8 &lt;1, -1&gt;]
      [1 &lt;0, 0&gt;]
    }
</pre>
<p>we get a much more interesting result:</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/f/f3/TutImgSlopemap2.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 1</p>
  </td>
</tr>
</table>

<p>We can also use a slope map to simply smooth out the original ramp wave pattern like this:</p>
<pre>
    slope_map
    { [0 &lt;0, 0&gt;]
      [.5 &lt;.5, 1&gt;]
      [1 &lt;1, 0&gt;]
    }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/3/34/TutImgSlopemap3.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 2</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_5_2_3_1"></a>
<div class="content-level-h6" contains="Slopes, what are they?" id="t2_3_5_2_3_1">
<h6>2.3.5.2.3.1 Slopes, what are they?</h6>
<p>Mathematically speaking the slope of a curve (also called gradient) at a certain point is the <code>tan()</code> of the angle of the tangent line of that curve at that point. In other words, it's the amount of change of the vertical coordinate with respect to the change of the horizontal coordinate.</p>
<p>In a more colloquial way, the slope of a completely horizontal part of the curve is 0. The slope of a 45-degree line is 1 (because for each unit in the horizontal direction the line goes up by the same amount). Lines between 0 and 45 degrees have corresponding slopes between 0 and 1 (the relation between them is not linear, though, but one usually doesn't have to worry about that). Lines with an angle of over 45 degrees have correspondently slopes increasingly larger than 1 (a line of 90 degrees has an infinite slope).</p>
<p>Usually when defining slope maps it's enough to keep between slopes of 0 and 1, even though higher slopes are sometimes useful too to get steeper changes. Usually it's enough to think that a slope of 0 means a horizontal part of the curve while a slope of 1 means a 45-degree steep part of the curve (and slopes between 0 and 1 correspond to degrees between 0 and 45 respectively).</p>
<p>A slope can be negative too. A negative slope simply means that the curve is going down instead of going up.</p>
<p>The following figure shows some basic slopes in a curve (note that the slope values are only approximate):</p>

<table class="centered" width="648px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="628px" src="images/3/3e/TutImgSlopemap4.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slopes in a curve</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_5_2_3_2"></a>
<div class="content-level-h6" contains="Syntax of a slope map" id="t2_3_5_2_3_2">
<h6>2.3.5.2.3.2 Syntax of a slope map</h6>
<p>In the exact same way as for example a <code>color_map</code> assigns colors to pattern values, a <code>slope_map</code> assign slopes to pattern values. If you are fluent in defining color maps for a pattern, defining a slope map shouldn't be any more difficult.</p>
<p>Each entry in a slope map takes two values: The <em>displacement</em> of the surface (although one should remember that this displacement is only simulated, not real) and the slope of the surface at that point.</p>
<p>You can think of the first parameter as an altitude value which tells how much the surface (in relative terms) is displaced from its original location. Usually values between 0 and 1 are used for this. You can think of 0 meaning that the surface is not displaced and 1 as the surface having maximum displacement (outwards).</p>
<p>Let's examine the slope map we used to smooth out the wood pattern at the beginning of this tutorial:</p>
<pre>
    slope_map
    { [0 &lt;0, 0&gt;]
      [.5 &lt;.5, 1&gt;]
      [1 &lt;1, 0&gt;]
    }
</pre>
<p>This means:</p>
<ul>
<li>When the pattern has a value of 0, the surface is not displaced and the slope of the surface is 0 (ie. it's horizontal).</li>
<li>When the pattern has a value of 0.5, the surface is displaced by 0.5 and the slope of the surface is 1.</li>
<li>When the pattern has a value of 1, the surface has maximum displacement and the slope is again 0, ie. horizontal.</li>
</ul>
<p>When the pattern is linear (as the wood pattern is), this kind of slope map corresponds approximately to a half sine wave. Since the wood pattern uses a ramp wave (ie. after going from 0 to 1 it then goes from 1 to 0), the result is basically a complete (approximate) sine wave.</p>
<p>As with a color map, all the values in between are interpolated and that's why we get a smooth transition between these values.</p>

</div>
<a name="t2_3_5_2_3_3"></a>
<div class="content-level-h6" contains="Examples of slope maps" id="t2_3_5_2_3_3">
<h6>2.3.5.2.3.3 Examples of slope maps</h6>
<p>As we saw in the first slope map example in this tutorial, it is possible to create sharp transitions, not just smooth ones. This is achieved in the same way as how sharp transitions are achieved with color maps: By repeating the same pattern value. Here is an example:</p>
<pre>
    slope_map
    { [0 &lt;0, 1&gt;]
      [.5 &lt;1, 1&gt;]
      [.5 &lt;1, -.3&gt;]
      [1 &lt;.7, -.3&gt;]
    }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/9/9c/TutImgSlopemap5.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 3</p>
  </td>
</tr>
</table>

<p>There's a sharp transition at the pattern value 0.5, where the surface goes from slope 1 to slope -0.3 (ie. from going strongly upwards to going slightly downwards). Due to how the wood pattern repeats itself, there are also sharp transitions at the pattern values 0 and 1.</p>
<p>We can combine sharp and smooth transitions for nice effects. For example, this simple slope map achieves a nice result:</p>
<pre>
    slope_map
    { [0 &lt;0, 1&gt;]
      [1 &lt;1, 0&gt;]
    }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/4/4a/TutImgSlopemap6.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 4</p>
  </td>
</tr>
</table>

<ul>
<li>At the pattern value 0 the <em>displacement</em> of the surface is 0 and the slope is 1 (ie. strongly upwards).</li>
<li>At the pattern value 1 the surface is fully displaced and horizontal.</li>
<li>Due to the ramp-wave-repetition quality of the wood pattern (which effectively reverses this pattern), the surface then continues smoothly from this point until it descends to 0, where the slope is now effectively -1. Now there's a sharp transition from -1 back to 1 as the pattern starts over.</li>
</ul>
<p>One application where slope maps are really useful is when creating tiled floors. When the tiles on a floor are not too close to the camera and there is a very large amount of tiles, instead of creating hundreds or thousands of individual tile objects, it may be more efficient to simply create a normal pattern which emulates the tiles.</p>
<p>This example shows how to create a floor made of wooden planks:</p>
<pre>
camera { location &lt;2, 10, -12&gt;*.5 look_at 0 angle 35 }
light_source
{ &lt;100, 150, 0&gt;, 1 area_light z*40, y*40, 12, 12 adaptive 0 }
sphere { y*.5, .5 pigment { rgb x } finish { specular .5 } }

plane
{ y, 0
  pigment
  { wood color_map { [0 rgb &lt;.9,.7,.3&gt;][1 rgb &lt;.8,.5,.2&gt;] }
    turbulence .5
    scale &lt;1, 1, 20&gt;*.2
  }
  finish { specular 1 }
  normal
  { gradient x 1
    slope_map
    { [0 &lt;0, 1&gt;] // 0 height, strong slope up
      [.05 &lt;1, 0&gt;] // maximum height, horizontal
      [.95 &lt;1, 0&gt;] // maximum height, horizontal
      [1 &lt;0, -1&gt;] // 0 height, strong slope down
    }
  }
}
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/c/cc/TutImgSlopemap7.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 5</p>
  </td>
</tr>
</table>

<p>In this case a gradient pattern was used. Since the gradient pattern goes from 0 to 1 and then immediately back to 0, we have to mirror the slope map (around 0.5) in order to get a repetitive symmetric result.</p>
<p>In this example the slope map starts from 0 height and a strong slope up, and goes quickly to maximum height, where the surface is horizontal. Then there's a large horizontal area (from pattern value 0.5 to 0.95) after which the slope goes rapidly back down to 0 height and a strong slope down. (After this there's a sharp transition to the beginning due to the gradient pattern starting over.)</p>
<p>If we want square tiles instead of just planks, we can achieve that by eg. using an average normal map like this:</p>
<pre>
  #declare TileNormal =
    normal
    { gradient x 2 // Double the strength because of the averaging
      slope_map
      { [0 &lt;0, 1&gt;] // 0 height, strong slope up
        [.05 &lt;1, 0&gt;] // maximum height, horizontal
        [.95 &lt;1, 0&gt;] // maximum height, horizontal
        [1 &lt;0, -1&gt;] // 0 height, strong slope down
      }
    }
  normal
  { average normal_map
    { [1 TileNormal]
      [1 TileNormal rotate y*90]
    }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/89/TutImgSlopemap8.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 6</p>
  </td>
</tr>
</table>

<p>If we change the pigment of the plane a bit, we get a nice tiled floor:</p>
<pre>
  pigment
  { checker
    pigment { granite color_map { [0 rgb 1][1 rgb .9] } }
    pigment { granite color_map { [0 rgb .9][1 rgb .7] } }
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/1/14/TutImgSlopemap9.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Slope map example 7</p>
  </td>
</tr>
</table>

<p>As you can see in the image, close to the camera it's more evident that the tiles are not truely three-dimensional (and that only a normal perturbation trick has been used), but farther away from the camera the effect is pretty convincing.</p>

</div>
<a name="t2_3_5_3"></a>
<div class="content-level-h4" contains="Finishes" id="t2_3_5_3">
<h4>2.3.5.3 Finishes</h4>
<p>The final part of a POV-Ray texture is the <code><a href="r3_4.html#r3_4_6_3">finish</a></code>. It
controls the properties of the surface of an object. It can make it shiny and
reflective, or dull and flat. It can also specify what happens to light that
passes through transparent pigments, what happens to light that is scattered
by less-than-perfectly-smooth surfaces and what happens to light that is
reflected by surfaces with thin-film interference properties. There are
twelve different properties available in POV-Ray to specify the finish of a
given object. These are controlled by the following keywords: <code><a href="r3_4.html#r3_4_6_3_1">ambient</a></code>,
<code><a href="r3_4.html#r3_4_6_3_3_1">diffuse</a></code>, <code><a href="r3_4.html#r3_4_6_3_3_2">brilliance</a></code>,
<code><a href="r3_4.html#r3_4_6_3_4_1">phong</a></code>, <code><a href="r3_4.html#r3_4_6_3_4_2">specular</a></code>, <code><a href="r3_4.html#r3_4_6_3_4_3">metallic</a></code>, <code><a href="r3_4.html#r3_4_6_3_5">reflection</a></code>, <code><a href="r3_4.html#r3_4_6_3_3_3">crand</a></code> and <code><a href="r3_4.html#r3_4_6_3_7">iridescence</a></code>. Let's design a couple of textures that make use of these parameters.</p>

</div>
<a name="t2_3_5_3_1"></a>
<div class="content-level-h5" contains="Using Ambient" id="t2_3_5_3_1">
<h5>2.3.5.3.1 Using Ambient</h5>
<p>Since objects in POV-Ray are illuminated by light sources, the portions of
those objects that are in shadow would be completely black were it not for
the first two finish properties, <code><a href="r3_4.html#r3_4_6_3_1">ambient</a></code> and
<code>><a href="r3_4.html#r3_4_6_3_3_1">diffuse</a></code>. Ambient is used to simulate the light that is scattered
around the scene that does not come directly from a light source. Diffuse
determines how much of the light that is seen comes directly from a light
source. These two keywords work together to control the simulation of ambient
light. Let's use our gray sphere to demonstrate this. Let's also
change our plane back to its original green and white checkered pattern.</p>
<pre>
  plane {
    y, -1.5
    pigment {checker Green, White}
  }
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray75 }
    finish {
      ambient .2
      diffuse .6
    }
  }
</pre>

<p>In the above example, the default values for ambient and diffuse are used.
We render this to see what the effect is and then make the following change
to the finish.</p>
<pre>
  ambient 0
  diffuse 0
</pre>

<p>The sphere is black because we have specified that none of the light
coming from any light source will be reflected by the sphere. Let's
change <code>diffuse</code> back to the default of 0.6.</p>
<p>
Now we see the gray surface color where the light from the light source
falls directly on the sphere but the shaded side is still absolutely black.
Now let's change <code>diffuse</code> to 0.3 and <code>ambient</code> to
0.3.</p>
<p>
The sphere now looks almost flat. This is because we have specified a fairly
high degree of ambient light and only a low amount of the light coming from
the light source is diffusely reflected towards the camera. The default
values of <code> ambient</code> and <code>diffuse</code> are pretty good
averages and a good starting point. In most cases, an ambient value of 0.1
... 0.2 is sufficient and a diffuse value of 0.5 ... 0.7 will usually do the
job. There are a couple of exceptions. If we have a completely transparent
surface with high refractive and/or reflective values, low values of both
ambient and diffuse may be best. Here is an example:</p>
<pre>
sphere {
   &lt;0,0,0&gt;, 1
   pigment { White filter 1 }
   finish {
      ambient 0
      diffuse 0
      reflection .25
      specular 1
      roughness .001
   }
   interior { ior 1.33 }
}
</pre>

<p>This is glass, obviously. Glass is a material that takes nearly all of its
appearance from its surroundings. Very little of the surface is seen because
it transmits or reflects practically all of the light that shines on it. See
<code>glass.inc</code> for some other examples.</p>

<p class="Note"><strong>Note:</strong> As of POV-Ray 3.7, <code>ambient</code> is disabled when using radiosity, as both mechanisms are intended to simulate the same thing (albeit with different quality) and don't play well together.</p>

</div>
<a name="t2_3_5_3_2"></a>
<div class="content-level-h5" contains="Using Emission" id="t2_3_5_3_2">
<h5>2.3.5.3.2 Using Emission</h5>
<p>
If we ever need an object to be completely illuminated independently of the
lighting situation in a given scene we can do this artificially by specifying
an <code>emission</code> value of 1 and an <code>ambient</code> and <code>diffuse</code> value of 0.
This will eliminate all shading and simply give the object its fullest and
brightest color value at all points. This is good for simulating objects that
emit light like light bulbs and for skies in scenes where the sky may not be
adequately lit by any other means.</p>
<p>
Let's try this with our sphere now.</p>
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { White }
     finish {
        emission 1
        ambient 0
        diffuse 0
     }
  }
</pre>

<p>Rendering this we get a blinding white sphere with no visible highlights
or shaded parts. It would make a pretty good street light.</p>

<p class="Note"><strong>Note:</strong> Versions of POV-Ray prior to 3.7 did not provide the <code>emission</code> keyword for finish, and it was customary to resort to <code>ambient</code> instead for such purpose. This is now discouraged, as <code>ambient</code> is now disabled when using radiosity.</p>

</div>


<a name="t2_3_5_3_3"></a>
<div class="content-level-h5" contains="Using Surface Highlights" id="t2_3_5_3_3">
<h5>2.3.5.3.3 Using Surface Highlights</h5>
<p>In the glass example above, we noticed that there were bright little <em>
hotspots</em> on the surface. This gave the sphere a hard, shiny appearance.
POV-Ray gives us two ways to specify surface specular highlights. The first
is called <em>phong highlighting.</em> Usually, phong highlights are
described using two keywords: <code><a href="r3_4.html#r3_4_6_3_4_1">phong</a></code> and <code>
<a href="r3_4.html#r3_4_6_3_4_1">phong_size</a></code>. The float that follows <code>phong</code> determines the brightness of the highlight while the float following <code>phong_size</code> determines its size. Let's try this.</p>
<pre>
  sphere {
    &lt;0,0,0&gt;, 1
    pigment { Gray50 }
    finish {
      ambient .2
      diffuse .6
      phong .75
      phong_size 25
    }
  }
</pre>

<p>Rendering this we see a fairly broad, soft highlight that gives the sphere
a kind of plastic appearance. Now let's change <code>phong_size</code>
to 150. This makes a much smaller highlight which gives the sphere the
appearance of being much harder and shinier.</p>
<p>
There is another kind of highlight that is calculated by a different means
called <em>specular highlighting</em>. It is specified using the keyword
<code><a href="r3_4.html#r3_4_6_3_4_2">specular</a></code> and operates in conjunction with another keyword
called <code><a href="r3_4.html#r3_4_6_3_4_2">roughness</a></code>. These two keywords work together in much the
same way as <code>phong</code> and <code>phong_size</code> to create
highlights that alter the apparent shininess of the surface. Let's try
using specular in our sphere.</p>
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { Gray50 }
     finish {
        ambient .2
        diffuse .6
        specular .75
        roughness .1
    }
  }
</pre>

<p>Looking at the result we see a broad, soft highlight similar to what we
had when we used <code>phong_size</code> of 25. Change <code>roughness</code>
to .001 and render again. Now we see a small, tight highlight similar to what
we had when we used <code>phong_size</code> of 150. Generally speaking, specular
is slightly more accurate and therefore slightly more realistic than phong but
you should try both methods when designing a texture. There are even times when
both phong and specular may be used on a finish.</p>

</div>
<a name="t2_3_5_3_4"></a>
<div class="content-level-h5" contains="Using Reflection, Metallic and Metallic" id="t2_3_5_3_4">
<h5>2.3.5.3.4 Using Reflection, Metallic and Metallic</h5>
<p>There is another surface parameter that goes hand in hand with highlights,
<code><a href="r3_4.html#r3_4_6_3_5">reflection</a></code>. Surfaces that are very shiny usually have a degree
of reflection to them. Let's take a look at an example.</p>
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { Gray50 }
     finish {
        ambient .2
        diffuse .6
        specular .75
        roughness .001
        reflection {
           .5
        }
     }
  }
</pre>

<p>We see that our sphere now reflects the green and white checkered plane
and the black background but the gray color of the sphere seems out of place.
This is another time when a lower diffuse value is needed. Generally, the
higher <code>reflection</code> is the lower <code>diffuse</code> should be.
We lower the diffuse value to 0.3 and the ambient value to 0.1 and render
again. That is much better. Let's make our sphere as shiny as a polished
gold ball bearing.</p>
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { BrightGold }
     finish {
        ambient .1
        diffuse .1
        specular 1
        roughness .001
        reflection {
           .75
        }
     }
   }
</pre>

<p>That is close but there is something wrong, the colour of the reflection and the highlight. To
make the surface appear more like metal the keyword <code><a href="r3_4.html#r3_4_6_3_4_3">metallic</a></code>
is used. We add it now to see the difference.</p>
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { BrightGold }
     finish {
        ambient .1
        diffuse .1
        specular 1
        roughness .001
        reflection {
          .75
          metallic
        }
     }
  }
</pre>
<p>The reflection has now more of the gold color than the color of its environment. Last detail, 
the highlight. We add another metallic statement, now to the finish and not inside the reflection 
block.</p> 
<pre>
  sphere {
     &lt;0,0,0&gt;, 1
     pigment { BrightGold }
     finish {
        ambient .1
        diffuse .1
        specular 1
        roughness .001
        metallic
        reflection {
          .75
          metallic
        }
     }
  }
</pre>
<p>We see that the highlight has taken on the color of the surface rather
than the light source. This gives the surface a more metallic appearance.</p>

</div>
<a name="t2_3_5_3_5"></a>
<div class="content-level-h5" contains="Using Iridescence" id="t2_3_5_3_5">
<h5>2.3.5.3.5 Using Iridescence</h5>
<p><em>Iridescence</em> is what we see on the surface of an oil slick when
the sun shines on it. The rainbow effect is created by something called
<em>thin-film interference</em> (read section <a href="r3_4.html#r3_4_6_3_7">Iridescence</a> for
details). For now let's just try using it. Iridescence is specified by
the <code><a href="r3_4.html#r3_4_6_3_7">irid</a></code> statement and three values: amount,
<code>thickness</code> and <code>turbulence</code>. The amount is the contribution
to the overall surface color. Usually 0.1 to 0.5 is sufficient here.
The thickness affects the <em>busyness</em> of the effect. Keep this between
0.25 and 1 for best results. The turbulence is a little different from
pigment or normal turbulence. We cannot set <code>octaves</code>, <code>lambda</code>
or <code>omega</code> but we can specify an amount which will affect the thickness
in a slightly different way from the thickness value. Values between 0.25 and 1
work best here too. Finally, iridescence will respond to the surface normal since
it depends on the angle of incidence of the light rays striking the surface.
With all of this in mind, let's add some iridescence to our glass sphere.</p>
<pre>
sphere {
     &lt;0,0,0&gt;, 1
     pigment { White filter 1 }
     finish {
        ambient .1
        diffuse .1
        reflection .2
        specular 1
        roughness .001
        irid {
          0.35
          thickness .5
          turbulence .5
        }
     }
     interior{
        ior 1.5
        fade_distance 5
        fade_power 1
        caustics 1
     }
}
</pre>

<p>We try to vary the values for amount, thickness and turbulence to see what
changes they make. We also try to add a <code>normal</code> block to see what
happens.</p>

</div>
<a name="t2_3_5_4"></a>
<div class="content-level-h4" contains="Working With Pigment Maps" id="t2_3_5_4">
<h4>2.3.5.4 Working With Pigment Maps</h4>
<p>Let's look at the pigment map. We must not confuse this with a color
map, as color maps can only take individual colors as entries in the map,
while pigment maps can use entire other pigment patterns. To get a feel for
these, let's begin by setting up a basic plane with a simple pigment map.
Now, in the following example, we are going to declare each of the pigments
we are going to use before we actually use them. This is not strictly
necessary (we could put an entire pigment description in each entry of the
map) but it just makes the whole thing more readable.</p>
<pre>
  // simple Black on White checkerboard... it's a classic
  #declare Pigment1 = pigment {
    checker color Black color White
    scale .1
  }
  // kind of a &quot;psychedelic rings&quot; effect
  #declare Pigment2 = pigment {
    wood
    color_map {
      [ 0.0 Red ]
      [ 0.3 Yellow ]
      [ 0.6 Green ]
      [ 1.0 Blue ]
    }
  }
  plane {
    -z, 0
    pigment {
      gradient x
      pigment_map {
        [ 0.0 Pigment1 ]
        [ 0.5 Pigment2 ]
        [ 1.0 Pigment1 ]
      }
    }
  }
</pre>

<p>Okay, what we have done here is very simple, and probably quite
recognizable if we have been working with color maps all along anyway. All we
have done is substituted a pigment map where a color map would normally go,
and as the entries in our map, we have referenced our declared pigments. When
we render this example, we see a pattern which fades back and forth between
the classic checkerboard, and those colorful rings. Because we fade from
Pigment1 to Pigment2 and then back again, we see a clear blending of the two
patterns at the transition points. We could just as easily get a sudden
transition by amending the map to read.</p>
<pre>
  pigment_map {
    [ 0.0 Pigment1 ]
    [ 0.5 Pigment1 ]
    [ 0.5 Pigment2 ]
    [ 1.0 Pigment2 ]
  }
</pre>

<p>Blending individual pigment patterns is just the beginning.</p>

</div>
<a name="t2_3_5_5"></a>
<div class="content-level-h4" contains="Working With Normal Maps" id="t2_3_5_5">
<h4>2.3.5.5 Working With Normal Maps</h4>
<p> For our next example, we replace the plane in the scene with this
one.</p>
<pre>
  plane {
    -z, 0
    pigment { White }
    normal {
      gradient x
      normal_map {
        [ 0.0 bumps 1 scale .1]
        [ 1.0 ripples 1 scale .1]
      }
    }
  }
</pre>

<p>First of all, we have chosen a solid white color to show off all bumping
to best effect. Secondly, we notice that our map blends smoothly from all
bumps at 0.0 to all ripples at 1.0, but because this is a default gradient,
it falls off abruptly back to bumps at the beginning of the next cycle. We
Render this and see just enough sharp transitions to clearly see where one
normal gives over to another, yet also an example of how two normal patterns
look while they are smoothly blending into one another.</p>
<p>
The syntax is the same as we would expect. We just changed the type of map,
moved it into the normal block and supplied appropriate bump types. It is
important to remember that as of POV-Ray 3, all patterns that work with
pigments work as normals as well (and vice versa, except for facets) so we could just
as easily have blended from wood to granite, or any other pattern we like. We
experiment a bit and get a feel for what the different patterns look
like.</p>
<p>
After seeing how interesting the various normals look blended, we might like
to see them completely blended all the way through rather than this business
of fading from one to the next. Well, that is possible too, but we would be
getting ahead of ourselves. That is called the <code>average</code>
function, and we will return to it a little bit further down the page.</p>

</div>
<a name="t2_3_5_6"></a>
<div class="content-level-h4" contains="Working With Texture Maps" id="t2_3_5_6">
<h4>2.3.5.6 Working With Texture Maps</h4>
<p>We know how to blend colors, pigment patterns, and normals, and we are
probably thinking what about finishes? What about whole textures? Both of
these can be kind of covered under one topic. While there is no finish map
per se, there are texture maps, and we can easily adapt these to serve as
finish maps, simply by putting the same pigment and/or normal in each of the
texture entries of the map. Here is an example. We eliminate the declared
pigments we used before and the previous plane, and add the following.</p>
<pre>
  #declare Texture1 = texture {
    pigment { Grey }
    finish { reflection 1 }
  }
  #declare Texture2 = texture {
    pigment { Grey }
    finish { reflection 0 }
  }
  cylinder {
    &lt;-2, 5, -2&gt;, &lt;-2, -5, -2&gt;, 1
    pigment { Blue }
  }
  plane {
    -z, 0
    rotate y * 30
    texture {
      gradient y
      texture_map {
        [ 0.0 Texture1 ]
        [ 0.4 Texture1 ]
        [ 0.6 Texture2 ]
        [ 1.0 Texture2 ]
      }
      scale 2
    }
  }
</pre>

<p>Now, what have we done here? The background plane alternates vertically
between two textures, identical except for their finishes. When we render
this, the cylinder has a reflection part of the way down the plane, and then
stops reflecting, then begins and then stops again, in a gradient pattern
down the surface of the plane. With a little adaptation, this could be used
with any pattern, and in any number of creative ways, whether we just wanted
to give various parts of an object different finishes, as we are doing here,
or whole different textures altogether.</p>
<p>
One might ask: if there is a texture map, why do we need pigment and normal
maps? Fair question. The answer: speed of calculation. If we use a texture
map, for every in-between point, POV-Ray must make multiple calculations for
each texture element, and then run a weighted average to produce the correct
value for that point. Using just a pigment map (or just a normal map)
decreases the overall number of calculations, and our texture renders a bit
faster in the bargain. As a rule of thumb: we use pigment or normal maps
where we can and only fall back on texture maps if we need the extra
flexibility.</p>

</div>
<a name="t2_3_5_7"></a>
<div class="content-level-h4" contains="Working With List Textures" id="t2_3_5_7">
<h4>2.3.5.7 Working With List Textures</h4>
<p> If we have followed the corresponding tutorials on simple pigments, we
know that there are three patterns called <em>color list</em> patterns,
because rather than using a color map, these simple but useful patterns take
a list of colors immediately following the pattern keyword. We are talking
about checker, hexagon, the brick pattern and the object pattern.</p>
<p>
Naturally they also work with whole pigments, normals, and entire textures,
just as the other patterns do above. The only difference is that we list
entries in the pattern (as we would do with individual colors) rather than
using a map of entries. Here is an example. We strike the plane and any
declared pigments we had left over in our last example, and add the following
to our basic file.</p>
<pre>
  #declare Pigment1 = pigment {
    hexagon
    color Yellow color Green color Grey
    scale .1
  }
  #declare Pigment2 = pigment {
    checker
    color Red color Blue
    scale .1
  }
  #declare Pigment3 = pigment {
    brick
    color White color Black
    rotate -90*x
    scale .1
  }
  box {
    -5, 5
    pigment {
      hexagon
      pigment {Pigment1}
      pigment {Pigment2}
      pigment {Pigment3}
      rotate 90*x
    }
  }
</pre>

<p>We begin by declaring an example of each of the color list patterns as
individual pigments. Then we use the hexagon pattern as a <em>pigment
list</em> pattern, simply feeding it a list of pigments rather than colors as
we did above. There are two rotate statements throughout this example,
because bricks are aligned along the z-direction, while hexagons align along
the y-direction, and we wanted everything to face toward the camera we
originally declared out in the -z-direction so we can really see the patterns
within patterns effect here.</p>
<p>
Of course color list patterns used to be only for pigments, but as of
POV-Ray 3, everything that worked for pigments can now also be adapted for
normals or entire textures. A couple of quick examples might look like</p>
<pre>
  normal {
    brick
    normal { granite .1 }
    normal { bumps 1 scale .1 }
  }
</pre>

<p>or...</p>
<pre>
  texture {
    checker
    texture { Gold_Metal }
    texture { Silver_Metal }
  }
</pre>

</div>
<a name="t2_3_5_8"></a>
<div class="content-level-h4" contains="What About Tiles?" id="t2_3_5_8">
<h4>2.3.5.8 What About Tiles?</h4>
<p>In earlier versions of POV-Ray, there was a texture pattern called
<code>tiles</code>. By simply using a checker texture pattern (as we just saw
above), we can achieve the same thing as tiles used to do, so it is now
obsolete. It is still supported by POV-Ray 3 for backwards compatibility with
old scene files, but now is a good time to get in the habit of using a
checker pattern instead.</p>

</div>
<a name="t2_3_5_9"></a>
<div class="content-level-h4" contains="Average Function" id="t2_3_5_9">
<h4>2.3.5.9 Average Function</h4>
<p>Now things get interesting. Above, we began to see how pigments and
normals can fade from one to the other when we used them in maps. But how
about if we want a smooth blend of patterns all the way through? That is
where a new feature called <code><a href="r3_4.html#r3_4_7_4_1">average</a></code> can come in very handy.
Average works with pigment, normal, and texture maps, although the syntax is
a little bit different, and when we are not expecting it, the change can be
confusing. Here is a simple example. We use our standard includes, camera and
light source from above, and enter the following object.</p>
<pre>
  plane { -z, 0
    pigment { White }
    normal {
      average
      normal_map {
        [1, gradient x ]
        [1, gradient y ]
      }
    }
  }
</pre>

<p>What we have done here is pretty self explanatory as soon as we render it.
We have combined a vertical with a horizontal gradient bump pattern, creating
crisscrossing gradients. Actually, the crisscrossing effect is a smooth blend
of gradient x with gradient y all the way across our plane. Now, what about
that syntax difference?</p>
<p>
We see how our normal map has changed from earlier examples. The floating
point value to the left-hand side of each map entry has a different meaning now.
It gives the weight factor per entry in the map. Try some different values for the 'gradient x'
entry and see how the normal changes.</p>
<p>The weight factor can be omitted, the result
then will be the same as if each entry had a weight factor of 1.</p>

</div>
<a name="t2_3_5_10"></a>
<div class="content-level-h4" contains="Working With Layered Textures" id="t2_3_5_10">
<h4>2.3.5.10 Working With Layered Textures</h4>
<p>With the multitudinous colors, patterns, and options for creating complex
textures in POV-Ray, we can easily become deeply engrossed in mixing and
tweaking just the right textures to apply to our latest creations. But as we
go, sooner or later there is going to come that <em>special</em> texture.
That texture that is sort of like wood, only varnished, and with a kind of
spotty yellow streaking, and some vertical gray flecks, that looks like
someone started painting over it all, and then stopped, leaving part of the
wood visible through the paint.</p>
<p>
Only... now what? How do we get all that into one texture? No pattern can do
that many things. Before we panic and say image map there is at least one
more option: <em>layered textures</em>.</p>
<p>
With layered textures, we only need to specify a series of textures, one
after the other, all associated with the same object. Each texture we list
will be applied one on top of the other, from bottom to top in the order they
appear.</p>
<p>
It is very important to note that we must have some degree of transparency
(filter or transmit) in the pigments of our upper textures, or the ones below
will get lost underneath. We will not receive a warning or an error -
technically it is legal to do this: it just does not make sense. It is
like spending hours sketching an elaborate image on a bare wall, then
slapping a solid white coat of latex paint over it.</p>
<p>
Let's design a very simple object with a layered texture, and look at
how it works. We create a file called <code>LAYTEX.POV</code> and add the
following lines.</p>
<pre>
  #include &quot;colors.inc&quot;
  #include &quot;textures.inc&quot;
  camera {
    location &lt;0, 5, -30&gt;
    look_at &lt;0, 0, 0&gt;
  }
  light_source { &lt;-20, 30, -50&gt; color White }
  plane { y, 0 pigment { checker color Green color Yellow  } }
  background { rgb &lt;.7, .7, 1&gt; }
  box {
    &lt;-10, 0, -10&gt;, &lt;10, 10, 10&gt;
    texture {
      Silver_Metal // a metal object ...
      normal {     // ... which has suffered a beating
        dents 2
        scale 1.5
      }
    } // (end of base texture)
    texture { // ... has some flecks of rust ...
      pigment {
        granite
        color_map {
          [0.0 rgb &lt;.2, 0, 0&gt; ]
          [0.2 color Brown ]
          [0.2 rgbt &lt;1, 1, 1, 1&gt; ]
          [1.0 rgbt &lt;1, 1, 1, 1&gt; ]
        }
        frequency 16
      }
    } // (end rust fleck texture)
    texture { // ... and some sooty black marks
      pigment {
        bozo
        color_map {
          [0.0 color Black ]
          [0.2 color rgbt &lt;0, 0, 0, .5&gt; ]
          [0.4 color rgbt &lt;.5, .5, .5, .5&gt; ]
          [0.5 color rgbt &lt;1, 1, 1, 1&gt; ]
          [1.0 color rgbt &lt;1, 1, 1, 1&gt; ]
        }
        scale 3
      }
    } // (end of sooty mark texture)
  } // (end of box declaration)
</pre>

<p>Whew. This gets complicated, so to make it easier to read, we have
included comments showing what we are doing and where various parts of the
declaration end (so we do not get lost in all those closing brackets!). To
begin, we created a simple box over the classic checkerboard floor, and give
the background sky a pale blue color. Now for the fun part...</p>
<p>
To begin with we made the box use the <code>Silver_Metal</code> texture as
declared in textures.inc (for bonus points, look up <code>textures.inc</code>
and see how this standard texture was originally created sometime). To give
it the start of its abused state, we added the dents normal pattern, which
creates the illusion of some denting in the surface as if our mysterious
metal box had been knocked around quite a bit.</p>
<p>
The flecks of rust are nothing but a fine grain granite pattern fading from
dark red to brown which then abruptly drops to fully transparent for the
majority of the color map. True, we could probably come up with a more
realistic pattern of rust using pigment maps to cluster rusty spots, but
pigment maps are a subject for another tutorial section, so let's skip
that just now.</p>
<p>
Lastly, we have added a third texture to the pot. The randomly shifting
<code>bozo</code> texture gradually fades from blackened centers to
semi-transparent medium gray, and then ultimately to fully transparent for
the latter half of its color map. This gives us a look of sooty burn marks
further marring the surface of the metal box. The final result leaves our
mysterious metal box looking truly abused, using multiple texture patterns,
one on top of the other, to produce an effect that no single pattern could
generate!</p>

</div>
<a name="t2_3_5_10_1"></a>
<div class="content-level-h5" contains="Declaring Layered Textures" id="t2_3_5_10_1">
<h5>2.3.5.10.1 Declaring Layered Textures</h5>
<p>In the event we want to reuse a layered texture on several objects in our
scene, it is perfectly legal to declare a layered texture. We will not
repeat the whole texture from above, but the general format would be
something like this:</p>
<pre>
  #declare Abused_Metal =
    texture { /* insert your base texture here... */ }
    texture { /* and your rust flecks here... */ }
    texture { /* and of course, your sooty burn marks here */ }
</pre>

<p>POV-Ray has no problem spotting where the declaration ends, because the
textures follow one after the other with no objects or directives in between.
The layered texture to be declared will be assumed to continue until it finds
something other than another texture, so any number of layers can be added in
to a declaration in this fashion.</p>
<p>
One final word about layered textures: whatever layered texture we create,
whether declared or not, we must not leave off the texture wrapper. In
conventional single textures a common shorthand is to have just a pigment, or
just a pigment and finish, or just a normal, or whatever, and leave them
outside of a texture statement. This shorthand does not extend to layered
textures. As far as POV-Ray is concerned we can layer entire textures, but
not individual pieces of textures. For example</p>
<pre>
  #declare Bad_Texture =
    texture { /* insert your base texture here... */ }
    pigment { Red filter .5 }
    normal { bumps 1 }
</pre>

<p>will not work. The pigment and the normal are just floating there without
being part of any particular texture. Inside an object, with just a single
texture, we can do this sort of thing, but with layered textures, we would
just generate an error whether inside the object or in a declaration.</p>

</div>
<a name="t2_3_5_10_2"></a>
<div class="content-level-h5" contains="Another Layered Textures Example" id="t2_3_5_10_2">
<h5>2.3.5.10.2 Another Layered Textures Example</h5>
<p>To further explain how layered textures work another example is described
in detail. A tablecloth is created to be used in a picnic scene. Since a
simple red and white checkered cloth looks entirely too new, too flat, and
too much like a tiled floor, layered textures are used to stain the
cloth.</p>
<p>
We are going to create a scene containing four boxes. The first box has
that plain red and white texture we started with in our picnic scene, the
second adds a layer meant to realistically fade the cloth, the third adds
some wine stains, and the final box adds a few wrinkles (not another layer,
but we must note when and where adding changes to the surface normal have an
effect in layered textures).</p>
<p>
We start by placing a camera, some lights, and the first box. At this stage,
the texture is plain tiling, not layered. See file <code>layered1.pov</code>.</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;0, 0, -6&gt;
    look_at &lt;0, 0, 0&gt;
  }
  light_source { &lt;-20, 30, -100&gt; color White }
  light_source { &lt;10, 30, -10&gt; color White }
  light_source { &lt;0, 30, 10&gt; color White }
  #declare PLAIN_TEXTURE =
    // red/white check
    texture {
      pigment {
        checker
        color rgb&lt;1.000, 0.000, 0.000&gt;
        color rgb&lt;1.000, 1.000, 1.000&gt;
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
  // plain red/white check box
  box {
    &lt;-1, -1, -1&gt;, &lt;1, 1, 1&gt;
    texture {
      PLAIN_TEXTURE
    }
    translate  &lt;-1.5, 1.2, 0&gt;
  }
</pre>

<p>We render this scene. It is not particularly interesting, is it?
That is why we will use some layered textures to make it more
interesting.</p>
<p>
First, we add a layer of two different, partially transparent grays. We tile
them as we had tiled the red and white colors, but we add some turbulence to
make the fading more realistic. We add the following box to the previous scene
and re-render (see file <code>layered2.pov</code>).</p>
<pre>
  #declare FADED_TEXTURE =
    // red/white check texture
    texture {
      pigment {
        checker
        color rgb&lt;0.920, 0.000, 0.000&gt;
        color rgb&lt;1.000, 1.000, 1.000&gt;
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
    // greys to fade red/white
    texture {
      pigment {
        checker
        color rgbf&lt;0.632, 0.612, 0.688, 0.698&gt;
        color rgbf&lt;0.420, 0.459, 0.520, 0.953&gt;
        turbulence 0.500
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
  // faded red/white check box
  box {
    &lt;-1, -1, -1&gt;, &lt;1, 1, 1&gt;
    texture {
      FADED_TEXTURE
    }
    translate  &lt;1.5, 1.2, 0&gt;
  }
</pre>

<p>Even though it is a subtle difference, the red and white checks no longer
look quite so new.</p>
<p>
Since there is a bottle of wine in the picnic scene, we thought it might be
a nice touch to add a stain or two. While this effect can almost be achieved
by placing a flattened blob on the cloth, what we really end up with is a
spill effect, not a stain. Thus it is time to add another layer.</p>
<p>
Again, we add another box to the scene we already have scripted and
re-render (see file <code>layered3.pov</code>).</p>
<pre>
  #declare STAINED_TEXTURE =
    // red/white check
    texture {
      pigment {
        checker
        color rgb&lt;0.920, 0.000, 0.000&gt;
        color rgb&lt;1.000, 1.000, 1.000&gt;
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
    // greys to fade check
    texture {
      pigment {
        checker
        color rgbf&lt;0.634, 0.612, 0.688, 0.698&gt;
        color rgbf&lt;0.421, 0.463, 0.518, 0.953&gt;
        turbulence 0.500
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
    // wine stain
    texture {
      pigment {
        spotted
        color_map {
          [ 0.000  color rgb&lt;0.483, 0.165, 0.165&gt; ]
          [ 0.329  color rgbf&lt;1.000, 1.000, 1.000, 1.000&gt; ]
          [ 0.734  color rgbf&lt;1.000, 1.000, 1.000, 1.000&gt; ]
          [ 1.000  color rgb&lt;0.483, 0.165, 0.165&gt; ]
        }
        turbulence 0.500
        frequency 1.500
      }
    }
  // stained box
  box {
    &lt;-1, -1, -1&gt;, &lt;1, 1, 1&gt;
    texture {
      STAINED_TEXTURE
    }
    translate  &lt;-1.5, -1.2, 0&gt;
  }
</pre>

<p>Now there is a tablecloth texture with personality.</p>
<p>
Another touch we want to add to the cloth are some wrinkles as if the cloth
had been rumpled. This is not another texture layer, but when working with
layered textures, we must keep in mind that changes to the surface normal
must be included in the uppermost layer of the texture. Changes to lower
layers have no effect on the final product (no matter how transparent the
upper layers are).</p>
<p>
We add this final box to the script and re-render (see file <code>layered4.pov</code>)</p>
<pre>
  #declare WRINKLED_TEXTURE =
    // red and white check
    texture {
      pigment {
        checker
        color rgb&lt;0.920, 0.000, 0.000&gt;
        color rgb&lt;1.000, 1.000, 1.000&gt;
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
    // greys to &quot;fade&quot; checks
    texture {
      pigment {
        checker
        color rgbf&lt;0.632, 0.612, 0.688, 0.698&gt;
        color rgbf&lt;0.420, 0.459, 0.520, 0.953&gt;
        turbulence 0.500
        scale &lt;0.2500, 0.2500, 0.2500&gt;
      }
    }
    // the wine stains
    texture {
      pigment {
        spotted
        color_map {
          [ 0.000  color rgb&lt;0.483, 0.165, 0.165&gt; ]
          [ 0.329  color rgbf&lt;1.000, 1.000, 1.000, 1.000&gt; ]
          [ 0.734  color rgbf&lt;1.000, 1.000, 1.000, 1.000&gt; ]
          [ 1.000  color rgb&lt;0.483, 0.165, 0.165&gt; ]
        }
        turbulence 0.500
        frequency 1.500
      }
      normal {
        wrinkles 5.0000
      }
    }
  // wrinkled box
  box {
    &lt;-1, -1, -1&gt;, &lt;1, 1, 1&gt;
    texture {
      WRINKLED_TEXTURE
    }
    translate  &lt;1.5, -1.2, 0&gt;
  }
</pre>

<p>Well, this may not be the tablecloth we want at any picnic we are
attending, but if we compare the final box to the first, we see just how much
depth, dimension, and personality is possible just by the use of creative
texturing.</p>
<p>
One final note: the comments concerning the surface normal do not hold true
for finishes. If a <em>lower</em> layer contains a specular finish and an
<em>upper</em> layer does not, any place where the upper layer is
transparent, the specular will show through.</p>

</div>
<a name="t2_3_5_11"></a>
<div class="content-level-h4" contains="When All Else Fails: Material Maps" id="t2_3_5_11">
<h4>2.3.5.11 When All Else Fails: Material Maps</h4>
<p>We have some pretty powerful texturing tools at our disposal, but what if
we want a more free form arrangement of complex textures? Well, just as image
maps do for pigments, and bump maps do for normals, whole textures can be
mapped using a material map, should the need arise.</p>
<p>
Just as with image maps and bump maps, we need a source image in bitmapped
format which will be called by POV-Ray to serve as the map of where the
individual textures will go, but this time, we need to specify what texture
will be associated with which palette index. To make such an image, we can
use a paint program which allows us to select colors by their palette index
number (the actual color is irrelevant, since it is only a map to tell
POV-Ray what texture will go at that location). Now, if we have the complete
package that comes with POV-Ray, we have in our include files an image called
<code>povmap.gif</code> which is a bitmapped image that uses only the first
four palette indices to create a bordered square with the words
&quot;Persistence of Vision&quot; in it. This will do just fine as a sample
map for the following example. Using our same include files, the camera and
light source, we enter the following object.</p>
<pre>
  plane {
    -z, 0
    texture {
      material_map {
        gif &quot;povmap.gif&quot;
        interpolate 2
        once
        texture { PinkAlabaster }          // the inner border
        texture { pigment { DMFDarkOak } } // outer border
        texture { Gold_Metal }             // lettering
        texture { Chrome_Metal }           // the window panel
      }
      translate &lt;-0.5, -0.5, 0&gt;
      scale 5
    }
  }
</pre>

<p>The position of the light source and the lack of foreground objects to be
reflected do not show these textures off to their best advantage. But at
least we can see how the process works. The textures have simply been placed
according to the location of pixels of a particular palette index. By using
the <code><a href="r3_4.html#r3_4_7_7_1">once</a></code> keyword (to keep it from tiling), and translating and scaling our map to match the camera we have been using, we get to see the
whole thing laid out for us.</p>
<p>
Of course, that is just with palette mapped image formats, such as GIF and
certain flavors of PNG. Material maps can also use non-paletted formats, such
as the TGA files that POV-Ray itself outputs. That leads to an interesting
consequence: We can use POV-Ray to produce source maps for POV-Ray! Before we
wrap up with some of the limitations of special textures, let's do one
more thing with material maps, to show how POV-Ray can make its own source
maps.</p>
<p>
To begin with, if using a non-paletted image, POV-Ray looks at the 8 bit
red component of the pixel's color (which will be a value from 0 to 255)
to determine which texture from the list to use. So to create a source map,
we need to control very precisely what the red value of a given pixel will
be. We can do this by</p>
<ol>
<li>Using an rgb statement to choose our color such as rgb &lt;N/255,0,0&gt;,
where &quot;N&quot; is the red value we want to assign that pigment, and then...</li>
<li>Use no light sources and apply a finish of <code>finish { ambient 1 }</code>
to all objects, to ensure that highlighting and shadowing will not interfere.</li>
</ol>
<p>Confused? Alright, here is an example, which will generate a map very much
like <code>povmap.gif</code> which we used earlier, except in TGA file
format. We notice that we have given the pigments blue and green components
too. POV-Ray will ignore that in our final map, so this is really for us
humans, whose unaided eyes cannot tell the difference between red variances
of 0 to 4/255ths. Without those blue and green variances, our map would look
to our eyes like a solid black screen. That may be a great way to send secret
messages using POV-Ray (plug it into a material map to decode) but it is no
use if we want to see what our source map looks like to make sure we have
what we expected to.</p>
<p>
We create the following code, name it <code>povmap.pov</code>, then render
it. This will create an output file called <code>povmap.png</code></p>
<pre>
  camera {
    orthographic
    up &lt;0, 5, 0&gt;
    right &lt;5, 0, 0&gt;
    location &lt;0, 0, -25&gt;
    look_at &lt;0, 0, 0&gt;
  }
  plane {
    -z, 0
    pigment { rgb &lt;1/255, 0, 0.5&gt; }
    finish { ambient 1 }
  }
  box {
    &lt;-2.3, -1.8, -0.2&gt;, &lt;2.3, 1.8, -0.2&gt;
    pigment { rgb &lt;0/255, 0, 1&gt; }
    finish { ambient 1 }
  }
  box {
    &lt;-1.95, -1.3, -0.4&gt;, &lt;1.95, 1.3, -0.3&gt;
    pigment { rgb &lt;2/255, 0.5, 0.5&gt; }
    finish { ambient 1 }
  }
  text {
    ttf &quot;crystal.ttf&quot;, &quot;The vision&quot;, 0.1, 0
    scale &lt;0.7, 1, 1&gt;
    translate &lt;-1.8, 0.25, -0.5&gt;
    pigment { rgb &lt;3/255, 1, 1&gt; }
    finish { ambient 1 }
  }
  text {
    ttf &quot;crystal.ttf&quot;, &quot;Persists!&quot;, 0.1, 0
    scale &lt;0.7, 1, 1&gt;
    translate &lt;-1.5, -1, -0.5&gt;
    pigment { rgb &lt;3/255, 1, 1&gt; }
    finish { ambient 1 }
  }
</pre>

<p>All we have to do is modify our last material map example by changing the
material map from GIF to TGA and modifying the filename. When we render using
the new map, the result is extremely similar to the palette mapped GIF we
used before, except that we did not have to use an external paint program
to generate our source: POV-Ray did it all!</p>

</div>


<a name="t2_3_5_12"></a>
<div class="content-level-h4" contains="Limitations Of Special Textures" id="t2_3_5_12">
<h4>2.3.5.12 Limitations Of Special Textures</h4>
<p>There are a couple limitations to all of the special textures we have seen
(from textures, pigment and normal maps through material maps). First, if we
have used the default directive to set the default texture for all items in
our scene, it will not accept any of the special textures discussed here.
This is really quite minor, since we can always declare such a texture and
apply it individually to all objects. It does not actually prevent us from
doing anything we could not otherwise do.</p>
<p>
The other is more limiting, but as we will shortly see, can be worked around
quite easily. If we have worked with layered textures, we have already seen
how we can pile multiple texture patterns on top of one another (as long as
one texture has transparency in it). This very useful technique has a problem
incorporating the special textures we have just seen as a layer. But there is
an answer!</p>
<p>
For example, say we have a layered texture called <code>
Speckled_Metal</code>, which produces a silver metallic surface, and then
puts tiny specks of rust all over it. Then we decide, for a really rusty
look, we want to create patches of concentrated rust, randomly over the
surface. The obvious approach is to create a special texture pattern, with
transparency to use as the top layer. But of course, as we have seen, we
would not be able to use that texture pattern as a layer. We would just
generate an error message. The solution is to turn the problem inside out,
and make our layered texture part of the texture pattern instead, like
this</p>

<pre>
  // This part declares a pigment for use
  // in the rust patch texture pattern
  #declare Rusty = pigment {
    granite
    color_map {
      [ 0 rgb &lt;0.2, 0, 0&gt; ]
      [ 1 Brown ]
    }
    frequency 20
  }
  // And this part applies it
  // Notice that our original layered texture
  // &quot;Speckled_Metal&quot; is now part of the map
  #declare Rust_Patches = texture {
    bozo
    texture_map {
      [ 0.0  pigment {Rusty} ]
      [ 0.75 Speckled_Metal ]
      [ 1.0  Speckled_Metal ]
    }
  }
</pre>

<p>And the ultimate effect is the same as if we had layered the rust patches
on to the speckled metal anyway.</p>
<p>
With the full array of patterns, pigments, normals, finishes, layered and
special textures, there is now practically nothing we cannot create in the
way of amazing textures. An almost infinite number of new possibilities are
just waiting to be created!</p>

</div>
<a name="t2_3_6"></a>
<div class="content-level-h3" contains="Using Atmospheric Effects" id="t2_3_6">
<h3>2.3.6 Using Atmospheric Effects</h3>
<p>POV-Ray offers a variety of atmospheric effects, i. e. features that
affect the background of the scene or the air by which everything is
surrounded.</p>
<p>
It is easy to assign a simple color or a complex color pattern to a virtual
sky sphere. You can create anything from a cloud free, blue summer sky to a
stormy, heavy clouded sky. Even starfields can easily be created.</p>
<p>
You can use different kinds of fog to create foggy scenes. Multiple fog
layers of different colors can add an eerie touch to your scene.</p>
<p>
A much more realistic effect can be created by using an atmosphere, a
constant fog that interacts with the light coming from light sources. Beams
of light become visible and objects will cast shadows into the fog.</p>
<p>
Last but not least you can add a rainbow to your scene.</p>

</div>
<a name="t2_3_6_1"></a>
<div class="content-level-h4" contains="The Background" id="t2_3_6_1">
<h4>2.3.6.1 The Background</h4>
<p>The <code><a href="r3_4.html#r3_4_3_2">background</a></code> feature is used to assign a color to all rays
that do not hit any object. This is done in the following way.</p>
<pre>
  camera {
    location &lt;0, 0, -10&gt;
    look_at &lt;0, 0, 0&gt;
  }
  background { color rgb &lt;0.2, 0.2, 0.3&gt; }
  sphere {
    0, 1
    pigment { color rgb &lt;0.8, 0.5, 0.2&gt; }
  }
</pre>

<p>The background color will be visible if a sky sphere is used and if some
translucency remains after all sky sphere pigment layers are processed.</p>

</div>
<a name="t2_3_6_2"></a>
<div class="content-level-h4" contains="The Sky Sphere" id="t2_3_6_2">
<h4>2.3.6.2 The Sky Sphere</h4>
<p>The <code><a href="r3_4.html#r3_4_3_4">sky_sphere</a></code> can be used to easily create a cloud covered
sky, a nightly star sky or whatever sky you have in mind.</p>
<p>
In the following examples we will start with a very simple sky sphere that
will get more and more complex as we add new features to it.</p>

</div>
<a name="t2_3_6_2_1"></a>
<div class="content-level-h5" contains="Creating a Sky with a Color Gradient" id="t2_3_6_2_1">
<h5>2.3.6.2.1 Creating a Sky with a Color Gradient</h5>
<p>Beside the single color sky sphere that is covered with the background
feature the simplest sky sphere is a color gradient. You may have noticed
that the color of the sky varies with the angle to the earth's surface
normal. If you look straight up the sky normally has a much deeper blue than
it has at the horizon.</p>
<p>
We want to model this effect using the sky sphere as shown in the scene <code>skysph1.pov</code>
below.</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;0, 1, -4&gt;
    look_at &lt;0, 2, 0&gt;
    angle 80
  }
  light_source { &lt;10, 10, -10&gt; White }
  sphere {
    2*y, 1
    pigment { color rgb &lt;1, 1, 1&gt; }
    finish { ambient 0.2 diffuse 0 reflection 0.6 }
  }
  sky_sphere {
    pigment {
      gradient y
      color_map {
        [0 color Red]
        [1 color Blue]
      }
      scale 2
      translate -1
    }
  }
</pre>

<p>The interesting part is the sky sphere statement. It contains a pigment
that describes the look of the sky sphere. We want to create a color gradient
along the viewing angle measured against the earth's surface normal.
Since the ray direction vector is used to calculate the pigment colors we
have to use the y-gradient.</p>
<p>
The scale and translate transformation are used to map the points derived
from the direction vector to the right range. Without those transformations
the pattern would be repeated twice on the sky sphere. The <code><a href="r3_3.html#r3_3_1_12_2">scale</a></code>
statement is used to avoid the repetition and the <code><a href="r3_3.html#r3_3_1_12_1">translate</a> -1</code>
statement moves the color at index zero to the bottom of the sky sphere
(that is the point of the sky sphere you will see if you look straight
down).</p>
<p>
After this transformation the color entry at position 0 will be at the
bottom of the sky sphere, i. e. below us, and the color at position 1 will be
at the top, i. e. above us.</p>
<p>
The colors for all other positions are interpolated between those two colors
as you can see in the resulting image.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/9/93/TutImgSkyspher.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A simple gradient sky sphere.</p>
  </td>
</tr>
</table>

<p>If you want to start one of the colors at a specific angle you will
first have to convert the angle to a color map index. This is done by using
the formula <code>color_map_index = (1 - cos(angle)) / 2</code> where the
angle is measured against the negated earth's surface normal. This is the
surface normal pointing towards the center of the earth. An angle of 0
degrees describes the point below us while an angle of 180 degrees represents
the zenith.</p>
<p>
In POV-Ray you first have to convert the degree value to <code><a href="r3_3.html#r3_3_1_5_4">radians</a></code>
as it is shown in the following example.</p>
<pre>
  sky_sphere {
    pigment {
      gradient y
      color_map {
        [(1-cos(radians( 30)))/2 color Red]
        [(1-cos(radians(120)))/2 color Blue]
      }
      scale 2
      translate -1
    }
  }
</pre>

<p>This scene uses a color gradient that starts with a red color at 30
degrees and blends into the blue color at 120 degrees. Below 30 degrees
everything is red while above 120 degrees all is blue.</p>

</div>
<a name="t2_3_6_2_2"></a>
<div class="content-level-h5" contains="Adding the Sun" id="t2_3_6_2_2">
<h5>2.3.6.2.2 Adding the Sun</h5>
<p>In the following example we will create a sky with a red sun surrounded by
a red color halo that blends into the dark blue night sky. We will do this
using only the sky sphere feature.</p>
<p>
The sky sphere we use is shown below. A ground plane is also added for
greater realism (<code>skysph2.pov</code>).</p>
<pre>
  sky_sphere {
    pigment {
      gradient y
      color_map {
        [0.000 0.002 color rgb &lt;1.0, 0.2, 0.0&gt;
                     color rgb &lt;1.0, 0.2, 0.0&gt;]
        [0.002 0.200 color rgb &lt;0.8, 0.1, 0.0&gt;
                     color rgb &lt;0.2, 0.2, 0.3&gt;]
      }
      scale 2
      translate -1
    }
    rotate -135*x
  }
  plane {
    y, 0
    pigment { color Green }
    finish { ambient .3 diffuse .7 }
  }
</pre>

<p>The gradient pattern and the transformation inside the pigment are the
same as in the example in the previous section.</p>
<p>
The color map consists of three colors. A bright, slightly yellowish red
that is used for the sun, a darker red for the halo and a dark blue for the
night sky. The sun's color covers only a very small portion of the sky
sphere because we do not want the sun to become too big. The color is used
at the color map values 0.000 and 0.002 to get a sharp contrast at value
0.002 (we do not want the sun to blend into the sky). The darker red color
used for the halo blends into the dark blue sky color from value 0.002 to
0.200. All values above 0.200 will reveal the dark blue sky.</p>
<p>
The <code>rotate -135*x</code> statement is used to rotate the sun and the
complete sky sphere to its final position. Without this rotation the sun
would be at 0 degrees, i.e. right below us.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/0/0a/TutImgRedsun.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A red sun descends into the night.</p>
  </td>
</tr>
</table>

<p>Looking at the resulting image you will see what impressive effects you
can achieve with the sky sphere.</p>
</div>
<a name="t2_3_6_2_3"></a>
<div class="content-level-h5" contains="Adding Some Clouds" id="t2_3_6_2_3">
<h5>2.3.6.2.3 Adding Some Clouds</h5>
<p>To further improve our image we want to add some clouds by adding a second
pigment. This new pigment uses the bozo pattern to create some nice clouds.
Since it lays on top of the other pigment it needs some transparent colors in
the color map (look at entries 0.5 to 1.0).</p>
<pre>
  sky_sphere {
    pigment {
      gradient y
      color_map {
        [0.000 0.002 color rgb &lt;1.0, 0.2, 0.0&gt;
                     color rgb &lt;1.0, 0.2, 0.0&gt;]
        [0.002 0.200 color rgb &lt;0.8, 0.1, 0.0&gt;
                     color rgb &lt;0.2, 0.2, 0.3&gt;]
      }
      scale 2
      translate -1
    }
    pigment {
      bozo
      turbulence 0.65
      octaves 6
      omega 0.7
      lambda 2
      color_map {
          [0.0 0.1 color rgb &lt;0.85, 0.85, 0.85&gt;
                   color rgb &lt;0.75, 0.75, 0.75&gt;]
          [0.1 0.5 color rgb &lt;0.75, 0.75, 0.75&gt;
                   color rgbt &lt;1, 1, 1, 1&gt;]
          [0.5 1.0 color rgbt &lt;1, 1, 1, 1&gt;
                   color rgbt &lt;1, 1, 1, 1&gt;]
      }
      scale &lt;0.2, 0.5, 0.2&gt;
    }
    rotate -135*x
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/e/ef/TutImgCloudsky.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A cloudy sky with a setting sun.</p>
  </td>
</tr>
</table>

<p>The sky sphere has one drawback as you might notice when looking at the
final image (<code>skysph3.pov</code>). The sun does not emit any light
and the clouds will not cast any shadows. If you want to have clouds that
cast shadows you will have to use a real, large sphere with an appropriate
texture and a light source somewhere outside the sphere.</p>
</div>
<a name="t2_3_6_3"></a>
<div class="content-level-h4" contains="The Fog" id="t2_3_6_3">
<h4>2.3.6.3 The Fog</h4>
<p>You can use the <code><a href="r3_4.html#r3_4_3_3">fog</a></code> feature to add fog of two different types
to your scene: constant fog and ground fog. The constant fog has a constant
density everywhere while the ground fog's density decreases as you move
upwards.</p>
<p>
The usage of both fog types will be described in the next sections in
detail.</p>

</div>
<a name="t2_3_6_3_1"></a>
<div class="content-level-h5" contains="A Constant Fog" id="t2_3_6_3_1">
<h5>2.3.6.3.1 A Constant Fog</h5>
<p>The simplest fog type is the constant fog that has a constant density in
all locations. It is specified by a <code>distance</code> keyword which
actually describes the fog's density and a fog <code><a href="r3_4.html#r3_4_3_3">color</a></code>.</p>
<p>
The distance value determines the distance at which 36.8% of the background
is still visible (for a more detailed explanation of how the fog is
calculated read the reference section <a href="r3_4.html#r3_4_3_3">Fog</a>).</p>
<p>
The fog color can be used to create anything from a pure white to a red,
blood-colored fog. You can also use a black fog to simulate the effect of a
limited range of vision.</p>
<p>
The following example will show you how to add fog to a simple scene
(<code>fog1.pov</code>).</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location  &lt;0, 20, -100&gt;
  }
  background { color SkyBlue }
  plane {
    y, -10
    pigment {
      checker color Yellow color Green
      scale 20
    }
  }
  sphere {
    &lt;0, 25, 0&gt;, 40
    pigment { Red }
    finish { phong 1.0 phong_size 20 }
  }
  sphere {
    &lt;-100, 150, 200&gt;,  20
    pigment { Green }
    finish { phong 1.0 phong_size 20 }
  }
  sphere {
    &lt;100, 25, 100&gt;, 30
    pigment { Blue }
    finish { phong 1.0 phong_size 20 }
  }
  light_source { &lt;100, 120, 40&gt; color White }
  fog {
    distance 150
    color rgb&lt;0.3, 0.5, 0.2&gt;
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/6/61/TutImgSmplfog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A foggy scene.</p>
  </td>
</tr>
</table>

<p>According to their distance the spheres in this scene more or less vanish
in the greenish fog we used, as does the checkerboard plane.</p>

</div>
<a name="t2_3_6_3_2"></a>
<div class="content-level-h5" contains="Setting a Minimum Translucency" id="t2_3_6_3_2">
<h5>2.3.6.3.2 Setting a Minimum Translucency</h5>
<p>If you want to make sure that the background does not completely vanish in
the fog you can set the transmittance channel of the fog's color to the
amount of background you always want to be visible.</p>
<p>
Using as transmittance value of 0.2 as in</p>
<pre>
  fog {
    distance 150
    color rgbt&lt;0.3, 0.5, 0.2, 0.2&gt;
  }
</pre>

<p>the fog's translucency never drops below 20% as you can see in the
resulting image (<code>fog2.pov</code>).</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/9/9a/TutImgBgvisfog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Fog with translucency threshold added.</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_6_3_3"></a>
<div class="content-level-h5" contains="Creating a Filtering Fog" id="t2_3_6_3_3">
<h5>2.3.6.3.3 Creating a Filtering Fog</h5>
<p>The greenish fog we have used so far does not filter the light passing
through it. All it does is to diminish the light's intensity. We can
change this by using a non-zero filter channel in the fog's color
(<code>fog3.pov</code>).</p>
<pre>
  fog {
    distance 150
    color rgbf&lt;0.3, 0.5, 0.2, 1.0&gt;
  }
</pre>

<p>The filter value determines the amount of light that is filtered by the
fog. In our example 100% of the light passing through the fog will be
filtered by the fog. If we had used a value of 0.7 only 70% of the light
would have been filtered. The remaining 30% would have passed unfiltered.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/85/TutImgFiltfog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A filtering fog.</p>
  </td>
</tr>
</table>

<p>You will notice that the intensity of the objects in the fog is not only
diminished due to the fog's color but that the colors are actually
influenced by the fog. The red and especially the blue sphere got a green
hue.</p>
</div>
<a name="t2_3_6_3_4"></a>
<div class="content-level-h5" contains="Adding Some Turbulence to the Fog" id="t2_3_6_3_4">
<h5>2.3.6.3.4 Adding Some Turbulence to the Fog</h5>
<p>In order to make our somewhat boring fog a little bit more interesting we
can add some turbulence, making it look like it had a non-constant density
(<code>fog4.pov</code>).</p>
<pre>
  fog {
    distance 150
    color rgbf&lt;0.3, 0.5, 0.2, 1.0&gt;
    turbulence 0.2
    turb_depth 0.3
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/4/43/TutImgTurbfog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Fog made more interesting with turbulence.</p>
  </td>
</tr>
</table>

<p>The <code>turbulence</code> keyword is used to specify the amount of
turbulence used while the <code>turb_depth</code> value is used to move the
point at which the turbulence value is calculated along the viewing ray.
Values near zero move the point to the viewer while values near one move it
to the intersection point (the default value is 0.5). This parameter can be
used to avoid noise that may appear in the fog due to the turbulence (this
normally happens at very far away intersection points, especially if no
intersection occurs, i. e. the background is hit). If this happens just lower
the <code>turb_depth</code> value until the noise vanishes.</p>
<p>
You should keep in mind that the actual density of the fog does not change.
Only the distance-based attenuation value of the fog is modified by the
turbulence value at a point along the viewing ray.</p>

</div>
<a name="t2_3_6_3_5"></a>
<div class="content-level-h5" contains="Using Ground Fog" id="t2_3_6_3_5">
<h5>2.3.6.3.5 Using Ground Fog</h5>
<p>The much more interesting and flexible fog type is the ground fog, which
is selected with the <code><a href="r3_4.html#r3_4_3_3">fog_type</a></code> statement.
Its appearance is described with the <code><a href="r3_4.html#r3_4_3_3">fog_offset</a></code>
and <code><a href="r3_4.html#r3_4_3_3">fog_alt</a></code> keywords.
The <code>fog_offset</code> specifies the height, i. e. y value, below which
the fog has a constant density of one. The <code>fog_alt</code> keyword
determines how fast the density of the fog will approach zero as one moves
along the y axis. At a height of fog_offset+fog_alt the fog will have a
density of 25%.</p>
<p>
The following example (<code>fog5.pov</code>) uses a ground fog which has a
constant density below y=25 (the center of the red sphere) and quickly falls
off for increasing altitudes.</p>
<pre>
  fog {
    distance 150
    color rgbf&lt;0.3, 0.5, 0.2, 1.0&gt;
    fog_type 2
    fog_offset 25
    fog_alt 1
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/d/de/TutImgLowfog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">An example of ground fog.</p>
  </td>
</tr>
</table>


</div>



<a name="t2_3_6_3_6"></a>
<div class="content-level-h5" contains="Using Multiple Layers of Fog" id="t2_3_6_3_6">
<h5>2.3.6.3.6 Using Multiple Layers of Fog</h5>
<p>It is possible to use several layers of fog by using more than one fog
statement in your scene file. This is quite useful if you want to get nice
effects using turbulent ground fogs. You could add up several, differently
colored fogs to create an eerie scene for example.</p>
<p>
Just try the following example (<code>fog6.pov</code>).</p>
<pre>
  fog {
    distance 150
    color rgb&lt;0.3, 0.5, 0.2&gt;
    fog_type 2
    fog_offset 25
    fog_alt 1
    turbulence 0.1
    turb_depth 0.2
  }
  fog {
    distance 150
    color rgb&lt;0.5, 0.1, 0.1&gt;
    fog_type 2
    fog_offset 15
    fog_alt 4
    turbulence 0.2
    turb_depth 0.2
  }
  fog {
    distance 150
    color rgb&lt;0.1, 0.1, 0.6&gt;
    fog_type 2
    fog_offset 10
    fog_alt 2
  }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/d/d2/TutImgMultifog.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Using multiple layers of fog.</p>
  </td>
</tr>
</table>

<p>You can combine constant density fogs, ground fogs, filtering fogs,
non-filtering fogs, fogs with a translucency threshold, etc.</p>
</div>
<a name="t2_3_6_3_7"></a>
<div class="content-level-h5" contains="Fog and Hollow Objects" id="t2_3_6_3_7">
<h5>2.3.6.3.7 Fog and Hollow Objects</h5>
<p>Whenever you use the fog feature and the camera is inside a non-hollow
object you will not get any fog effects. For a detailed explanation why this
happens see <a href="r3_4.html#r3_4_8_1_2">Empty and Solid Objects</a>.</p>
<p>
In order to avoid this problem you have to make all those objects hollow by
either making sure the camera is outside these objects (using the <code><a href="r3_4.html#r3_4_5_5_5">inverse</a></code>
keyword) or by adding the <code><a href="r3_4.html#r3_4_5_5_4">hollow</a></code> to them (which is much easier).</p>

</div>
<a name="t2_3_6_4"></a>
<div class="content-level-h4" contains="The Rainbow" id="t2_3_6_4">
<h4>2.3.6.4 The Rainbow</h4>
<p>The <code><a href="r3_4.html#r3_4_3_5">rainbow</a></code> feature can be used
to create rainbows and maybe other more strange effects. The rainbow is a fog
like effect that is restricted to a cone-like volume.</p>

</div>
<a name="t2_3_6_4_1"></a>
<div class="content-level-h5" contains="Starting With a Simple Rainbow" id="t2_3_6_4_1">
<h5>2.3.6.4.1 Starting With a Simple Rainbow</h5>
<p>The rainbow is specified with a lot of parameters: the angle under which
it is visible, the width of the color band, the direction of the incoming
light, the fog-like distance based particle density and last but not least
the color map to be used.</p>
<p>
The size and shape of the rainbow are determined by the <code><a href="r3_4.html#r3_4_3_5">angle</a></code>
and <code><a href="r3_4.html#r3_4_3_5">width</a></code> keywords. The <code><a href="r3_4.html#r3_4_3_5">width</a></code>
keyword is used to set the direction of the incoming light, thus setting the
rainbow's position. The rainbow is visible when the angle between the direction
vector and the incident light direction is larger than angle-width/2 and smaller
than angle+width/2.</p>
<p>
The incoming light is the virtual light source that is responsible for the
rainbow. There need not be a real light source to create the rainbow
effect.</p>
<p>
The rainbow is a fog-like effect, i.e. the rainbow's color is mixed with
the background color based on the distance to the intersection point. If you
choose small distance values the rainbow will be visible on objects, not just
in the background. You can avoid this by using a very large distance
value.</p>
<p>
The color map is the crucial part of the rainbow since it contains all the
colors that normally can be seen in a rainbow. The color of the innermost
color band is taken from the color map entry 0 while the outermost band is
take from entry 1. You should note that due to the limited color range any
monitor can display it is impossible to create a real rainbow. There are just
some colors that you cannot display.</p>
<p>
The filter channel of the rainbow's color map is used in the same way as
with fogs. It determines how much of the light passing through the rainbow is
filtered by the color.</p>
<p>
The following example shows a simple scene with a ground plane, three
spheres and a somewhat exaggerated rainbow (<code>rainbow1.pov</code>).</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;0, 20, -100&gt;
    look_at &lt;0, 25, 0&gt;
    angle 80
  }
  background { color SkyBlue }
  plane { y, -10 pigment { color Green } }
  light_source { &lt;100, 120, 40&gt; color White }
  // declare rainbow's colors
  #declare r_violet1 = color rgbf&lt;1.0, 0.5, 1.0, 1.0&gt;;
  #declare r_violet2 = color rgbf&lt;1.0, 0.5, 1.0, 0.8&gt;;
  #declare r_indigo  = color rgbf&lt;0.5, 0.5, 1.0, 0.8&gt;;
  #declare r_blue    = color rgbf&lt;0.2, 0.2, 1.0, 0.8&gt;;
  #declare r_cyan    = color rgbf&lt;0.2, 1.0, 1.0, 0.8&gt;;
  #declare r_green   = color rgbf&lt;0.2, 1.0, 0.2, 0.8&gt;;
  #declare r_yellow  = color rgbf&lt;1.0, 1.0, 0.2, 0.8&gt;;
  #declare r_orange  = color rgbf&lt;1.0, 0.5, 0.2, 0.8&gt;;
  #declare r_red1    = color rgbf&lt;1.0, 0.2, 0.2, 0.8&gt;;
  #declare r_red2    = color rgbf&lt;1.0, 0.2, 0.2, 1.0&gt;;
  // create the rainbow
  rainbow {
    angle 42.5
    width 5
    distance 1.0e7
    direction &lt;-0.2, -0.2, 1&gt;
    jitter 0.01
    color_map {
      [0.000  color r_violet1]
      [0.100  color r_violet2]
      [0.214  color r_indigo]
      [0.328  color r_blue]
      [0.442  color r_cyan]
      [0.556  color r_green]
      [0.670  color r_yellow]
      [0.784  color r_orange]
      [0.900  color r_red1]
    }
  }
</pre>

<p>Some irregularity is added to the color bands using the <code><a href="t2_3.html#t2_3_9_4">jitter</a></code> keyword.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/d/d4/TutImgCrainbow.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A colorful rainbow.</p>
  </td>
</tr>
</table>

<p>The rainbow in our sample is much too bright. You will never see a
rainbow like this in reality. You can decrease the rainbow's colors by
decreasing the RGB values in the color map.</p>

</div>
<a name="t2_3_6_4_2"></a>
<div class="content-level-h5" contains="Increasing the Rainbow's Translucency" id="t2_3_6_4_2">
<h5>2.3.6.4.2 Increasing the Rainbow's Translucency</h5>
<p>The result we have so far looks much too bright. Just reducing the
rainbow's color helps but it is much better to increase the
translucency of the rainbow because it is more realistic if the background is
visible through the rainbow.</p>
<p>
We can use the transmittance channel of the colors in the color map to
specify a minimum translucency, just like we did with the fog. To get
realistic results we have to use very large transmittance values as you can
see in the following example (<code>rainbow2.pov</code>).</p>
<pre>
  rainbow {
    angle 42.5
    width 5
    distance 1.0e7
    direction &lt;-0.2, -0.2, 1&gt;
    jitter 0.01
    color_map {
      [0.000  color r_violet1 transmit 0.98]
      [0.100  color r_violet2 transmit 0.96]
      [0.214  color r_indigo  transmit 0.94]
      [0.328  color r_blue    transmit 0.92]
      [0.442  color r_cyan    transmit 0.90]
      [0.556  color r_green   transmit 0.92]
      [0.670  color r_yellow  transmit 0.94]
      [0.784  color r_orange  transmit 0.96]
      [0.900  color r_red1    transmit 0.98]
    }
  }
</pre>

<p>The transmittance values increase at the outer bands of the rainbow to
make it softly blend into the background.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/8f/TutImgRrainbow.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A much more realistic rainbow.</p>
  </td>
</tr>
</table>

<p>The resulting image looks much more realistic than our first rainbow.</p>
</div>
<a name="t2_3_6_4_3"></a>
<div class="content-level-h5" contains="Using a Rainbow Arc" id="t2_3_6_4_3">
<h5>2.3.6.4.3 Using a Rainbow Arc</h5>
<p>Currently our rainbow has a circular shape, even though most of it is
hidden below the ground plane. You can easily create a rainbow arc by using
the <code><a href="r3_4.html#r3_4_3_5">arc_angle</a></code> keyword with an angle below 360 degrees.</p>
<p>
If you use <code>arc_angle 120</code> for example you will get a rainbow
arc that abruptly vanishes at the arc's ends. This does not look good. To
avoid this the <code><a href="r3_4.html#r3_4_3_5">falloff_angle</a></code> keyword can be used to specify a
region where the arc smoothly blends into the background.</p>
<p>
As explained in the rainbow's reference section (see <a href="r3_4.html#r3_4_3_5">Rainbow</a>) the arc extends from -arc_angle/2 to arc_angle/2 while
the blending takes place from -arc_angle/2 to -falloff_angle/2 and
falloff_angle/2 to arc_angle/2. This is the reason why the <code>falloff_angle</code>
has to be smaller or equal to the <code>arc_angle</code>.</p>
<p>
In the following examples we use an 120 degrees arc with a 45 degree falloff
region on both sides of the arc (<code>rainbow3.pov</code>).</p>
<pre>
  rainbow {
    angle 42.5
    width 5
    arc_angle 120
    falloff_angle 30
    distance 1.0e7
    direction &lt;-0.2, -0.2, 1&gt;
    jitter 0.01
    color_map {
      [0.000  color r_violet1 transmit 0.98]
      [0.100  color r_violet2 transmit 0.96]
      [0.214  color r_indigo  transmit 0.94]
      [0.328  color r_blue    transmit 0.92]
      [0.442  color r_cyan    transmit 0.90]
      [0.556  color r_green   transmit 0.92]
      [0.670  color r_yellow  transmit 0.94]
      [0.784  color r_orange  transmit 0.96]
      [0.900  color r_red1    transmit 0.98]
    }
  }
</pre>

<p>The arc angles are measured against the rainbows up direction which can be
specified using the <code>up</code> keyword. By default the up direction is
the y-axis.</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/0/09/TutImgArainbow.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">A rainbow arc.</p>
  </td>
</tr>
</table>

<p>We finally have a realistic looking rainbow arc.</p>

</div>
<a name="t2_3_7"></a>
<div class="content-level-h3" contains="Simple Media Tutorial" id="t2_3_7">
<h3>2.3.7 Simple Media Tutorial</h3>
<p>Media in POV-Ray is a very versatile feature and can be used for a very
diverse set of special effects such as glows, smoke, dust, fog, etc. However, due to its versatility, media is not one of the easiest and simplest features of 
POV-Ray and often requires experience for getting things to look good.</p>

</div>
<a name="t2_3_7_1"></a>
<div class="content-level-h4" contains="Types of media" id="t2_3_7_1">
<h4>2.3.7.1 Types of media</h4>
<p>There are three types of media in POV-Ray: Emitting, absorbing and
scattering. They have the following properties:</p>
<ul>
  <li>Emitting: This is an additive media, which is handled as if it only emits
light (note: it does not emit light to its surroundings like a 
<code>light_source</code> does; this just describes how it affects the rays 
going through it). That is, the color of the media is added to the color of 
the ray passing through it. Light sources do not have any effect at all in it 
(ie. it does not affect shadows in any way).</li> 
  <li>Absorbing: This is a substractive media. This media substracts (absorbs) 
its coloration from the ray passing through it. Light sources are taken into 
account only in the shadow of the media (that is, absorbing media casts a 
shadow).</li> 
  <li>Scattering: This is the most advanced media type as it fully takes into 
account light passing through it. That is, this media is lit by light sources 
(and thus, for example, nearby objects can cast shadows into the scattering 
media).</li>
</ul>

<p>Emitting and absorbing medias are the simplest and thus fastest ones. 
Emitting media can be used for things like glows, lasers, sparkles and similar 
light-emitting effects. Absorbing media can be used for things like smoke and 
fog (the difference between the <code>fog</code> feature of POV-Ray is that the 
density of an absorbing media can be modified by a pattern and the media can be 
contained inside an object). 
</p>
<p>Scattering media is the more advanced and slower type. It is somewhat similar
to absorbing media except that it is fully lit by light sources. This can be used 
for smoke or fog with visible lightbeams and shadows.</p>

</div>
<a name="t2_3_7_2"></a>
<div class="content-level-h4" contains="Some media concepts" id="t2_3_7_2">
<h4>2.3.7.2 Some media concepts</h4>
<p>Media can be global to the whole universe, or it can be contained by an 
object. In the latter case the media is defined in the <code>interior</code> 
block of the object definition.</p> 

<p>For an object to be able to contain media (or to allow media from other 
objects or the global media inside itself) it has to be defined as 
<code>hollow</code> (a common mistake is to forget adding this keyword). If an 
object with no media should not allow media inside itself (eg. a solid glass 
ball), then <code>hollow</code> should not be defined for that object.</p>

<p>If media is defined in the <code>interior</code> of an object or as a global 
media it will have a constant density throughout the object/universe. However, a 
density pattern can be specified for non-uniform media. Also all kinds of 
transformations can be applied to the media. This is specially useful for 
various effects (such as smoke with certain shape). </p>

</div>
<a name="t2_3_7_3"></a>
<div class="content-level-h4" contains="Simple media examples" id="t2_3_7_3">
<h4>2.3.7.3 Simple media examples</h4>

</div>
<a name="t2_3_7_3_1"></a>
<div class="content-level-h5" contains="Emitting media" id="t2_3_7_3_1">
<h5>2.3.7.3.1 Emitting media</h5>
<p>Let's start with a very simple scene showing an emitting media using a 
spherical density map. Emitting media is used with the <code>emission</code> 
keyword followed by a color value. This color value tells the overall color of 
the media:</p>

<pre>
 global_settings { assumed_gamma 1 }
 background { rgb 1 }
 camera { location &lt;3,4,-5&gt;*.8 look_at 0 angle 35 }
 light_source { &lt;20,40,10&gt;, 1 }

 box // floor
 { &lt;-1.5,-1.01,-1.5&gt;, &lt;1.5,-1.2,1.5&gt;
   pigment { checker rgb 0.75, rgb 0.25 scale 0.2 }
 }

 sphere // transparent sphere containing media
 { 0,1 pigment { rgbt 1 } hollow
   interior
   { media
     { emission 1
       density
       { spherical density_map
         { [0 rgb 0]
           [0.4 rgb &lt;1,0,0&gt;]
           [0.8 rgb &lt;1,1,0&gt;]
           [1 rgb 1]
         }
       }
     }
  }
 }
</pre>

<p class="Note"><strong>Note:</strong> The <code>spherical</code> pattern gets values from 0 in the outer 
surface of a unit sphere to 1 in the origin (that is, the density with the index 
value 1 will be the density at the center of the media).</p>

<p>The color values in the density map tell what color the media is emitting at 
a certain point in the pattern. That is, for example when the pattern gets the 
value 0.4, the media will be completely red at that place. If the color is 
<code>&lt;0,0,0&gt;</code>, it means that the media does not emit any light at 
all in that location. </p>

<p class="Note"><strong>Note: </strong>The density map colors are multiplied by the color given with the <code>emission</code> keyword; since 1 is used in this case, the density map colors are not affected.</p>

<p>Thus, this will give us a media with a bright white center which fades to 
yellow and red at the outer limits of the unit sphere: </p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/3/32/TutImgMediatut1.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Simple emitting media example</p>
  </td>
</tr>
</table>

<p>As you can see from the image, the emitting media is invisible against white 
background. This is due to its additive nature (any color added to pure white 
gives pure white). In fact, emitting media gives usually best results for dark 
backgrounds. </p>

</div>
<a name="t2_3_7_3_2"></a>
<div class="content-level-h5" contains="Absorbing media" id="t2_3_7_3_2">
<h5>2.3.7.3.2 Absorbing media</h5>
<p>Modifying the previous example to use absorbing media is rather simple: 
Simply change the <code>emission</code> keyword for <code>absorption</code>. 
However, the colors we used above are not very illustrative for absorbing media, 
so let's change them a bit like this:</p>

<pre>
    media
    { absorption 1
      density
      { spherical density_map
        { [0 rgb 0]
          [0.4 rgb 0]
          [0.5 rgb &lt;0,0.5,1&gt;]
          [1 rgb &lt;0,1,1&gt;]
        }
      }
    }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/9/91/TutImgMediatut2.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Simple absorbing media example</p>
  </td>
</tr>
</table>

<p>The feature which we immediately notice in the image is that the media seems 
to be inverted from the colors specified in the density map: Blueish colors were 
specified in the map, but the image shows a reddish media. This is perfectly 
normal and to be expected from the substractive nature of absorbing media: The 
media actually absorbs the colors we specified in the density map. This means 
that for example specifying a white color (<code>&lt;1,1,1&gt;</code>) in the 
density map will absorb all colors, thus resulting in a dark media. </p>

<p>See how this media has a shadow: light rays passing through the media are absorbed.</p>

<p>Because of its subtractive nature, absorbing media works well with light backgrounds and not very well with dark ones.</p>

</div>
<a name="t2_3_7_3_3"></a>
<div class="content-level-h5" contains="Scattering media" id="t2_3_7_3_3">
<h5>2.3.7.3.3 Scattering media</h5>
<p>Since scattering media fully takes light sources into account we need to make 
a slightly more complex scene to see this. Let's modify the above example by 
replacing the sphere with a box containing evenly distributed scattering media, 
and a cylinder which will cast a shadow onto the media:</p>

<pre>
 box
 { -1,1 pigment { rgbt 1 } hollow
   interior
   { media
     { scattering { 1, 0.5 }
     }
   }
 }
 cylinder
 { &lt;0.9, -1, 0.7&gt;, &lt;0.9, 0.9, 0.7&gt;, 0.5
   pigment { rgb &lt;1, 0.8, 0.5&gt; }
 }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/1/14/TutImgMediatut3.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Simple scattering media example</p>
  </td>
</tr>
</table>

<p>(The effect may look a bit unnatural for a fog effect because the media is 
contained inside a box and the cylinder is partially out of this box, but this 
is done to better visualize what is happening.) </p>

<p>The <code>scattering</code> keyword takes more parameters than the other two. 
The first number inside the curly brackets is the scattering media type. In this 
example we used scattering media type 1. A full list of scattering media types 
is given in the section <a href="r3_4.html#r3_4_8_2_3">scattering</a> of the Media reference.</p> 

<p>The second parameter is the overall color of the media, similar to the 
parameter of the other two media types.</p> 

<p>An optional third parameter can be given with the <code>extinction</code> 
keyword inside the curly brackets. This keyword controls how fast the scattering 
media absorbs light and has to be used sometimes to get the desired effect, such 
as when the media absorbs too much light.</p> 

<p><strong>Tip:</strong> If you are getting a really dense or dark scattering media, try 
different values for the color and the extinction value (usually values between 
0 and 1). It is usually enough to play with these two values to get the desired 
effect.</p>

</div>


<a name="t2_3_7_4"></a>
<div class="content-level-h4" contains="Multiple medias inside the same object" id="t2_3_7_4">
<h4>2.3.7.4 Multiple medias inside the same object</h4>
<p>Emitting media works well with dark backgrounds. Absorbing media works well 
for light backgrounds. But what if we want a media which works with both type of 
backgrounds? </p>

<p>One solution for this is to use both types of medias inside the same object. 
This is possible in POV-Ray. </p>

<p>Let's take the very first example, which did not work well with the white 
background, and add a slightly absorbing media to the sphere:</p>

<pre>
 sphere
 { 0,1 pigment { rgbt 1 } hollow
   interior
   { media
     { emission 1
       density
       { spherical density_map
         { [0 rgb 0]
           [0.4 rgb &lt;1,0,0&gt;]
           [0.8 rgb &lt;1,1,0&gt;]
           [1 rgb 1]
         }
       }
     }
     media
     { absorption 0.2
     }
   }
 }
</pre>

<p>This will make the sphere not only add light to the rays passing through it, 
but also substract. </p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/8d/TutImgMediatut4.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Emitting and absorbing media example.</p>
  </td>
</tr>
</table>

<p>Multiple medias in the same object can be used for several other effects as 
well. </p>

</div>
<a name="t2_3_7_5"></a>
<div class="content-level-h4" contains="Media and transformations" id="t2_3_7_5">
<h4>2.3.7.5 Media and transformations</h4>
<p>The density of a media can be modified with any pattern modifier, such as 
turbulence, scale, etc. This is a very powerful tool for making diverse effects.</p>

<p>As an example, let's make an absorbing media which looks like smoke. For this 
we take the absorbing media example and modify the sphere like this:</p>
<pre>
 sphere
 { 0,1.5 pigment { rgbt 1 } hollow
   interior
   { media
     { absorption 7
       density
       { spherical density_map
         { [0 rgb 0]
           [0.5 rgb 0]
           [0.7 rgb .5]
           [1 rgb 1]
         }
         scale 1/2
         warp { turbulence 0.5 }
         scale 2
       }
     }
   }
   scale &lt;1.5,6,1.5&gt; translate y
 }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/d/dd/TutImgMediatut5.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Media transformation example.</p>
  </td>
</tr>
</table>

<p>A couple of notes: </p>
<p>The radius of the sphere is now a bit bigger than 1 because the turbulent 
pattern tends to take more space. </p>
<p>The absorption color can be larger than 1, making the absorption stronger and 
the smoke darker. </p>

<P class="Note"><strong>Note:</strong> When you scale an object containing media the media density is not 
scaled accordingly. This means that if you for example scale a container object 
larger the rays will pass through more media than before, giving a stronger 
result. If you want to keep the same media effect with the larger object, you 
will need to divide the color of the media by the scaling amount.</p> 

<p>The question of whether the program should scale the density of the media 
with the object is a question of interpretation: For example, if you have a 
glass of colored water, a larger glass of colored water will be more colored 
because the light travels a larger distance. This is how POV-Ray behaves. 
Sometimes, however, the object needs to be scaled so that the media does not 
change; in this case the media color needs to be scaled inversely.</p> 

</div>
<a name="t2_3_7_6"></a>
<div class="content-level-h4" contains="A more advanced example of scattering media" id="t2_3_7_6">
<h4>2.3.7.6 A more advanced example of scattering media</h4>
<p>For a bit more advanced example of scattering media, let's make a room with a 
window and a light source illuminating from outside the room. The room contains 
scattering media, thus making the light beam coming through the window visible.</p>

<pre>
 global_settings { assumed_gamma 1 }
 camera { location &lt;14.9, 1, -8&gt; look_at -z angle 70 }
 light_source { &lt;10,100,150&gt;, 1 }
 background { rgb &lt;0.3, 0.6, 0.9&gt; }

 // A dim light source inside the room which does not
 // interact with media so that we can see the room:
 light_source { &lt;14, -5, 2&gt;, 0.5 media_interaction off }

 // Room
 union
 { difference
   { box { &lt;-11, -7, -11&gt;, &lt;16, 7, 10.5&gt; }
     box { &lt;-10, -6, -10&gt;, &lt;15, 6, 10&gt; }
     box { &lt;-4, -2, 9.9&gt;, &lt;2, 3, 10.6&gt; }
   }
   box { &lt;-1.25, -2, 10&gt;, &lt;-0.75, 3, 10.5&gt; }
   box { &lt;-4, 0.25, 10&gt;, &lt;2, 0.75, 10.5&gt; }
   pigment { rgb 1 }
 }
 
 // Scattering media box:
 box
 { &lt;-5, -6.5, -10.5&gt;, &lt;3, 6.5, 10.25&gt;
   pigment { rgbt 1 } hollow
   interior
   { media
     { scattering { 1, 0.07 extinction 0.01 }
       samples 30
     }
   }
 }
</pre>

<table class="centered" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="left" width="320px" src="images/9/9b/TutImgMediatut6.png">
  </td>
  <td>
    <p>As suggested previously, the scattering color and extinction values were adjusted until the image looked good. In this kind of scene usually very small values are needed.</p>
    <p>Note how the container box is quite smaller than the room itself. Container boxes should always be sized as minimally as possible. If the box were as big as the room much higher values for <code>samples</code> would be needed for a good result, thus resulting in a much slower rendering.</p>
  </td>
</tr>
<tr>
  <td>
    <p class="caption">more advanced scattering media example</p>
  </td>
  <td></td>
</tr>
</table>

</div>
<a name="t2_3_7_7"></a>
<div class="content-level-h4" contains="Media and photons" id="t2_3_7_7">
<h4>2.3.7.7 Media and photons</h4>
<p>The photon mapping technique can be used in POV-Ray for making stunningly 
beautiful images with light reflecting and refracting from objects. By default, 
however, reflected and refracted light does not affect media. Making photons 
interact with media can be turned on with the <code>media</code> keyword in the 
<code>photons</code> block inside <code>global_settings</code>.</p>

<p>To visualize this, let's make the floor of our room reflective so that it 
will reflect the beam of light coming from the window.</p>

<p>Firstly, due to how photons work, we need to specify <code>photons { 
pass_through }</code> in our scattering media container box so that photons will 
pass through its surfaces. </p>

<p>Secondly, we will want to turn photons off for our fill-light since it's 
there only for us to see the interior of the room and not for the actual 
lighting effect. This can be done by specifying <code>photons { reflection off 
}</code> in that light source. </p>

<p>Thirdly, we need to set up the photons and add a reflective floor to the 
room. Let's make the reflection colored for extra effect:</p>
<pre>
 global_settings
 { photons
   { count 20000
     media 100
   }
 }
 
 // Reflective floor:
 box
 { &lt;-10, -5.99, -10&gt;, &lt;15, -6, 10&gt;
   pigment { rgb 1 }
   finish { reflection &lt;0.5, 0.4, 0.2&gt; }
   photons { target reflection on }
 }
</pre>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/8/8a/TutImgMediatut7.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Scattering media with photons example.</p>
  </td>
</tr>
</table>

<p>With all these fancy effects the render times start becoming quite high, but unfortunately this is a price which has to be paid for such effects. </p>

</div>
<a name="t2_3_8"></a>
<div class="content-level-h3" contains="Radiosity" id="t2_3_8">
<h3>2.3.8 Radiosity</h3>
</div>
<a name="t2_3_8_1"></a>
<div class="content-level-h4" contains="Introduction" id="t2_3_8_1">
<h4>2.3.8.1 Introduction</h4>
<p>Radiosity is a lighting technique to simulate the diffuse exchange of
radiation between the objects of a scene.  With a raytracer like POV-Ray,
normally only the direct influence of light sources on the objects can be
calculated, all shadowed parts look totally flat.  Radiosity can help to
overcome this limitation.  More details on the technical aspects can be
found in the <a href="r3_4.html#r3_4_4_3">reference</a> section.</p>

<p>To enable radiosity, you have to add a radiosity block to the
global_settings in your POV-Ray scene file. Radiosity is more accurate than
simplistic ambient light but it takes much longer to compute, so it can be useful
to switch off radiosity during scene development. You can use a declared constant
or an <a href="r3_2.html#r3_2_5_1">INI-file constant</a> and an <code>#if</code> statement to do this:</p>
<pre>
  #declare RAD = off;

  global_settings {
     #if(RAD)
        radiosity {
           ...
        }
     #end
  }
</pre>

<p>Most important for radiosity are the emission and diffuse finish components of the objects. Their effect differs quite greatly from a conventionally lit scene.</p>

<ul>
<li><code>emission</code>: specifies the amount of light emitted by the object. This is the basis for <a href="t2_3.html#t2_3_8_3">radiosity without conventional lighting</a> but also in scenes with light sources this can be important. In a radiosity scene, <code>emission</code> not only makes the object itself brighter, but effectively makes it a light source, illuminating nearby objects.</li>
<li><code>diffuse</code>: influences the amount of diffuse reflection of incoming light.  In a radiosity scene this does not only mean the direct appearance of the surface but also how much other objects are illuminated by indirect light from this surface.</li>
</ul>

<p class="Note"><strong>Note:</strong> Previous versions of POV-Ray up to 3.6 inclusive did not provide the <code>emission</code> keyword, leading to the practice of using <code>ambient</code> instead. As of POV-Ray 3.7, this will no longer work, as <code>ambient_light</code> is effectively forced to zero when radiosity is enabled. For backward compatibility, an exception is made for scenes specifying a <code>#version</code> of 3.6 or earlier (or no version at all). In such scenes, it is strongly recommended to set the <code>ambient</code> of all materials to zero (unless you want them to emit light), or explicitly set <code><a href="r3_4.html#r3_4_1_2">ambient_light</a></code> to zero.</p>

</div>
<a name="t2_3_8_2"></a>
<div class="content-level-h4" contains="Radiosity with conventional lighting" id="t2_3_8_2">
<h4>2.3.8.2 Radiosity with conventional lighting</h4>
<p>This section will introduce you to the technique of combining conventional and radiosity lighting. In this part of the tutorial, we'll be using basically the same sample scene that's located at <code>~/scenes/radiosity/radiosity2.pov</code>, however by changing various radiosity parameters, we'll be able to explore the effects that those changes can have on the scenes appearance and in some cases the render time. Later on, in this tutorial, you can find examples of <a href="t2_3.html#t2_3_8_3">pure radiosity</a> illumination.</p>

<p class="Note"><strong>Note:</strong> Unless otherwise stated all the images in this section were rendered with the following radiosity settings:</p>

<pre>
  global_settings {
    radiosity {
      pretrace_start 0.08
      pretrace_end   0.01
      count 150
      nearest_count 10
      error_bound 0.5
      recursion_limit 3
      low_error_factor 0.5
      gray_threshold 0.0
      minimum_reuse 0.005
      maximum_reuse 0.2
      brightness 1
      adc_bailout 0.005
    }
  }
</pre>

<p>Finally, a few more things about the scene setup. All objects except the sky have <code>diffuse 0.65</code> and <code>emission 0</code> in their finish block. The sky sphere has a bright blue pigment (what a surprise) with <code>diffuse 0</code> and <code>emission 1.0</code> as finish attributes.</p>

<p class="Note"><strong>Note:</strong> If using the <code><a href="r3_4.html#r3_4_3_4">sky_sphere</a></code> object, which does not support the <code>finish</code> keyword, instead of a <code><a href="r3_4.html#r3_4_5_1_12">sphere</a></code> object that does, you will need define a <code><a href="r3_3.html#r3_3_2_4">#default</a></code> finish in order to affect it's finish properties.</p>

<p>For example:</p>

<pre>
#default {finish { diffuse 0 emission 1 }}
</pre>

<p class="Hint"><strong>Hint:</strong> You can easily turn radiosity on/off with the use of a conditional statement.</p>

<pre>
#declare UseRad = yes;

  global_settings {
  #if (UseRad)
    radiosity {
      rad settings ...
    }
  #end
  }
</pre>

<p>OK, let's get started! In this set of images we first have the scene as it should appear without radiosity, in other words the <code>radiosity</code> block has been removed, next with the settings noted above, and finally an image showing the difference between the two. Looking at the difference image, you can see that radiosity greatly affects the shadowed areas when applied in combination with conventional lighting.</p>

<p class="Note"><strong>Note:</strong> The use of <code>emission 1</code> in the finish block of the blue sky is what gives the bluish touch of the whole scene in the radiosity version, as it functions as kind of a diffuse light source.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/4/4e/TutImgRadA01.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/9/94/TutImgRadA03.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/9b/TutImgRadA0103.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">no radiosity</p>
  </td>
  <td>
    <p class="caption">radiosity</p>
  </td>
  <td>
    <p class="caption">difference w/o radiosity</p>
  </td>
</tr>
</table>

<p>Radiosity is a highly <em>tunable</em> process, and it comes equipped with a variety of tunable parameters that make it easy to strike a balance between quality and rendering speed. However, as with most things, higher quality means more render time. Patience is a virtue.</p>
<p>For instance, let's examine our test object with default settings, with our reference settings, and finally with some maddeningly high-quality settings. For comparison, below each image you can see the difference to the high-quality version.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/4/45/TutImgRadA02.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/d/dd/TutImgRadA99.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/94/TutImgRadA03.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">default settings</p>
  </td>
  <td>
    <p class="caption">high-quality render</p>
  </td>
  <td>
    <p class="caption">reference settings</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/9/9d/TutImgRadA0299.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/3/39/TutImgRadA0399.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">default settings difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">reference settings difference</p>
  </td>
</tr>
</table>

<p>Changing the <code>brightness</code> changes the intensity of radiosity effects. Theoretically specifying <code>brightness 0</code> would be the same as without radiosity, however in practice POV-Ray doesn't accept a zero value. As a rule <code>brightness 1</code> should work correctly in most cases. If the effects are too strong you <em>can</em> reduce this, though this is not recommended, as it's usually an indication that your textures are too bright and your illumination too dim. Larger values can lead to quite strange results in most cases.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/9/91/TutImgRadA04.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/9/94/TutImgRadA03.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/5/5c/TutImgRadA05.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">brightness 0.5</p>
  </td>
  <td>
    <p class="caption">brightness 1.0</p>
  </td>
  <td>
    <p class="caption">brightness 2.0</p>
  </td>
</tr>
</table>

<p>The <code>recursion_limit</code> setting primarily affects the brightness of shadows, nooks and corners. The following group of images show the results of setting this parameter to 1, 2 and 5 respectively ...</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/aa/TutImgRadA06.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/9/9f/TutImgRadA07.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/c3/TutImgRadA08.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">recursion_limit 1</p>
  </td>
  <td>
    <p class="caption">recursion_limit 2</p>
  </td>
  <td>
    <p class="caption">recursion_limit 5</p>
  </td>
</tr>
</table>
<p>... while this next grouping shows the difference when compared to our reference setting of <code>recursion_limit 3</code>. As you can see, values higher than 3 do not lead to any better results in such a quite simple scene. In most cases values of 1 or 2 are sufficient, especially for outdoor scenes.</p>
<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/b/b0/TutImgRadA0306.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/c/cb/TutImgRadA0307.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/5/52/TutImgRadA0308.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">recursion_limit 1 difference</p>
  </td>
  <td>
    <p class="caption">recursion_limit 2 difference</p>
  </td>
  <td>
    <p class="caption">recursion_limit 5 difference</p>
  </td>
</tr>
</table>

<p>The <code>error_bound</code> setting mainly affects the structures of the shadows. Values larger than the default of 1.8 do not have much effect, they make the shadows even flatter.  Extremely low values can lead to very good results, but the rendering time can become very long, and you may need to modify other parameters to avoid a grainy appearance.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/d/d9/TutImgRadA09.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/a/a6/TutImgRadA10.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/c4/TutImgRadA11.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">error_bound 0.01</p>
  </td>
  <td>
    <p class="caption">error_bound 1.0</p>
  </td>
  <td>
    <p class="caption">error_bound 1.8</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/2/25/TutImgRadA0309.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/ea/TutImgRadA0310.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/6/6a/TutImgRadA0311.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">error_bound 0.01 difference</p>
  </td>
  <td>
    <p class="caption">error_bound 1.0 difference</p>
  </td>
  <td>
    <p class="caption">error_bound 1.8 difference</p>
  </td>
</tr>
</table>

<p>Somewhat related to error_bound is <code>low_error_factor</code>. It reduces error_bound setting during the pretrace phase, changing this can be useful to eliminate artifacts. The difference images used the <code>low_error_factor 0.5</code> case for comparison.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/b/b5/TutImgRadA12.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/9/94/TutImgRadA03.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/a/a2/TutImgRadA13.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">low_error_factor 0.01</p>
  </td>
  <td>
    <p class="caption">low_error_factor 0.5</p>
  </td>
  <td>
    <p class="caption">low_error_factor 1.0</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/b/b7/TutImgRadA0312.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/cb/TutImgRadA0313.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">low_error_factor 0.01 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">low_error_factor 1.0 difference</p>
  </td>
</tr>
</table>

<p>This next sequence of images illustrate the effect of <code>count</code>. It is a general quality and accuracy parameter leading to higher quality and slower rendering at higher values. Keep in mind that higher <code>count</code> isn't necessarily a cure-for-all when it comes to quality. The difference images were compared to a <code>count 150</code> case.</p>

<p class="Note"><strong>Note:</strong> Until otherwise noted the following settings are being used to emphasize the effects of the next parameters we'll be examining.</p>
<ul>
  <li><code>recursion_limit 1</code></li>
  <li><code>error_bound 0.2</code></li>
  <li><code>low_error_factor 1.0</code></li>
</ul>
<p></p>
<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/5/59/TutImgRadA15.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/e5/TutImgRadA16.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/e/ee/TutImgRadA17.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">count 2</p>
  </td>
  <td>
    <p class="caption">count 35 (default)</p>
  </td>
  <td>
    <p class="caption">count 1000</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/d/d3/TutImgRadA1415.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/9/93/TutImgRadA1416.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/f/f3/TutImgRadA1417.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">count 2 difference</p>
  </td>
  <td>
    <p class="caption">count 35 difference</p>
  </td>
  <td>
    <p class="caption">count 1000 difference</p>
  </td>
</tr>
</table>

<p>Another parameter that affects quality is <code>nearest_count</code>. You can use values ranging from 1 to 20 the default is 5. Just like <code>count</code>, higher values can lead to less artifacts and smoother appearance but slower rendering. The <code>nearest_count</code> setting also accepts a second parameter, which activates <em>adaptive pretrace</em>, providing a good means of speeding up pretrace without significant loss of quality (not shown here) the value must be smaller than the first parameter (e.g. <code>nearest_count 20,10</code>). When set, POV-Ray will stop pretracing individual areas of the image where the average sample density already satisfies this second value, thereby avoiding tracing low-detail areas over and over again for little gain, while still being able to drill down deep into high-detail areas. A setting of <code>nearest_count 10</code> was used for the comparison.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/5/5c/TutImgRadA18.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/1/17/TutImgRadA19.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/7/72/TutImgRadA20.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">nearest_count 1</p>
  </td>
  <td>
    <p class="caption">nearest_count 5 (default)</p>
  </td>
  <td>
    <p class="caption">nearest_count 20</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/5/53/TutImgRadA1418.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/d/d5/TutImgRadA1419.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/5/54/TutImgRadA1420.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">nearest_count 1 difference</p>
  </td>
  <td>
    <p class="caption">nearest_count 5 difference</p>
  </td>
  <td>
    <p class="caption">nearest_count 20 difference</p>
  </td>
</tr>
</table>

<p><code>minimum_reuse</code> influences at which minimum distance previous radiosity samples are always reused during calculation, affecting quality and smoothness in nooks and corners. Higher values generally give a smoother appearance, at the cost of corner detail, while lower values may cause corners to look splotchy unless the other parameters (most notably <code>count</code> and <code>nearest_count</code>) are set for higher quality as well.</p>

<p>As <code>minimum_reuse</code> must be lower than <code>maximum_reuse</code>, to avoid a parse error with the highest setting we're using <code>maximum_reuse 0.4</code> and the <code>minimum_reuse 0.005</code> case, was used for the comparison with these next three images.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/3/39/TutImgRadA22.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/d/dc/TutImgRadA21.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/7/76/TutImgRadA23.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">minimum_reuse 0.2</p>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.005</p>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.015</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/f/fb/TutImgRadA2122.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/c8/TutImgRadA2123.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">minimum_reuse 0.2 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.015 difference</p>
  </td>
</tr>
</table>

<p>Another important setting is <code>pretrace_end</code>.  It specifies how many pretrace steps are calculated and thereby strongly influences the speed.  Usually lower values lead to better quality, but it is important to keep this in good relation to <code>error_bound</code>.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/f/f0/TutImgRadA24.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/d/db/TutImgRadA14.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/f/f3/TutImgRadA25.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">pretrace_end 0.2</p>
  </td>
  <td>
    <p class="caption">pretrace_end 0.01</p>
  </td>
  <td>
    <p class="caption">pretrace_end 0.001</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/d/de/TutImgRadA1424.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/d/d4/TutImgRadA1425.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">pretrace_end 0.2</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">pretrace_end 0.001</p>
  </td>
</tr>
</table>

<p>Normally in the final trace no additional radiosity samples are taken unless absolutely needed. You can change this by adding <code>always_sample on</code> allowing you to increase <code>pretrace_end</code> to speed up rendering. Note however that this is very prone to artifacts such as visible render block boundaries and horizontal &quot;smearing&quot;, so it is usually only useful for test renders. You should also use a low setting for <code>nearest_count</code>, or you may actually <em>increase</em> the rendering time, <em>and</em> the probability of getting the mentioned artifacts!.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/d/db/TutImgRadA14.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/a/a5/TutImgRadA1426.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/8/8d/TutImgRadA26.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">always_sample off</p>
  </td>
   <td>
    <p class="caption">always_sample on difference</p>
  </td>
  <td>
    <p class="caption">always_sample on</p>
  </td>
</tr>
</table>

<p>The effect of <code>max_sample</code> is similar to <code>brightness</code>. It does not reduce the radiosity effect in general but weakens samples with brightness above the specified value.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/4/4d/TutImgRadA27.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/ee/TutImgRadA28.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/d/db/TutImgRadA14.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">max_sample 0.5</p>
  </td>
  <td>
    <p class="caption">max_sample 0.8</p>
  </td>
  <td>
    <p class="caption">max_sample not set (default)</p>
  </td>
</tr>
</table>

<p>You can strongly affect things with an object's <a href="r3_4.html#r3_4_6_3">finish</a> attributes. In fact that is the most important thing about radiosity. Normal objects should have an <code>emission 0</code> (the default) finish. Objects with an emission setting greater than zero actually act as light sources in radiosity scenes. Remember that the default finish values used until now were <code>diffuse 0.65</code> and <code>emission 0</code>.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/ab/TutImgRadA29.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/d/d1/TutImgRadA30.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/7/77/TutImgRadA31.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">diffuse 0.65 emission 0.2</p>
  </td>
  <td>
    <p class="caption">diffuse 0.4 emission 0</p>
  </td>
  <td>
    <p class="caption">diffuse 1.0 emission 0</p>
  </td>
</tr>
</table>

<p>Finally you can vary the sky in outdoor radiosity scenes. In all these examples it is implemented with a sphere object.
<code>finish { emission 1 diffuse 0 }</code> and the pigment of the original sample scene were used until now. The following images show some variations.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/ab/TutImgRadA32.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/e3/TutImgRadA33.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/6/69/TutImgRadA34.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">emission 0 diffuse 1</p>
  </td>
  <td>
    <p class="caption">emission 0 diffuse 0 (no sky)</p>
  </td>
  <td>
    <p class="caption">rgb &lt;1,0.8,0&gt; to blue 1 gradient</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_8_3"></a>
<div class="content-level-h4" contains="Radiosity without conventional lighting" id="t2_3_8_3">
<h4>2.3.8.3 Radiosity without conventional lighting</h4>
<p>Radiosity also allows us to have scenes <em>without</em> conventional light sources. What's left is a situation that's similar to what you'd expect on a cloudy day where the light comes from no specific direction but from the whole sky.</p>
<p>Reminder: The following settings are <em>still</em> in effect.</p>
<ul>
<li> <code>recursion_limit 1</code></li>
<li> <code>error_bound 0.2</code></li>
<li> <code>low_error_factor 1.0</code></li>
</ul>
<p>You can see that when the light source is removed the whole image takes on a noticeable blue tint. That's because the scene is now illuminated by our sky object, which in this case happens to be blue. Later on you'll see how varying the color of the sky influences the appearance of  the scene.</p>

<table class="matte" width="470px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/d/db/TutImgRadA14.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/f/f1/TutImgRadB_35.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">with light source</p>
  </td>
  <td>
    <p class="caption">without light source</p>
  </td>
</tr>
</table>

<p class="Note"><strong>Note:</strong> We'll be using the sample scene <code>~/scenes/radiosity/radiosity3.pov</code> for the rest of this tutorial.</p>

<p>This next series of images show our new test object with the default settings, then our reference settings, and lastly those maddeningly high-quality settings we used earlier. Notice that with the default settings, the image looks much worse than in the first part of this tutorial. The reason being, those settings were mainly selected for use with a conventionally lit scene. Keep in mind, radiosity-only scenes are less forgiving of low-quality settings.</p>

<p class="Note"><strong>Note:</strong> As a reminder you might want to refer back to the reference <a href="t2_3.html#t2_3_8_2">settings</a> used at the beginning of this tutorial.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/6/63/TutImgRadB01.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/5/59/TutImgRadB_22.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/e/e1/TutImgRadB99.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">default settings</p>
  </td>
  <td>
    <p class="caption">tutorial reference settings</p>
  </td>
  <td>
    <p class="caption">high-quality settings</p>
  </td>
</tr>
</table>

<p>The following images demonstrate the effect of different settings for <code>recursion_limit</code>.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/8/88/TutImgRadB03.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/5/59/TutImgRadB_22.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/e/e3/TutImgRadB04.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">recursion_limit 1</p>
  </td>
  <td>
    <p class="caption">recursion_limit 3</p>
  </td>
  <td>
    <p class="caption">recursion_limit 2</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/c/c0/TutImgRadB0203.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/9a/TutImgRadB0204.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">recursion_limit 1 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">recursion_limit 2 difference</p>
  </td>
</tr>
</table>

<p>The next three images show the effect of <code>error_bound</code>. In scenes without light sources, this is even more important than than scenes that do. Good values mostly depend on the scenery and the other settings, lower values do not necessarily lead to better results. Note that we're using our <code>error_bound 0.5</code> image as reference.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/4/46/TutImgRadB05.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/c/c2/TutImgRadB06.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/9/96/TutImgRadB07.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">error_bound 0.01</p>
  </td>
  <td>
    <p class="caption">error_bound 1.0</p>
  </td>
  <td>
    <p class="caption">error_bound 1.8</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/2/23/TutImgRadB0205.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/4/40/TutImgRadB0206.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/6/64/TutImgRadB0207.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">error_bound 0.01 difference</p>
  </td>
  <td>
    <p class="caption">error_bound 1.0 difference</p>
  </td>
  <td>
    <p class="caption">error_bound 1.8 difference</p>
  </td>
</tr>
</table>

<p>If there are artifacts it often helps to increase <code>count</code>, it does affect quality in general and often helps removing them, the following three images use <code>error_bound 0.2</code>.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/2/2c/TutImgRadB09.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/2/2a/TutImgRadB08.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/5/55/TutImgRadB10.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">count 2</p>
  </td>
  <td>
    <p class="caption">count 50</p>
  </td>
  <td>
    <p class="caption">count 200</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/6/6e/TutImgRadB0809.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/1/1a/TutImgRadB0810.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">count 35 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">count 150 difference</p>
  </td>
</tr>
</table>

<p>As can be seen upon closer inspection however, this is no magic cure-all, some bright speckles remain even with extremely high <code>count</code> values.</p>

<p>In this case, the reason is that the pretrace is simply too short to provide the number of samples we aim for. This is a job for <code>pretrace_end</code>: Together with <code>pretrace_start</code> it specifies how many pretrace steps are done, and how high their resolution is. Lower values of <code>pretrace_end</code> lead to more pretrace steps and more accurate results but also to significantly slower rendering.</p>

<p>We're still using <code>error_bound 0.1</code> for these images.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/e/e9/TutImgRadB11.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/2/2a/TutImgRadB08.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/a/ab/TutImgRadB12.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">pretrace_end 0.4</p>
  </td>
  <td>
    <p class="caption">pretrace_end 0.01</p>
  </td>
  <td>
    <p class="caption">pretrace_end 0.001</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/c/c4/TutImgRadB0811.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/4/43/TutImgRadB0812.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">pretrace_end 0.4 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">pretrace_end 0.001 difference</p>
  </td>
</tr>
</table>

<p>This next sequence shows the effect of <code>nearest_count</code>, the difference is not very strong, but larger values always lead to better results, the maximum is 20. We'll be using <code>error_bound 0.5</code> again, but also the following modifications to emphasize the effect.</p>

<ul>
<li> <code>recursion_limit 1</code></li>
<li> <code>low_error_factor 1.0</code></li>
<li> <code>pretrace_end 0.001</code></li>
</ul>
<p class="Note"><strong>Note:</strong> From now on we'll stick to these values.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/ad/TutImgRadB14.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/3/3a/TutImgRadB15.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/4/49/TutImgRadB16.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">nearest_count 2</p>
  </td>
  <td>
    <p class="caption">nearest_count 5 (default)</p>
  </td>
  <td>
    <p class="caption">nearest_count 20</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/f/f3/TutImgRadB1314.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/8/82/TutImgRadB1315.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/4/44/TutImgRadB1316.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">nearest_count 2 difference</p>
  </td>
  <td>
    <p class="caption">nearest_count 5 difference</p>
  </td>
  <td>
    <p class="caption">nearest_count 20 difference</p>
  </td>
</tr>
</table>

<p>The <code>minimum_reuse</code> is a geometric value related to the size of the render in pixels and affects whether previous radiosity calculations are reused at a new point. Lower values lead to more often and therefore more accurate calculations, but care must be taken to balance this setting with the others. The <code>minimum_reuse 0.05</code> was used for the comparison.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/1/18/TutImgRadB17.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/1/12/TutImgRadB13.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/5/5e/TutImgRadB18.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">minimum_reuse 0.1</p>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.05 (default)</p>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.015</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/6/6c/TutImgRadB1317.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/d/d1/TutImgRadB1318.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">minimum_reuse 0.1 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">minimum_reuse 0.015 difference</p>
  </td>
</tr>
</table>

<p>In most cases it is not necessary to change the <code>low_error_factor</code>. This setting reduces the <code>error_bound</code> value during the final pretrace step. Changing this value can sometimes help to remove persistent artifacts.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/a/a1/TutImgRadB19.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/1/12/TutImgRadB13.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/6/65/TutImgRadB20.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">low_error_factor 0.01</p>
  </td>
  <td>
    <p class="caption">low_error_factor 0.5 (default)</p>
  </td>
  <td>
    <p class="caption">low_error_factor 1.0</p>
  </td>
</tr>
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/1/14/TutImgRadB1319.png">
  </td>
  <td>
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/7/75/TutImgRadB1320.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">low_error_factor 0.01 difference</p>
  </td>
  <td>
  </td>
  <td>
    <p class="caption">low_error_factor 1.0 difference</p>
  </td>
</tr>
</table>

<p>The <code>gray_threshold</code> setting reduces the color in the radiosity calculations. As mentioned above the blue sky affects the color of the whole scene when radiosity is calculated.  To reduce this coloring effect without affecting radiosity in general you can increase <code>gray_threshold</code>.  A value of 1.0 means no color in radiosity at all.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/1/12/TutImgRadB13.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/b/be/TutImgRadB21.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/3/34/TutImgRadB22.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">gray_threshold 0.0 (default)</p>
  </td>
  <td>
    <p class="caption">gray_threshold 0.5</p>
  </td>
  <td>
    <p class="caption">gray_threshold 1.0</p>
  </td>
</tr>
</table>

<p>It is worth experimenting with the things affecting radiosity to get some feeling for how things work. The next 3 images show some more experiments. We're back with the original reference settings from now on.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/f/ff/TutImgRadB23.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/f/fb/TutImgRadB24.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/ce/TutImgRadB25.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">emission 3 for two objects</p>
  </td>
  <td>
    <p class="caption">all objects emission 0.3 sky is 0</p>
  </td>
  <td>
    <p class="caption">emission -3 for one object</p>
  </td>
</tr>
</table>

<p>Finally you can strongly change the appearance of the whole scene with the sky's texture.  The following images give some examples.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/c/c7/TutImgRadB26.png">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/e/e6/TutImgRadB27.png">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/8/8f/TutImgRadB28.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">rgb &lt;1,0.8,0&gt; to blue gradient</p>
  </td>
  <td>
    <p class="caption">light-dark gradient left-right</p>
  </td>
  <td>
    <p class="caption">light-dark gradient bottom-top</p>
  </td>
</tr>
</table>
<p></p>
<table class="matte" width="700px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <p class="tabletext">Really good results mostly depend on the single situation and how the scene is meant to look. We used these settings listed below, to get this example of a <em>higher quality</em> render of our test object. It's important to remember that requirements can be much different from scene to scene.</p>
  <td>
    <img class="right" width="320px" src="images/a/a5/TutImgRadB29.png">
  </td>
</tr>
<tr>
  <td>
  </td>
  <td>
    <p class="caption">higher quality radiosity scene</p>
  </td>
</tr>
</table>

<pre>
  global_settings {
    radiosity {
      pretrace_start 0.128
      pretrace_end   0.002
      count 500
      nearest_count 20
      error_bound 0.5
      recursion_limit 2
      low_error_factor 1.0
      gray_threshold 0.0
      minimum_reuse 0.005
      maximum_reuse 0.1
      brightness 1
      adc_bailout 0.005
    }
  }
</pre>

</div>
<a name="t2_3_8_4"></a>
<div class="content-level-h4" contains="Normals and Radiosity" id="t2_3_8_4">
<h4>2.3.8.4 Normals and Radiosity</h4>
<p>When using a <a href="r3_4.html#r3_4_4_3_4_4">normal</a>  statement in combination with radiosity lighting, you will see that the shadowed parts of the objects are totally smooth, no matter how strong the normals are made. The reason is that POV-Ray by default does not take the normal into account when calculating radiosity. You can easily change this by adding <code>normal on</code> to the radiosity block. Be aware that this can slow things down quite a bit and will require more memory, however it usually leads to more realistic results.</p>

<p>When using normals you should also remember that they are only faked irregularities and do not generate real geometric disturbances of the surface. A more realistic approach is using an <a href="r3_4.html#r3_4_5_1_6">isosurface</a> with a pigment function, but this can quickly lead to increased render times.</p>
<p>As you can see with this next series of images, the isosurface version does not have the same smooth-like appearance to it's circumference, as compared to the first two images. Notice that it also has a more realistic shadow-line.</p>

<table class="matte" width="700px" cellpadding="0" cellspacing="10px">
<tr>
  <td>
    <img class="leftpanel" width="220px" src="images/8/85/TutImgRadC_01.jpg">
  </td>
  <td>
    <img class="centerpanel" width="220px" src="images/c/cc/TutImgRadC_02.jpg">
  </td>
  <td>
    <img class="rightpanel" width="220px" src="images/c/c4/TutImgRadC_03.jpg">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">normal off (default)</p>
  </td>
  <td>
    <p class="caption">normal on</p>
  </td>
  <td>
    <p class="caption">isosurface</p>
  </td>
</tr>
</table>

</div>
<a name="t2_3_8_5"></a>
<div class="content-level-h4" contains="Performance considerations" id="t2_3_8_5">
<h4>2.3.8.5 Performance considerations</h4>
<p>High quality radiosity can be very slow. To some extent this is the price to pay for realistic lighting, but there are a lot of things that can be done to improve speed.</p>

<p>If average to good quality radiosity will work for your scene, then it's probably a good idea to spend the time to find the <em>sweet spot</em> that strikes the best balance between quality and speed.  Especially <code>recursion_limit</code> should be kept as low as possible. Sometimes <code>1</code> is sufficient, if not <code>2</code> or <code>3</code> should often be enough.</p>

<p>With high quality settings, radiosity data can take quite a lot of memory. Apart from that the other scene data is also used much more intensively than in a conventional scene. Therefore insufficient memory and swapping can slow down things even more. Here's a few <a href="r3_2.html#r3_2_8_8">radiosity options</a> that might help.</p>

<p>Finally the scene geometry and textures are important too. Objects not visible in the camera usually only increase parsing time and memory use, but in a radiosity scene, also objects behind the camera can slow down the rendering process. See the section <a href="r3_4.html#r3_4_4_3_4">Configuring Radiosity</a> for some helpful hints.</p>

</div>
<a name="t2_3_9"></a>
<div class="content-level-h3" contains="Making Animations" id="t2_3_9">
<h3>2.3.9 Making Animations</h3>
<p>There are a number of programs available that will take a series of still
image files (such as POV-Ray outputs) and assemble them into animations. Such
programs can produce AVI, MPEG, FLI/FLC, QuickTime, or even animated GIF
files (for use on the World Wide Web). The trick, therefore, is how to
produce the frames. That, of course, is where POV-Ray comes in. In earlier
versions producing an animation series was no joy, as everything had to be
done manually. We had to set the clock variable, and handle producing unique
file names for each individual frame by hand. We could achieve some degree of
automation by using batch files or similar scripting devices, but still, We
had to set it all up by hand, and that was a lot of work (not to mention
frustration... imagine forgetting to set the individual file names and coming
back 24 hours later to find each frame had overwritten the last).</p>
<p>
Now, at last, with POV-Ray 3, there is a better way. We no longer need a
separate batch script or external sequencing programs, because a few simple
settings in our INI file (or on the command line) will activate an internal
animation sequence which will cause POV-Ray to automatically handle the
animation loop details for us.</p>
<p>
Actually, there are two halves to animation support: those settings we put
in the INI file (or on the command line), and those code modifications we
work into our scene description file. If we have already worked with
animation in previous versions of POV-Ray, we can probably skip ahead to the
section <a href="t2_3.html#t2_3_9_5">INI File Settings</a> below. Otherwise, let's start with
basics. Before we get to how to activate the internal animation loop,
let's look at a couple examples of how a couple of keywords can set up
our code to describe the motions of objects over time.</p>

</div>
<a name="t2_3_9_1"></a>
<div class="content-level-h4" contains="The Clock Variable: Key To It All" id="t2_3_9_1">
<h4>2.3.9.1 The Clock Variable: Key To It All</h4>
<p>POV-Ray supports an automatically declared floating point variable
identified as <code><a href="r3_3.html#r3_3_1_5_6">clock</a></code> (all lower case). This is the key to making
image files that can be automated. In command line operations, the clock
variable is set using the <code>+k</code> switch. For example, <code>
+k3.4</code> from the command line would set the value of clock to 3.4. The
same could be accomplished from the INI file using <code>Clock=3.4</code> in
an INI file.</p>
<p>
If we do not set clock for anything, and the animation loop is not used
(as will be described a little later) the clock variable is still there -
it is just set for the default value of 0.0, so it is possible to set up
some POV code for the purpose of animation, and still render it as a still
picture during the object/world creation stage of our project.</p>
<p>
The simplest example of using this to our advantage would be having an
object which is travelling at a constant rate, say, along the x-axis. We
would have the statement</p>
<pre>
  translate &lt;clock, 0, 0&gt;
</pre>

<p>in our object's declaration, and then have the animation loop assign
progressively higher values to clock. And that is fine, as long as only
one element or aspect of our scene is changing, but what happens when we want
to control multiple changes in the same scene simultaneously?</p>
<p>
The secret here is to use normalized clock values, and then make other
variables in your scene proportional to clock. That is, when we set up our
clock, (we are getting to that, patience!) have it run from 0.0 to 1.0,
and then use that as a multiplier to some other values. That way, the other
values can be whatever we need them to be, and clock can be the same 0 to 1
value for every application. Let's look at a (relatively) simple
example</p>
<pre>
  #include &quot;colors.inc&quot;
  camera {
    location &lt;0, 3, -6&gt;
    look_at &lt;0, 0, 0&gt;
  }
  light_source { &lt;20, 20, -20&gt; color White }
  plane {
    y, 0
    pigment { checker color White color Black }
  }
  sphere {
    &lt;0, 0, 0&gt; , 1
    pigment {
      gradient x
      color_map {
        [0.0 Blue  ]
        [0.5 Blue  ]
        [0.5 White ]
        [1.0 White ]
      }
      scale .25
    }
    rotate &lt;0, 0, -clock*360&gt;
    translate &lt;-pi, 1, 0&gt;
    translate &lt;2*pi*clock, 0, 0&gt;
  }
</pre>

<p>Assuming that a series of frames is run with the clock progressively going
from 0.0 to 1.0, the above code will produce a striped ball which rolls from
left to right across the screen. We have two goals here:</p>
<ol>
<li>Translate the ball from point A to point B, and,</li>
<li>Rotate the ball in exactly the right proportion to its linear movement to
imply that it is rolling -- not gliding -- to its final position.</li>
</ol>
<p>Taking the second goal first, we start with the sphere at the origin,
because anywhere else and rotation will cause it to orbit the origin instead
of rotating. Throughout the course of the animation, the ball will turn one
complete 360 degree turn. Therefore, we used the formula, <code>360*clock</code>
to determine the rotation in each frame. Since clock runs 0 to 1, the rotation
of the sphere runs from 0 degrees through 360.</p>
<p>
Then we used the first translation to put the sphere at its initial starting
point. Remember, we could not have just declared it there, or it would
have orbited the origin, so before we can meet our other goal (translation),
we have to compensate by putting the sphere back where it would have been at
the start. After that, we re-translate the sphere by a clock relative
distance, causing it to move relative to the starting point. We have chosen
the formula of 2*pi* r*clock (the widest circumference of the sphere times
current clock value) so that it will appear to move a distance equal to the
circumference of the sphere in the same time that it rotates a complete 360
degrees. In this way, we have synchronized the rotation of the sphere to
its translation, making it appear to be smoothly rolling along the plane.</p>
<p>
Besides allowing us to coordinate multiple aspects of change over time more
cleanly, mathematically speaking, the other good reason for using normalized
clock values is that it will not matter whether we are doing a ten frame
animated GIF, or a three hundred frame AVI. Values of the clock are
proportioned to the number of frames, so that same POV code will work without
regard to how long the frame sequence is. Our rolling ball will still travel
the exact same amount no matter how many frames our animation ends up
with.</p>

</div>
<a name="t2_3_9_2"></a>
<div class="content-level-h4" contains="Clock Dependant Variables And Multi-Stage Animations" id="t2_3_9_2">
<h4>2.3.9.2 Clock Dependant Variables And Multi-Stage Animations</h4>
<p>Okay, what if we wanted the ball to roll left to right for the first half
of the animation, then change direction 135 degrees and roll right to left,
and toward the back of the scene. We would need to make use of POV-Ray's
new conditional rendering directives, and test the clock value to determine
when we reach the halfway point, then start rendering a different clock
dependant sequence. But our goal, as above, it to be working in each stage
with a variable in the range of 0 to 1 (normalized) because this makes the
math so much cleaner to work with when we have to control multiple aspects
during animation. So let's assume we keep the same camera, light, and
plane, and let the clock run from 0 to 2! Now, replace the single sphere
declaration with the following...</p>
<pre>
  #if ( clock &lt;= 1 )
    sphere { &lt;0, 0, 0&gt; , 1
      pigment {
        gradient x
        color_map {
          [0.0 Blue  ]
          [0.5 Blue  ]
          [0.5 White ]
          [1.0 White ]
        }
        scale .25
      }
      rotate &lt;0, 0, -clock*360&gt;
      translate &lt;-pi, 1, 0&gt;
      translate &lt;2*pi*clock, 0, 0&gt;
    }
  #else
    // (if clock is &gt; 1, we're on the second phase)
    // we still want to work with  a value from 0 - 1
    #declare ElseClock = clock - 1;
    sphere { &lt;0, 0, 0&gt; , 1
      pigment {
        gradient x
        color_map {
          [0.0 Blue  ]
          [0.5 Blue  ]
          [0.5 White ]
          [1.0 White ]
        }
        scale .25
      }
      rotate &lt;0, 0, ElseClock*360&gt;
      translate &lt;-2*pi*ElseClock, 0, 0&gt;
      rotate &lt;0, 45, 0&gt;
      translate &lt;pi, 1, 0&gt;
    }
  #end
</pre>

<p>If we spotted the fact that this will cause the ball to do an unrealistic
<em>snap turn</em> when changing direction, bonus points for us - we are a
born animator. However, for the simplicity of the example, let's ignore
that for now. It will be easy enough to fix in the real world, once we
examine how the existing code works.</p>
<p>
All we did differently was assume that the clock would run 0 to 2, and that
we wanted to be working with a normalized value instead. So when the clock
goes over 1.0, POV assumes the second phase of the journey has begun, and we
declare a new variable <code>Elseclock</code> which we make relative to the
original built in clock, in such a way that while clock is going 1 to 2,
Elseclock is going 0 to 1. So, even though there is only one <code>
clock</code>, there can be as many additional variables as we care to declare
(and have memory for), so even in fairly complex scenes, the single clock
variable can be made the common coordinating factor which orchestrates all
other motions.</p>

</div>
<a name="t2_3_9_3"></a>
<div class="content-level-h4" contains="The Phase Keyword" id="t2_3_9_3">
<h4>2.3.9.3 The Phase Keyword</h4>
<p>There is another keyword we should know for purposes of animations: the
<code><a href="r3_4.html#r3_4_7_5_2">phase</a></code> keyword. The phase keyword can be used on many texture
elements, especially those that can take a color, pigment, normal or texture
map. Remember the form that these maps take. For example:</p>
<pre>
  color_map {
    [0.00 White ]
    [0.25 Blue ]
    [0.76 Green ]
    [1.00 Red ]
  }
</pre>

<p>The floating point value to the left inside each set of brackets helps
POV-Ray to map the color values to various areas of the object being
textured. Notice that the map runs cleanly from 0.0 to 1.0?</p>
<p>
Phase causes the color values to become shifted along the map by a floating
point value which follows the keyword <code>phase</code>. Now, if we are
using a normalized clock value already anyhow, we can make the variable clock
the floating point value associated with phase, and the pattern will smoothly
shift over the course of the animation. Let's look at a common example
using a gradient normal pattern</p>
<pre>
  #include &quot;colors.inc&quot;
  #include &quot;textures.inc&quot;
  background { rgb&lt;0.8, 0.8, 0.8&gt; }
  camera {
    location &lt;1.5, 1, -30&gt;
    look_at &lt;0, 1, 0&gt;
    angle 10
  }
  light_source { &lt;-100, 20, -100&gt; color White }
  // flag
  polygon {
    5, &lt;0, 0&gt;, &lt;0, 1&gt;, &lt;1, 1&gt;, &lt;1, 0&gt;, &lt;0, 0&gt;
    pigment { Blue }
    normal {
      gradient x
      phase clock
      scale &lt;0.2, 1, 1&gt;
      sine_wave
    }
    scale &lt;3, 2, 1&gt;
    translate &lt;-1.5, 0, 0&gt;
  }
  // flagpole
  cylinder {
    &lt;-1.5, -4, 0&gt;, &lt;-1.5, 2.25, 0&gt;, 0.05
    texture { Silver_Metal }
  }
  // polecap
  sphere {
    &lt;-1.5, 2.25, 0&gt;, 0.1
    texture { Silver_Metal }
  }
</pre>

<p>Now, here we have created a simple blue flag with a gradient normal
pattern on it. We have forced the gradient to use a sine-wave type wave so
that it looks like the flag is rolling back and forth as though flapping in a
breeze. But the real magic here is that phase keyword. It has been set to
take the clock variable as a floating point value which, as the clock
increments slowly toward 1.0, will cause the crests and troughs of the
flag's wave to shift along the x-axis. Effectively, when we animate the
frames created by this code, it will look like the flag is actually rippling
in the wind.</p>
<p>
This is only one, simple example of how a clock dependant phase shift can
create interesting animation effects. Trying phase will all sorts of texture
patterns, and it is amazing the range of animation effects we can create
simply by phase alone, without ever actually moving the object.</p>

</div>


<a name="t2_3_9_4"></a>
<div class="content-level-h4" contains="Do Not Use Jitter Or Crand" id="t2_3_9_4">
<h4>2.3.9.4 Do Not Use Jitter Or Crand</h4>
<p> One last piece of basic information to save frustration. Because jitter
is an element of anti-aliasing, we could just as easily have mentioned this
under the INI file settings section, but there are also forms of
anti-aliasing used in area lights, and the new atmospheric effects of
POV-Ray, so now is as good a time as any.</p>
<p>
<a href="r3_4.html#r3_4_4_1_5">Jitter</a> is a very small amount of random ray perturbation designed to diffuse
tiny aliasing errors that might not otherwise totally disappear, even with
intense anti-aliasing. By randomizing the placement of erroneous pixels, the
error becomes less noticeable to the human eye, because the eye and mind are
naturally inclined to look for regular patterns rather than random
distortions.</p>
<p>
This concept, which works fantastically for still pictures, can become a
nightmare in animations. Because it is random in nature, it will be different
for each frame we render, and this becomes even more severe if we dither the
final results down to, say 256 color animations (such as FLC's). The
result is jumping pixels all over the scene, but especially concentrated any
place where aliasing would normally be a problem (e.g., where an infinite
plane disappears into the distance).</p>
<p>
For this reason, we should always set jitter to <code>off</code> in area
lights and anti-aliasing options when preparing a scene for an animation. The
(relatively) small extra measure quality due to the use of jitter will be
offset by the ocean of jumpies that results. This general rule also applies
to any truly random texture elements, such as <code><a href="r3_4.html#r3_4_6_3_3_3">crand</a></code>.</p>

</div>
<a name="t2_3_9_5"></a>
<div class="content-level-h4" contains="INI File Settings" id="t2_3_9_5">
<h4>2.3.9.5 INI File Settings</h4>
<p>Okay, so we have a grasp of how to code our file for animation. We know
about the clock variable, user declared clock-relative variables, and the
phase keyword. We know not to jitter or crand when we render a scene, and
we are all set build some animations. Alright, let's have at it.</p>
<p>
The first concept we will need to know is the INI file settings,
<code><a href="r3_2.html#r3_2_1_2">Initial_Frame</a></code> and
<code><a href="r3_2.html#r3_2_1_2">Final_Frame</a></code>. These are very handy
settings that will allow us to render a particular number of frames and each
with its own unique frame number, in a completely hands free way. It is of
course, so blindingly simple that it barely needs explanation, but here is
an example anyway. We just add the following lines to our favorite INI file
settings</p>
<pre>
  Initial_Frame = 1
  Final_Frame = 20
</pre>

<p>and we will initiate an automated loop that will generate 20 unique
frames. The settings themselves will automatically append a frame number onto
the end of whatever we have set the output file name for, thus giving each
frame an unique file number without having to think about it. Secondly, by
default, it will cycle the clock variable up from 0 to 1 in increments
proportional to the number of frames. This is very convenient, since, no
matter whether we are making a five frame animated GIF or a 300 frame MPEG
sequence, we will have a clock value which smoothly cycles from exactly the
same start to exactly the same finish.</p>
<p>
Next, about that clock. In our example with the rolling ball code, we saw
that sometimes we want the clock to cycle through values other than the
default of 0.0 to 1.0. Well, when that is the case, there are setting for
that too. The format is also quite simple. To make the clock run, as in our
example, from 0.0 to 2.0, we would just add to your INI file the lines</p>
<code>
<a href="r3_2.html#r3_2_1_2">Initial_Clock</a> = 0.0<br>
<a href="r3_2.html#r3_2_1_2">Final_Clock</a> = 2.0<br>
</code>

<p>Now, suppose we were developing a sequence of 100 frames, and we detected
a visual glitch somewhere in frames, say 51 to 75. We go back over our code
and we think we have fixed it. We would like to render just those 25 frames
instead of redoing the whole sequence from the beginning. What do we
change?</p>
<p>
If we said make <code>Initial_Frame = 51</code>, and <code>Final_Frame =
75</code>, we are wrong. Even though this would re-render files named with
numbers 51 through 75, they will not properly fit into our sequence, because
the clock will begin at its initial value starting with frame 51, and cycle
to final value ending with frame 75. The only time <code>Initial_Frame</code>
and <code>Final_Frame</code> should change is if we are doing an essentially
new sequence that will be appended onto existing material.</p>
<p>
If we wanted to look at just 51 through 75 of the original animation, we
need two new INI settings</p>
<code>
<a href="r3_2.html#r3_2_1_3">Subset_Start_Frame</a> = 51<br>
<a href="r3_2.html#r3_2_1_3">Subset_End_Frame</a> = 75<br>
</code>

<p>Added to settings from before, the clock will still cycle through its
values proportioned from frames 1 to 100, but we will only be rendering that
part of the sequence from the 51st to the 75th frames.</p>
<p>
This should give us a basic idea of how to use animation. Although, this
introductory tutorial does not cover all the angles. For example, the last
two settings we just saw, subset animation, can take fractional values, like
0.5 to 0.75, so that the number of actual frames will not change what portion
of the animation is being rendered. There is also support for efficient
odd-even field rendering as would be useful for animations prepared for
display in interlaced playback such as television (see the reference section
for full details).</p>
<p>
With POV-Ray 3 now fully supporting a complete host of animation options, a
whole fourth dimension is added to the raytracing experience. Whether we are
making a FLIC, AVI, MPEG, or simply an animated GIF for our web site,
animation support takes a lot of the tedium out of the process. And do not
forget that phase and clock can be used to explore the range of numerous
texture elements, as well as some of the more difficult to master objects
(hint: the julia fractal for example). So even if we are completely content
with making still scenes, adding animation to our repertoire can greatly
enhance our understanding of what POV-Ray is capable of. Adventure
awaits!</p>

</div>
<a name="t2_3_10"></a>
<div class="content-level-h3" contains="While-loop tutorial" id="t2_3_10">
<h3>2.3.10 While-loop tutorial</h3>
<p>Usually people who have never programmed have great difficulties understanding how simple while-loops work and how they should be used. When you get into nested loops, the problem is even worse.</p>
<p>Sometimes even people who have programmed a bit with some language get confused with POV-Ray's while-loops. This usually happens when they have only used a for-loop which in itself has an index variable which is often incremented automatically.</p>

</div>
<a name="t2_3_10_1"></a>
<div class="content-level-h4" contains="What a while-loop is and what it is not" id="t2_3_10_1">
<h4>2.3.10.1 What a while-loop is and what it is not</h4>
<p>A while-loop in POV-Ray is just a control structure which tells POV-Ray to repeat a command block while the specified condition is true.</p>
<p>The while-loop syntax is as follows:</p>
<pre>
#while(condition)
  ...
#end
</pre>
<p>The commands between <code>#while</code> and <code>#end</code> are run over and over as long as the condition evaluates to true.</p>
<p>A while-loop <strong>is not</strong> a for-loop nor any kind of loop which has an index variable that may be incremented automatically with each iteration.</p>
<p>The while loop <strong>does not</strong> care what the conditions are between the parentheses as long as they evaluate to some value, nor what the block between <code>#while</code> and <code>#end</code> contains. It will just execute that block until the condition becomes false.</p>
<p>The while-loop does not do anything else. You can think of it as a &quot;simple&quot; loop, which does not do anything automatically. This is not necessarily a bad thing.</p>

</div>
<a name="t2_3_10_2"></a>
<div class="content-level-h4" contains="How does a single while-loop work?" id="t2_3_10_2">
<h4>2.3.10.2 How does a single while-loop work?</h4>
<p>The while loop works like this:</p>
<ol>
<li>If the condition between the parentheses evaluates to false, jump to the command after the <code>#end</code> statement. If the condition evaluates to true, just continue normally.</li>
<li>At the <code>#end</code> statement jump to the <code>#while</code> statement and start again.</li>
</ol>
<p>That is:</p>
<ul>
<li>When POV-Ray gets to the <code>#while</code> statement it evaluates the condition between parentheses.</li>
<li>If the statement evaluated as true then it will just continue normally with the next command.</li>
<li>If the statement evaluated as false, POV-Ray will skip the entire body of the loop and continue with the command after the <code>#end</code> statement.</li>
<li>At an <code>#end</code> statement POV-Ray will just jump back to the corresponding <code>#while</code> statement, and will conditionally execute the commands, if the condition evaluates true.</li>
</ul>
<p>Note that nowhere there is any mention about any index variable or anything else that could be used to automatically end the loop. As said, it is just a &quot;simple&quot; loop that continues forever if necessary, only testing the statement between the parentheses, and it is not interested in what it is, only in its evaluated value.</p>
<p>Although one could easily think that this kind of simple loop is bad, and it should be more intelligent, the fact is that this kind of simple loop is actually a lot more flexible and versatile. It allows you to make things not possible or very difficult to do with an intelligent for-loop with automatic index variables.</p>

</div>
<a name="t2_3_10_3"></a>
<div class="content-level-h4" contains="How do I make a while-loop?" id="t2_3_10_3">
<h4>2.3.10.3 How do I make a while-loop?</h4>
<p>It depends on what you are trying to accomplish.</p>
<p>The most common usage is to use it as a simple for-loop, that is, a loop which loops a certain number of times, with an index value getting successive values (for example 1, 2, 3, ..., 10).</p>
<p>For this you need to first declare your index identifier with the first value.</p>
<pre>
#declare Index = 1;
</pre>
<p>If you want to loop 10 times, remember how the condition worked: The while-loop repeats as long as the condition is true. So it should loop as long as our 'Index' identifier is less or equal to 10</p>
<pre>
#while(Index &lt;= 10)
</pre>
<p>When the value of 'Index' is 11 the loop ends, as it should.</p>
<p>We only have to add 1 to 'Index' at the end of each loop</p>
<pre>
#declare Index = 1;
#while(Index &lt;= 10)

  (some commands here)

  #declare Index = Index + 1;
#end
</pre>
<p>The incrementation before the <code>#end</code> is important. If we do not do it, 'Index' would always have the value 1 and the loop would go forever since 1 is always less or equal to 10.</p>
<p>What happens here?</p>
<ol>
<li>First POV-Ray sets the value 1 to 'Index'.</li>
<li>Then it sees the <code>#while</code> statement and evaluates what is between the parentheses: Index &lt;= 10</li>
<li>As 'Index' has the value of 1 and 1 &lt;= 10, the condition evaluates to true.</li>
<li>So, it just continues normally, and executes the commands following the <code>#while</code> statement, as noted in the above example as (some commands here).</li>
<li>Then it arrives normally to the last #declare command in the block. This causes the value 2 to be assigned to 'Index'.</li>
<li>Now it arrives the the <code>#end</code> command and so it just jumps to the <code>#while</code>.</li>
<li>After that it executes the steps 2-6 again because 2 is also less or equal to 10.</li>
<li>After this has been done 10 times, the value 11 is assigned to 'Index' in the last command of the block.</li>
<li>Now, when POV-Ray evaluates the condition it sees that it is false, because 11 is not less or equal to 10. This causes POV-Ray to jump to the command after the <code>#end</code> statement.</li>
<li>The net effect of all this is that POV-Ray looped 10 times and the 'Index' variable was assigned successive values from 1 to 10 along the way.</li>
</ol>
<p>If you read carefully the above description you will notice that the looping is done in a quite simple way, that is, there is no higher logic hidden inside the loop structure. In fact, POV-Ray does not have the slightest idea how many times the loop is executed and what variable is used to count the loops. It just follows orders.</p>
<p>The higher logic in this type of loop is in the combination of commands we wrote. The effect of this combination is that the loop works like a simple for-loop in most programming languages (like BASIC, etc).</p>

</div>
<a name="t2_3_10_4"></a>
<div class="content-level-h4" contains="What is a condition and how do I make one?" id="t2_3_10_4">
<h4>2.3.10.4 What is a condition and how do I make one?</h4>
<p>A condition is an expression that evaluates to a boolean value (ie. true or false) and is used in POV-Ray in <code>#while</code> loops and <code>#if</code> statements.</p>
<p>A condition is mainly a comparison between two values, although there are also some other ways of making a condition, that is not important now.</p>
<p>For example:</p>
<pre>
1 &lt; 2  is true
1 &gt; 2  is false
1 = 1  is true
1 = 2  is false
</pre>
<p>Usually it makes no sense to make comparisons like those. However, when comparing identifiers with some value or two identifiers together it starts to be very useful. Consider this:</p>
<pre>
#if(version &lt; 3.1)
  #error &quot;Wrong version!&quot;
#end
</pre>
<p>If the identifier called 'version' has a value which is less than 3.1 the <code>#error</code> line will be executed. If 'version' has a value which is 3.1 or greater, the <code>#error</code> line is just skipped.</p>
<p>You can combine conditions together with the boolean operators &amp; (and) and | (or). You can also invert the value of a condition with ! (not).</p>
<p>For example, if you want something to be done when 'a' is less than 10 <strong>and</strong> 'b' is greater or equal to 20, the condition would be:</p>
<pre>
a&lt;10 &amp; b&gt;=20
</pre>
<p>For more information about these comparison operators, see the <a href="r3_3.html#r3_3_1_5_3">Operators</a> section of the POV-Ray documentation.</p>

</div>
<a name="t2_3_10_5"></a>
<div class="content-level-h4" contains="What about loop types other than simple for-loops?" id="t2_3_10_5">
<h4>2.3.10.5 What about loop types other than simple for-loops?</h4>
<p>As POV-Ray does not care what the condition is and what we are using to make that condition, we can use the while-loop in many other ways.</p>
<p>For example, this is a typical use of the while-loop that is not just a simple for-loop:</p>
<pre>
#declare S = seed(0);
#declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
#while(vlength(Point) &gt; 1)
  #declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
#end
</pre>
<p>We take a random point between &lt;-1, -1, -1&gt; and &lt;1, 1, 1&gt; and if it is not inside the unit sphere take another random point in that range until we get a point inside the unit sphere.</p>
<p>This is not an unrealistic example since it is very handy, and we can plainly see, this looks nothing like an ordinary for-loop.</p>
<ul>
<li>It does not have any 'index' value which gets consecutive values during the loop.</li>
<li>We do not know how many times it will loop. In this case it loops a random number of times.</li>
<li>Usually for-loops are used to place or create a series of objects. For each iteration another instance of that object is created. Here, however, we are only interested in the value that results <strong>after</strong> the loop, not the values inside it.</li>
</ul>
<p>As we can see, a while-loop can also be used for a variety of tasks, for instance, to calculate a value or some values until the result is inside a specified range.</p>
<p>By the way, there is a variant of this kind of loop where the task would be to calculate a value until the result is inside a specified range, but make only a certain number of tries. If the value does not get inside that range after that number of tries, stop trying. This is used when there is a possibility for the loop for going on forever.</p>
<p>In the above example about the point inside the unit sphere we do not need this because the random point will surely hit the inside of the sphere at some time. In some other situations, however, we cannot be so sure.</p>
<p>In this case we need a regular index variable to count the number of loops. If we reach a predetermined number of iterations, then we stop.</p>
<p>Suppose that we wanted to modify our point searching program to be completely safe and to try only up to 10 times. If the point does not hit the inside of the sphere after 10 tries, we just give up and use the point &lt;0,0,0&gt;.</p>
<pre>
#declare S = seed(0);
#declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
#declare Index = 1;
#while(Index &lt;= 10 &amp; vlength(Point) &gt; 1)
  #declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
  #declare Index = Index + 1;
#end

#if(vlength(Point) &gt; 1)
  #declare Point = &lt;0,0,0&gt;
#end
</pre>
<p>What did we do?</p>
<ul>
<li>We added an 'Index' value which counts the amount of loops gone so far. It is quite similar to the index loop of a simple for-loop.</li>
<li>We added an extra condition to the while-loop: Besides testing that the point is outside the unit sphere it also tests that our index
variable has not bailed out. So now there are two conditions for the loop to continue: The 'Index' value must be less or equal to 10
<strong>and</strong> the 'Point' has to be outside the unit sphere. If either one of them fails, the loop is ended.</li>
<li>Then we check if the point is still outside the unit sphere. If it is, we just take &lt;0,0,0&gt;.</li>
</ul>
<p>Sometimes it is not convenient to make the test again in the <code>#if</code> statement. There is another way of determining whether the loop bailed out without successful termination. Since the loop ends when the 'Index' gets the value 11, we can use this to test the successfulness of the loop</p>
<pre>
#if(Index = 11)
  (loop was not successful)
#end
</pre>

</div>
<a name="t2_3_10_6"></a>
<div class="content-level-h4" contains="What about nested loops?" id="t2_3_10_6">
<h4>2.3.10.6 What about nested loops?</h4>
<p>Even when one masters simple loops, nested loops can be a frightening thing, or at least hard to understand.</p>
<p>Nested loops are used for example in creating a 2D array of objects, that is rows and columns of objects. For example if you want to create a 10x20 array of spheres in your scene, a nested loop is up to the task.</p>
<p>There is nothing special about nested loops. You only have to pay attention to where you initialize and update your index variables.</p>
<p>Let's recall the form of a simple for-loop:</p>
<pre>
#declare Index = initial_value;
#while(Index &lt;= final_value)

  [Something here]

  #declare Index = Index + index_step;
#end
</pre>
<p>The [Something here] part can be anything. If it is another while-loop, then we have nested loops. The inner loop should have the same structure as the outer one.</p>
<p>Note that proper indentation helps us distinguishing between the loops. It is always a good idea to use a good indentation scheme:</p>
<pre>
#declare Index1 = initial_value1;
#while(Index1 &lt;= final_value1)

   #declare Index2 = initial_value2;
   #while(Index2 &lt;= final_value2)

      [Something here]

      #declare Index2 = Index2 + index2_step;
   #end

   #declare Index1 = Index1 + index1_step;
#end
</pre>
<p>It is a common mistake for beginners to break this structure. For example it is common to declare the 'Index2' before the first <code>#while</code>. This breaks the for-loop structure and thus does not work. If you follow step by step what POV-Ray does, as explained earlier, you will see why it does not work. Do not mix the structures of the inner and the outer loops together or your code will simply not work as expected.</p>
<p>So, if we want to make our 10x20 array of spheres, it will look like this:</p>
<pre>
#declare Index1 = 0;
#while(Index1 &lt;= 9)

   #declare Index2 = 0;
   #while(Index2 &lt;= 19)

      sphere { &lt;Index1, Index2, 0&gt;, .5 }

      #declare Index2 = Index2 + 1;
   #end

   #declare Index1 = Index1 + 1;
#end
</pre>
<p>Notice how we now start from 0 and continue to 9 in the outer loop and from 0 to 19 in the inner loop. This has been done to get the sphere array start from the origin, instead of starting from &lt;1, 1, 0&gt;, of course we could have made the 'Index1' and 'Index2' go from 1 to 10 and from 1 to 20 respectively and then created the sphere in this way:</p>
<pre>
  sphere { &lt;Index1-1, Index2-1, 0&gt;, .5 }
</pre>
<p>Although you should not mix the loop structures together, you can perfectly use the values of the outer loop in the inner loop (eg. in its condition). For example, if we wanted to create a triangular array of spheres instead of a rectangular one, that is, we create only half of the spheres, we could have made the inner <code>#while</code> like this:</p>
<pre>
  #while(Index2 &lt; Index1*2)
</pre>
<p>'Index2' will go from 0 to the value of 'Index1' multiplied by 2.</p>
<p>There is no reason why we should limit ourselves to just two nested loops. There is virtually no limit how many loops you can nest. For example, if we wanted to create a box-shape filled by spheres rows, columns and depth, we just make three nested loops, one for the x-axis, another for the y-axis and the third for the z-axis.</p>

</div>
<a name="t2_3_10_7"></a>
<div class="content-level-h4" contains="Mixed-type nested loops" id="t2_3_10_7">
<h4>2.3.10.7 Mixed-type nested loops</h4>
<p>It is perfectly possible to put a for-loop inside a non-for-loop or vice-versa. Again, you just have to be careful, with experience it gets easier.</p>
<p>For example, suppose that we want to create 50 spheres which are randomly placed inside the unit sphere.</p>
<p>So the distinction is clear: First we need a loop to create 50 spheres, a for-loop type suffices, and then we need another loop inside it to calculate the location of the sphere. It will look like this:</p>
<pre>
#declare S = seed(0);
#declare Index = 1;
#while(Index &lt;= 50)

   #declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
   #while(vlength(Point) &gt; 1)
      #declare Point = &lt;2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1&gt;;
   #end

   sphere { Point, .1 }

   #declare Index = Index + 1;
#end
</pre>
<p>There are some important things to note in this specific example:</p>
<ul>
<li>Although this is a nested loop, the sphere is not created in the inner loop but in the outer one. The reason is clear: We want to create 50 spheres, so the sphere creation has to be inside the loop that counts to 50. The inner loop just calculates an appropriate location.</li>
<li>The seed value 'S' is declared outside all the loops although it is used only in the inner loop. Can you guess why? Putting it inside the outer loop would have caused an undesired result: Which one?</li>
</ul>

</div>
<a name="t2_3_10_8"></a>
<div class="content-level-h4" contains="Other things to note" id="t2_3_10_8">
<h4>2.3.10.8 Other things to note</h4>
<p>There is no reason why the index value in your simple for-loop should step one unit at a time. Since the while-loop does not care how the index changes, you can change it in whichever way you want. For example:</p>
<pre>
#declare Index = Index - 1;   // Decrements the index (be careful with the while loop condition)
#declare Index = Index + 0.2; // Increases by steps of 0.2
#declare Index = Index * 2;   // Doubles the value of the index at each step.
</pre>
<p class="Note"><strong>Note:</strong> Be careful <em>where</em> you put your while-loop.</p>
<p>The example below illustrates a very common mistake:</p>
<pre>
#declare Index = 1;
#while(Index &lt;= 10)
   blob
   {  threshold 0.6
      sphere { &lt;Index, 0, 0&gt;, 2, 1 }
   }
   #declare Index = Index + 1;
#end
</pre>
<p>You will probably immediately see the problem.</p>
<p>This code creates 10 blobs with one component each. It does not seem to make much sense. Most probably the user wanted to make one blob with 10 components.</p>
<p>Why did this mistake happen? It may be that the user thought that the while-loop must be the outermost control structure and did not realize that while-loops can be anywhere. For example, inside objects to create subcomponents.</p>
<p>The correct code is, of course:</p>
<pre>
blob
{  threshold 0.6

   #declare Index = 1;
   #while(Index &lt;= 10)

      sphere { &lt;Index, 0, 0&gt;, 2, 1 }

      #declare Index = Index + 1;
   #end
}
</pre>
<p>The essential difference here is that it is only the sphere code which is run 10 times instead of the whole blob code. The net result is the same as if we had written the sphere code 10 times with proper values of 'Index'.</p>
<p>Be also careful with the placement of the braces. If you put them in the wrong place you can end up accidentally repeating an opening or a closing brace 10 times. Again, a proper indentation usually helps a lot with this, as seen in the above example.</p>
<p class="Note"><strong>Tip:</strong> You can use while-loops in conjunction with arrays to automate the creation of long lists of elements with differing data.</p>
<p>Imagine that you are making something like this:</p>
<pre>
color_map {
  [0.00 rgb &lt;.1,1,.6&gt;]
  [0.05 rgb &lt;.8,.3,.6&gt;]
  [0.10 rgb &lt;.3,.7,.9&gt;]
  [0.15 rgb &lt;1,.7,.3&gt;]
  ...
  [1.0 rgb &lt;.8,.2,.5&gt;]
  }
</pre>
<p>It is tedious to have to write the same things over and over just changing the index value and the values in the vector, even if you use copy-paste to copy the lines.</p>
<p>There is also one very big problem here: If you ever want to add a new color to the color map or remove a color, you would have to renumber all the indices again, which can be extremely tedious and frustrating.</p>
<p>Wouldn't it be nice to automate the creation of the color map so that you only have to write the vectors and that's it?</p>
<p>Well, you can. Using a while-loop which reads an array of vectors:</p>
<pre>
#declare MyColors = array[20]
   {  &lt;.1,1,.6&gt;, &lt;.8,.3,.6&gt;, &lt;.3,.7,.9&gt;,
      &lt;1,.7,.3&gt;, ... , &lt;.8,.2,.5&gt;
   }

...

color_map {
  #declare LastIndex = dimension_size(MyColors, 1)-1;
  #declare Index = 0;
  #while(Index &lt;= LastIndex)

     [Index/LastIndex rgb MyColors[Index]]

     #declare Index = Index + 1;
   #end
   }
</pre>
<p>Now it is easy to add, remove or modify colors in your color map. Just edit the vector array, remembering to change its size number accordingly, and the while-loop will automatically calculate the right values and create the color map for you.</p>

</div>
<a name="t2_3_11"></a>
<div class="content-level-h3" contains="SDL tutorial: A raytracer" id="t2_3_11">
<h3>2.3.11 SDL tutorial: A raytracer</h3>

</div>
<a name="t2_3_11_1"></a>
<div class="content-level-h4" contains="Introduction" id="t2_3_11_1">
<h4>2.3.11.1 Introduction</h4>
<p>A raytracer made with POV-Ray sounds really weird, doesn't it? What is it
anyways? POV-Ray is already a raytracer in itself, how can we use it
to make a raytracer? What the...?</p>

<p>The idea is to make a simple sphere raytracer which supports colored spheres
(with diffuse and specular lighting), colored light sources, reflections
and shadows with the POV-Ray SDL (Scene Description Language), then just
render the image created this way. That is, we do not use POV-Ray itself
to raytrace the spheres, but we make our own raytracer with its SDL and use
POV-Ray's raytracing part to just get the image on screen.</p>

<p>What obscure idea could be behind this weirdness? Why do not just use POV-Ray itself to raytrace the spheres a lot faster and that is it?</p>

<p>The idea is not speed nor quality, but to show the power of the POV-Ray SDL.
If you know how to make such a thing as a raytracer with it, we can really
grasp the expressive power of the SDL.</p>

<p>The idea of this document is to make a different approach to POV-Ray SDL
teaching. It is intended to be a different type of tutorial: Instead of
starting from the basics and give simple and dumb examples, we jump right
into a high-end SDL code and see how it is done. However, this is done
in a way that even beginners can learn something from it.</p>

<p>Another advantage is that you will learn how a simple sphere raytracer is
done by reading this tutorial. There are lots of misconceptions about
raytracing out there, and knowing how to make one helps clear most of them.</p>

<p>Although this tutorial tries to start from basics, it will go quite
fast to very &quot;high-end&quot; scripting, so it might not be the best tutorial
to read for a completely new user, but it should be enough to have some basic
knowledge. Also more advanced users may get some new info from it.</p>

<p class="Note"><strong>Note:</strong> In some places some mathematics is needed, so you would better not
be afraid of math.</p>

<p>If some specific POV-Ray SDL syntax is unclear you should consult the
POV-Ray documentation for more help. This tutorial explains how they can
be used, not so much what is their syntax.</p>

</div>


<a name="t2_3_11_2"></a>
<div class="content-level-h4" contains="The idea and the code" id="t2_3_11_2">
<h4>2.3.11.2 The idea and the code</h4>
<p>The idea is to raytrace a simple scene consisting of spheres and light
sources into a 2-dimensional array containing color vectors which represents
our screen.</p>

<p>After this we just have to put those colors on the actual scene for POV-Ray
to show them. This is made by creating a flat colored triangle mesh.
The mesh is just flat like a plane with a color map on it. We could as well
have written the result to a format like PPM and then read it and apply it as
an image map to a plane, but this way we avoid a temporary file.</p>

<p>The following image is done with the raytracer SDL. It calculated the image
at a resolution of 160x120 pixels and then raytraced an 512x384 image from
it. This causes the image to be blurred and jagged (because it is
practically zoomed in by a factor of 3.2). Calculating the image at 320x240
gives a much nicer result, but it is also much slower:</p>

<table class="centered" width="340px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="320px" src="images/6/62/TutImgRaytracer.png">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Some spheres raytraced by the SDL at 160x120</p>
  </td>
</tr>
</table>

<p class="Note"><strong>Note:</strong> There are no real spheres nor light sources here
(real from the point of view of POV-Ray), just a flat colored triangle mesh
(like a plane with a pigment on it) and a camera, nothing else.</p>

<p>Here is the source code of the raytracer; we will look it part by part through this 
tutorial.</p>

<pre>
#declare ImageWidth = 160;
#declare ImageHeight = 120;
#declare MaxRecLev = 5;
#declare AmbientLight = &lt;.2,.2,.2&gt;;
#declare BGColor = &lt;0,0,0&gt;;

// Sphere information.
// Values are:
// Center, &lt;Radius, Reflection, 0&gt;, Color, &lt;phong_size, amount, 0&gt;
#declare Coord = array[5][4]
{ {&lt;-1.05,0,4&gt;, &lt;1,.5,0&gt;, &lt;1,.5,.25&gt;, &lt;40, .8, 0&gt;}
  {&lt;1.05,0,4&gt;, &lt;1,.5,0&gt;, &lt;.5,1,.5&gt;, &lt;40, .8, 0&gt;}
  {&lt;0,-3,5&gt;, &lt;2,.5,0&gt;, &lt;.25,.5,1&gt;, &lt;30, .4, 0&gt;}
  {&lt;-1,2.3,9&gt;, &lt;2,.5,0&gt;, &lt;.5,.3,.1&gt;, &lt;30, .4, 0&gt;}
  {&lt;1.3,2.6,9&gt;, &lt;1.8,.5,0&gt;, &lt;.1,.3,.5&gt;, &lt;30, .4, 0&gt;}
}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {&lt;-1, 0, -.5&gt;, &lt;.8,.4,.1&gt;}
  {&lt;1, 1, -.5&gt;, &lt;1,1,1&gt;}
  {&lt;0,1,0&gt;, &lt;.1,.2,.5&gt;}
}



//==================================================================
// Raytracing calculations:
//==================================================================
#declare MaxDist = 1e5;
#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size(LVect, 1);

#declare Ind = 0;
#while(Ind &lt; LightAmnt)
  #declare LVect[Ind][0] = vnormalize(LVect[Ind][0]);
  #declare Ind = Ind+1;
#end

#macro calcRaySphereIntersection(P, D, sphereInd)
  #local V = P-Coord[sphereInd][0];
  #local R = Coord[sphereInd][1].x;

  #local DV = vdot(D, V);
  #local D2 = vdot(D, D);
  #local SQ = DV*DV-D2*(vdot(V, V)-R*R);
  #if(SQ &lt; 0) #local Result = -1;
  #else
    #local SQ = sqrt(SQ);
    #local T1 = (-DV+SQ)/D2;
    #local T2 = (-DV-SQ)/D2;
    #local Result = (T1&lt;T2 ? T1 : T2);
  #end
  Result
#end

#macro Trace(P, D, recLev)
  #local minT = MaxDist;
  #local closest = ObjAmnt;

  // Find closest intersection:
  #local Ind = 0;
  #while(Ind &lt; ObjAmnt)
    #local T = calcRaySphereIntersection(P, D, Ind);
    #if(T&gt;0 &amp; T&lt;minT) 
      #local minT = T;
      #local closest = Ind;
    #end
    #local Ind = Ind+1;
  #end

  // If not found, return background color:
  #if(closest = ObjAmnt)
    #local Pixel = BGColor;
  #else
    // Else calculate the color of the intersection point:
    #local IP = P+minT*D;
    #local R = Coord[closest][1].x;
    #local Normal = (IP-Coord[closest][0])/R;

    #local V = P-IP;
    #local Refl = 2*Normal*(vdot(Normal, V)) - V;

    // Lighting:
    #local Pixel = AmbientLight;
    #local Ind = 0;
    #while(Ind &lt; LightAmnt)
      #local L = LVect[Ind][0];

      // Shadowtest:
      #local Shadowed = false;
      #local Ind2 = 0;
      #while(Ind2 &lt; ObjAmnt)
        #if(Ind2!=closest &amp; calcRaySphereIntersection(IP,L,Ind2)&gt;0)
          #local Shadowed = true;
          #local Ind2 = ObjAmnt;
        #end
        #local Ind2 = Ind2+1;
      #end
      
      #if(!Shadowed)
        // Diffuse:
        #local Factor = vdot(Normal, L);
        #if(Factor &gt; 0)
          #local Pixel=Pixel+LVect[Ind][1]*Coord[closest][2]*Factor;
        #end

        // Specular:
        #local Factor = vdot(vnormalize(Refl), L);
        #if(Factor &gt; 0)
          #local Pixel = 
             Pixel +
             LVect[Ind][1]*pow(Factor, Coord[closest][3].x)*
             Coord[closest][3].y;
        #end
      #end
      #local Ind = Ind+1;
    #end

    // Reflection:
    #if(recLev &lt; MaxRecLev &amp; Coord[closest][1].y &gt; 0)
      #local Pixel = 
    Pixel + Trace(IP, Refl, recLev+1)*Coord[closest][1].y;
    #end
  #end

  Pixel
#end


#debug &quot;Rendering...\n\n&quot;
#declare Image = array[ImageWidth][ImageHeight]
#declare IndY = 0;
#while(IndY &lt; ImageHeight)
  #declare CoordY = IndY/(ImageHeight-1)*2-1;
  #declare IndX = 0;
  #while(IndX &lt; ImageWidth)
    #declare CoordX = 
      (IndX/(ImageWidth-1)-.5)*2*ImageWidth/ImageHeight;
    #declare Image[IndX][IndY] =
      Trace(-z*3, &lt;CoordX, CoordY, 3&gt;, 1);
    #declare IndX = IndX+1;
  #end
  #declare IndY = IndY+1;
  #debug concat(&quot;\rDone &quot;, str(100*IndY/ImageHeight, 0, 1),
    &quot;%  (line &quot;,str(IndY,0,0),&quot; out of &quot;,str(ImageHeight,0,0),&quot;)&quot;)
#end
#debug &quot;\n&quot;


//==================================================================
// Image creation (colored mesh):
//==================================================================
#default { finish { ambient 1 } }

#debug &quot;Creating colored mesh to show image...\n&quot;
mesh2
{ vertex_vectors
  { ImageWidth*ImageHeight*2,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth)
        &lt;(IndX/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
         IndY/(ImageHeight-1)*2-1, 0&gt;,
        &lt;((IndX+.5)/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
         (IndY+.5)/(ImageHeight-1)*2-1, 0&gt;
        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
  texture_list
  { ImageWidth*ImageHeight*2,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth)
        texture { pigment { rgb Image[IndX][IndY] } }
        #if(IndX &lt; ImageWidth-1 &amp; IndY &lt; ImageHeight-1)
          texture { pigment { rgb
            (Image[IndX][IndY]+Image[IndX+1][IndY]+
             Image[IndX][IndY+1]+Image[IndX+1][IndY+1])/4 } }
        #else
          texture { pigment { rgb 0 } }
        #end
        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
  face_indices
  { (ImageWidth-1)*(ImageHeight-1)*4,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight-1)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth-1)
        &lt;IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),

        &lt;IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),

        &lt;IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),

        &lt;IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)
        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
}

camera { orthographic location -z*2 look_at 0 }
</pre>

</div>
<a name="t2_3_11_3"></a>
<div class="content-level-h4" contains="Short introduction to raytracing" id="t2_3_11_3">
<h4>2.3.11.3 Short introduction to raytracing</h4>
<p>Before we start looking at the code, let's look briefly how raytracing
works. This will help you understand what the script is doing.</p>

<p>The basic idea of raytracing is to shoot rays from the camera towards the
scene and see what does the ray hit. If the ray hits the surface of an object
then lighting calculations are performed in order to get the color of the
surface at that place.</p>

<p>The following image shows this graphically:</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="640px" src="images/c/c8/TutImgRaytracing.gif">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">The basic raytracing algorithm</p>
  </td>
</tr>
</table>

<p>First a ray is shot in a specified direction to see if there is something
there. As this is solved mathematically, we need to know the mathematical
representation of the ray and the objects in the scene so that we can
calculate where does the ray intersect the objects. Once we get all the
intersection points, we choose the closest one.</p>

<p>After this we have to calculate the lighting (ie. the illumination) of
the object at the intersection point. In the most basic lighting model
(as the one used in the script) there are three main things that affect
the lighting of the surface:</p>

<ul>
<li>The shadow test ray, which determines whether a light source illuminates
the intersection point or not.</li>
<li>The normal vector, which is a vector perpendicular (ie. at 90 degrees) to
the object surface at the intersection point. It determines the diffuse
component of the lighting as well as the direction of the reflected
ray (in conjunction with the incoming ray; that is, the angle alpha
determines the direction of the reflected ray).</li>
<li>The reflected ray, which determines the specular component of the
lighting and of course the color of the reflection (if the object is
reflective).</li>
</ul>

<p>Do not worry if these things sound a bit confusing. Full details of all
these things will be given through this tutorial, as we look what does
the raytracing script do. The most important thing at this stage is to
understand how the basic raytracing algorithm works at theoretical level
(the image above should say most of it).</p>

<p>Let's just look at the raytracer source code line by line and look what
does it do</p>

</div>
<a name="t2_3_11_4"></a>
<div class="content-level-h4" contains="Global settings" id="t2_3_11_4">
<h4>2.3.11.4 Global settings</h4>
<pre>
#declare ImageWidth = 160;
#declare ImageHeight = 120;
#declare MaxRecLev = 5;
#declare AmbientLight = &lt;.2,.2,.2&gt;;
#declare BGColor = &lt;0,0,0&gt;;
</pre>

<p>These lines just declare some identifiers defining some general values
which will be used later in the code. The keyword we use here is
<code>#declare</code> and it means that we are declaring a global identifier,
which will be seen in the whole code.</p>

<p>As you can see, we declare some identifiers to be of float type and others
to be of vector type. The vector type identifiers are, in fact, used later
for color definition (as their name implies).</p>

<p>The <code>ImageWidth</code> and <code>ImageHeight</code> define the
resolution of the image we are going to render. </p>
<p class="Note"><strong>Note:</strong> This only defines
the resolution of the image we are going to render in our SDL (ie. into the
array we will define later); it does not set the resolution of the image
which POV-Ray will render.</p>

<p>The <code>MaxRecLev</code> limits the maximum number of recursive
reflections the code will calculate. It is equivalent to the
<code>max_trace_level</code> value in <code>global_settings</code> which
POV-Ray uses to raytrace.</p>

<p>The <code>AmbientLight</code> defines a color which is added to all
surfaces. This is used to lighten up shadowed parts so that they are not
completely dark. It is equivalent to the <code>ambient_light</code> value in
<code>global_settings</code>.</p>

<p>Finally, <code>BGColor</code> defines the color of the rays which do not
hit anything. It is equivalent to the <code>background</code> block of POV-Ray.</p>

</div>
<a name="t2_3_11_5"></a>
<div class="content-level-h4" contains="Scene definition" id="t2_3_11_5">
<h4>2.3.11.5 Scene definition</h4>
<pre>
// Sphere information.
// Values are:
// Center, &lt;Radius, Reflection, 0&gt;, Color, &lt;phong_size, amount, 0&gt;
#declare Coord = array[5][4]
{ {&lt;-1.05,0,4&gt;, &lt;1,.5,0&gt;, &lt;1,.5,.25&gt;, &lt;40, .8, 0&gt;}
  {&lt;1.05,0,4&gt;, &lt;1,.5,0&gt;, &lt;.5,1,.5&gt;, &lt;40, .8, 0&gt;}
  {&lt;0,-3,5&gt;, &lt;2,.5,0&gt;, &lt;.25,.5,1&gt;, &lt;30, .4, 0&gt;}
  {&lt;-1,2.3,9&gt;, &lt;2,.5,0&gt;, &lt;.5,.3,.1&gt;, &lt;30, .4, 0&gt;}
  {&lt;1.3,2.6,9&gt;, &lt;1.8,.5,0&gt;, &lt;.1,.3,.5&gt;, &lt;30, .4, 0&gt;}
}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {&lt;-1, 0, -.5&gt;, &lt;.8,.4,.1&gt;}
  {&lt;1, 1, -.5&gt;, &lt;1,1,1&gt;}
  {&lt;0,1,0&gt;, &lt;.1,.2,.5&gt;}
}
</pre>

<p>Here we use a bit more complex declarations: Array declarations.</p>

<p>In fact, they are even more complex than simple arrays, as we are declaring
two-dimensional arrays.</p>

<p>A simple one-dimensional array can be declared like:</p>

<pre>
#declare MyArray = array[4] { 1, 2, 3, 4 }
</pre>

<p>and then values can be read from inside it with for example:
<code>MyArray[2]</code> (which will return <code>3</code> in this case as
the indexing starts from 0, ie. the index 0 gets the first value in the
array).</p>

<p>A two-dimensional array can be thought as an array containing arrays.
That is, if you say <code>array[3][2]</code>, that means an array which
has 3 elements; each one of those elements is an array with 2 elements.
When you want to read a value from it, for example <code>MyArray[1][3]</code>,
you can think about it as get the fourth value from the second array (as
indexing starts from 0, then the index value 3 actually means fourth value).</p>

<p class="Note"><strong>Note:</strong> Although you can put almost anything inside an array (floats,
vectors, objects and so on) you can only put one type of things inside an
array. That is, you cannot mix float values and objects inside the same array.
(One nice feature is that all POV-Ray objects are considered equivalent,
which means that an object array can contain any objects inside it.)</p>

<p>What we are doing here is to define the information for our spheres and
light sources. The first array (called <code>Coord</code>) defines the
information for the spheres and the second (<code>LVect</code>) defines
the light sources.</p>

<p>For spheres we define their center as the first vector. The second
vector has both the radius of the sphere and its reflection amount
(which is equivalent to the <code>reflection</code> value in the
<code>finish</code> block of an object). This is a trick we use to
not to waste so much space, so we use two values of the same vector
for defining two different things.</p>

<p>The third vector defines the color of the sphere and the fourth the
specular component of the lighting (equivalent to <code>phong_size</code>
and <code>phong</code> values in the <code>finish</code> block of an
object).</p>

<p>The light source definition array contains direction vectors and colors.
This means that the light sources are directional, that is, they just say
which direction the light is coming from. It could have been equally easy
to make point lights, though.</p>

<p>We will use the information inside these arrays later in order to raytrace
the scene they define.</p>

</div>
<a name="t2_3_11_6"></a>
<div class="content-level-h4" contains="Initializing the raytracer" id="t2_3_11_6">
<h4>2.3.11.6 Initializing the raytracer</h4>
<pre>
#declare MaxDist = 1e5;
#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size(LVect, 1);

#declare Ind = 0;
#while(Ind &lt; LightAmnt)
  #declare LVect[Ind][0] = vnormalize(LVect[Ind][0]);
  #declare Ind = Ind+1;
#end
</pre>

<p>Before being able to start the raytracing, we have to intialize a couple
of things.</p>

<p>The <code>MaxDist</code> defines the maximum distance a surface can
be from the starting point of a ray. This means that if a surface is farther
away from the starting point of the ray than this value, it will not be
seen. Strictly speaking this value is unnecessary and we can make the
raytracer so that there is no such a limitation, but we save one extra
step when we do it this way, and for scenes sized like ours it does not
really matter. (If you really, really want to get rid of the limitation,
I am sure you will figure out yourself how to do it after this tutorial.)</p>

<p>The <code>ObjAmnt</code> and <code>LightAmnt</code> identifiers are
declared just to make it easier for us to see how many objects and lights
are there (we need this info to loop through all the objects and lights).
Calling the <code>dimension_size()</code> function is a really nice way
of getting the number of items in an array.</p>

<p>All right, now we are getting to a bit more advanced stuff: What does the
while-loop do there?</p>

<p>The <code>#while</code>-loop uses the <code>Ind</code> identifier as
an index value going from <code>0</code> to <code>LightAmnt-1</code>
(yes, <code>-1</code>; when <code>Ind</code> gets the value
<code>LightAmnt</code> the loop is ended right away). We also see that
we are indexing the <code>LVect</code> array; thus, it is clear we are
going through all the light sources (specifically through their direction
vectors, as we only use the <code>[0]</code> part) and we assign something
to them.</p>

<p>What we are doing is to assign a normalized version of each light
source direction onto themselves, that is, just normalizing them.</p>

<p>Normalize is a synonym for convert to unit vector, that is, convert
to a vector with the same direction as the original but with length 1.</p>

<p>Why? We will later see that for illumination calculations we will be
needing unit vectors. It is more efficient to convert the light source
directions to unit vectors once at the beginning than every time for
each pixel later.</p>

</div>
<a name="t2_3_11_7"></a>
<div class="content-level-h4" contains="Ray-sphere intersection" id="t2_3_11_7">
<h4>2.3.11.7 Ray-sphere intersection</h4>
<pre>
#macro calcRaySphereIntersection(P, D, sphereInd)
  #local V = P-Coord[sphereInd][0];
  #local R = Coord[sphereInd][1].x;

  #local DV = vdot(D, V);
  #local D2 = vdot(D, D);
  #local SQ = DV*DV-D2*(vdot(V, V)-R*R);
  #if(SQ &lt; 0) #local Result = -1;
  #else
    #local SQ = sqrt(SQ);
    #local T1 = (-DV+SQ)/D2;
    #local T2 = (-DV-SQ)/D2;
    #local Result = (T1&lt;T2 ? T1 : T2);
  #end
  Result
#end
</pre>

<p>This is the core of the whole raytracing process.</p>

<p>First let's see how a macro works (if you know it, just skip the
following section):</p>

</div>
<a name="t2_3_11_7_1"></a>
<div class="content-level-h5" contains="Inner workings of a macro" id="t2_3_11_7_1">
<h5>2.3.11.7.1 Inner workings of a macro</h5>
<p>A macro works like a substitution command (similar to the #define macros
in the C programming language). The body of the macro is in practice inserted in the place where
the macro is called. For example you can use a macro like this:</p>

<pre>
#macro UnitSphere()
  sphere { 0,1 }
#end

object { UnitSphere() pigment { rgb 1 } }
</pre>

<p>The result of this code is, in effect, as if you had written:</p>

<pre>
object { sphere { 0,1 } pigment { rgb 1 } }
</pre>

<p>Of course there is no reason in making this, as you could have just #declared
the <code>UnitSphere</code> as a sphere of radius 1. However, the power of
macros kick in when you start using macro parameters. For example:</p>

<pre>
#macro Sphere(Radius)
  sphere { 0, Radius }
#end

object { Sphere(3) pigment { rgb 1 } }
</pre>


<p>Now you can use the macro <code>Sphere</code> to create a sphere with
the specified radius. Of course this does not make much sense either, as
you could just write the sphere primitive directly because it is so short,
but this example is intentionally short to show how it works; the macros
become very handy when they create something much more complicated than
just a sphere.</p>

<p>There is one important difference between macros in POV-Ray and real
substitution macros: Any <code>#local</code> statement inside the macro
definition will be parsed at the visibility level of the macro only, that
is, it will have no effect on the environment where the macro was called
from. The following example shows what I am talking about:</p>

<pre>
#macro Sphere(Radius)
  #local Color = &lt;1,1,1&gt;;
  sphere { 0, Radius pigment { rgb Color } }
#end

#declare Color = &lt;1,0,0&gt;;
object { Sphere(3) }
   // 'Color' is still &lt;1,0,0&gt; here, 
   // thus the following box will be red:
box { -1,1 pigment { rgb Color } }
</pre>

<p>In the example above, although the macro creates a local identifier
called <code>Color</code> and there is an identifier with the same name
at global level, the local definition does not affect the global one.
Also even if there was not any global definition of <code>Color</code>,
the one inside the macro is not seen outside it.</p>

<p>There is one important exception to this, and this is one of the most
powerful features of macros (thanks to this they can be used as if they
were functions): If an identifier (be it local or global) appears alone
in the body of a macro (usually at the end), its value will be passed
outside the macro (as if it was a return value). The following example
shows how this works:</p>

<pre>
#macro Factorial(N)
  #local Result = 1;
  #local Ind = 2;
  #while(Ind &lt;= N)
    #local Result = Result*Ind;
    #local Ind = Ind+1;
  #end
  Result
#end

#declare Value = Factorial(5);
</pre>

<p>Although the identifier <code>Result</code> is local to the macro, its
value is passed as if it was a return value because of the last line of
the macro (where <code>Result</code> appears alone) and thus the identifier
<code>Value</code> will be set to the factorial of 5.</p>

</div>
<a name="t2_3_11_7_2"></a>
<div class="content-level-h5" contains="The ray-sphere intersection macro" id="t2_3_11_7_2">
<h5>2.3.11.7.2 The ray-sphere intersection macro</h5>
<p>Here is again the macro at the beginning of the page so that you do not
have to scroll so much in order to see it:</p>

<pre>
#macro calcRaySphereIntersection(P, D, sphereInd)
  #local V = P-Coord[sphereInd][0];
  #local R = Coord[sphereInd][1].x;

  #local DV = vdot(D, V);
  #local D2 = vdot(D, D);
  #local SQ = DV*DV-D2*(vdot(V, V)-R*R);
  #if(SQ &lt; 0) #local Result = -1;
  #else
    #local SQ = sqrt(SQ);
    #local T1 = (-DV+SQ)/D2;
    #local T2 = (-DV-SQ)/D2;
    #local Result = (T1&lt;T2 ? T1 : T2);
  #end
  Result
#end
</pre>

<p>The idea behind this macro is that it takes a starting point (ie. the
starting point of the ray) a direction vector (the direction where the
ray is shot) and an index to the sphere definition array defined previously.
The macro returns a factor value; this value expresses how much we have to
multiply the direction vector in order to hit the sphere.</p>

<p>This means that if the ray hits the specified sphere, the intersection
point will be located at:<br>
<code>StartingPoint + Result*Direction</code></p>

<p>The return value can be negative, which means that the intersection
point was actually behind the starting point. A negative value will be
just ignored, as if the ray did not hit anything. We can use this to make
a little trick (which may seem obvious when said, but not so obvious when
you have to figure it out for yourself): If the ray actually does not hit
the sphere, we return just a negative value (does not really matter which).</p>

<p>And how does the macro do it? What is the theory behind those
complicated-looking mathematical expressions?</p>

<p>I will use a syntax similar to POV-Ray syntax to express mathematical
formulas here since that is probably the easiest way of doing it.</p>

<p>Let's use the following letters:</p>

<p>
<code>P</code> = Starting point of the ray<br>
<code>D</code> = Direction of the ray<br>
<code>C</code> = Center of the sphere<br>
<code>R</code> = Radius of the sphere
</p>

<p>The theory behind the macro is that we have to see what is the value
<code>T</code> for which holds that:</p>

<p><code>vlength(P+T*D-C) = R</code></p>

<p>This means: The length of the vector between the center of the sphere
(<code>C</code>) and the intersection point (<code>P+T*D</code>) is equal
to the radius (<code>R</code>).</p>

<p>If we use an additional letter so that:</p>

<p><code>V = P-C</code></p>

<p>then the formula is reduced to:</p>

<p><code>vlength(T*D+V) = R</code></p>

<p>which makes our life easier. This formula can be opened as:</p>

<p><code>(T*D<sub>x</sub>+V<sub>x</sub>)<sup>2</sup> + 
(T*D<sub>y</sub>+V<sub>y</sub>)<sup>2</sup> + 
(T*D<sub>z</sub>+V<sub>z</sub>)<sup>2</sup> - R<sup>2</sup> = 0</code></p>

<p>Solving <code>T</code> from that is rather trivial math. We get a
2nd order polynomial which has two solutions (I will use the &quot;&#183;&quot; symbol
to represent the dot-product of two vectors):</p>

<p><code>T = (-D&#183;V &#177; sqrt((D&#183;V)<sup>2</sup> - D<sup>2</sup>(V<sup>2</sup>-R<sup>2</sup>))) / D<sup>2</sup></code></p>

<p class="Note"><strong>Note:</strong> <code>D<sup>2</sup></code> means actually
<code>D&#183;D</code>)</p>

<p>When the discriminant (ie. the expression inside the square root) is
negative, the ray does not hit the sphere and thus we can return a negative
value (the macro returns -1). We must check this in order to avoid the
<em>square root of a negative number</em> error; as it has a very logical
meaning in this case, the checking is natural.</p>

<p>If the value is positive, there are two
solutions (or just one if the value is zero, but that does not really
matter here), which corresponds to the two intersection points of the
ray with the sphere.</p>

<p>As we get two values, we have to return the one which is smaller (the
closest intersection). This is what this portion of the code does:</p>

<pre>
    #local Result = (T1&lt;T2 ? T1 : T2);
</pre>

<p class="Note"><strong>Note:</strong> This is an incomplete algorithm: If one value is negative
and the other positive (this happens when the starting point is inside
the sphere), we would have to return the positive one. The way it is now
results in that we will not see the inner surface of the sphere if we
put the camera inside one.</p>

<p>For our simple scene this is enough as we do not put our camera inside
a sphere nor we have transparent spheres. We could add a check there
which looks if one of the values is positive and the other negative and
returns the positive one. However, this has an odd and very annoying
result (you can try it if you want). This is most probably caused by
the inaccuracy of floating point numbers and happens when calculating
reflections (the starting point is exactly on the surface of the sphere).
We could correct these
problems by using epsilon values to get rid of accuracy problems, but
in our simple scene this will not be necessary. </p>

</div>
<a name="t2_3_11_8"></a>
<div class="content-level-h4" contains="The Trace macro" id="t2_3_11_8">
<h4>2.3.11.8 The Trace macro</h4>
<pre>
#macro Trace(P, D, recLev)
</pre>

<p>If the ray-sphere intersection macro was the core of the raytracer, then
the Trace-macro is practically everything else, the body of the raytracer.</p>

<p>The Trace-macro is a macro which takes the starting point of a ray, the
direction of the ray and a recursion count (which should always be 1 when
calling the macro from outside; 1 could be its default value if POV-Ray
supported default values for macro parameters). It calculates and returns a
color for that ray.</p>

<p>This is the macro we call for each pixel we want to calculate. That is,
the starting point of the ray is our camera location and the direction is
the direction of the ray starting from there and going through the pixel
we are calculating. The macro returns the color of that pixel.</p>

<p>What the macro does is to see which sphere (if any) does the ray hit
and then calculates the lighting for that intersection point (which includes
calculating reflection), and returns the color.</p>

<p>The Trace-macro is <em>recursive</em>, meaning that it calls itself. More
specifically, it calls itself when it wants to calculate the ray reflected
from the surface of a sphere. The <code>recLev</code> value is used to stop
this recursion when the maximum recursion level is reached (ie. it calculates
the reflection only if <code>recLev &lt; MaxRecLev</code>).</p>

<p>Let's examine this relatively long macro part by part:</p>

</div>
<a name="t2_3_11_8_1"></a>
<div class="content-level-h5" contains="Calculating the closest intersection" id="t2_3_11_8_1">
<h5>2.3.11.8.1 Calculating the closest intersection</h5>
<pre>
  #local minT = MaxDist;
  #local closest = ObjAmnt;

  // Find closest intersection:
  #local Ind = 0;
  #while(Ind &lt; ObjAmnt)
    #local T = calcRaySphereIntersection(P, D, Ind);
    #if(T&gt;0 &amp; T&lt;minT) 
      #local minT = T;
      #local closest = Ind;
    #end
    #local Ind = Ind+1;
  #end
</pre>

<p>A ray can hit several spheres and we need the closest intersection point
(and to know which sphere does it belong to). One could think that calculating
the closest intersection is rather complicated, needing things like sorting
all the intersection points and such. However, it is quite simple, as seen
in the code above.</p>

<p>If we remember from the previous part, the ray-sphere intersection macro
returns a factor value which tells us how much do we have to multiply the
direction vector in order to get the intersection point. What we do is just
to call the ray-sphere intersection macro for each sphere and take the
smallest returned value (which is greater than zero).</p>

<p>First we initialize the <code>minT</code> identifier, which will hold
this smallest value to something big (this is where we need the
<code>MaxDist</code> value, although modifying this code to work around this
limitation is trivial and left to the user). Then we go through all the
spheres and call the ray-sphere intersection macro for each one. Then we
look if the returned value was greater than 0 and smaller than
<code>minT</code>, and if so, we assign the value to <code>minT</code>. When
the loop ends, we have the smallest intersection point in it.</p>

<p class="Note"><strong>Note:</strong> We also assign the index to the sphere which the closest
intersection belongs to in the <code>closest</code> identifier.</p>

<p>Here we use a small trick, and it is related to its initial value:
<code>ObjAmnt</code>. Why did we initialize it to that? The purpose of it
was to initialize it to some value which is not a legal index to a sphere
(<code>ObjAmnt</code> is not a legal index as the indices go from 0 to
<code>ObjAmnt-1</code>); a negative value would have worked as well, it
really does not matter. If the ray does not hit any sphere, then this identifier
is not changed and so we can see it afterwards.</p>

</div>
<a name="t2_3_11_8_2"></a>
<div class="content-level-h5" contains="If the ray doesn't hit anything" id="t2_3_11_8_2">
<h5>2.3.11.8.2 If the ray doesn't hit anything</h5>
<pre>
  // If not found, return background color:
  #if(closest = ObjAmnt)
    #local Pixel = BGColor;
</pre>

<p>If the ray did not hit any sphere, what we do is just to return the
bacground color (defined by the <code>BGColor</code> identifier).</p>

</div>
<a name="t2_3_11_8_3"></a>
<div class="content-level-h5" contains="Initializing color calculations" id="t2_3_11_8_3">
<h5>2.3.11.8.3 Initializing color calculations</h5>
<p>Now comes one of the most interesting parts of the raytracing process:
How do we calculate the color of the intersection point?</p>

<p>First we have to pre-calculate a couple of things:</p>

<pre>
  #else
    // Else calculate the color of the intersection point:
    #local IP = P+minT*D;
    #local R = Coord[closest][1].x;
    #local Normal = (IP-Coord[closest][0])/R;

    #local V = P-IP;
    #local Refl = 2*Normal*(vdot(Normal, V)) - V;
</pre>

<p>Naturally we need the intersection point itself (needed to calculate the
normal vector and as the starting point of the reflected ray). This is
calculated into the <code>IP</code> identifier with the formula which I
have been repeating a few times during this tutorial.</p>

<p>Then we need the normal vector of the surface at the intersection point.
A normal vector is a vector perpendicular (ie. at 90 degrees) to the surface.
For a sphere this is very easy to calculate: It is just the vector from the
center of the sphere to the intersection point.</p>
<p class="Note"><strong>Note:</strong> We normalize it
(ie. convert it into a unit vector, ie. a vector of length 1) by dividing
it by the radius of the sphere. The normal vector needs to be normalized for
lighting calculation.</p>

<p>Now a tricky one: We need the direction of the reflected ray. This
vector is of course needed to calculate the reflected ray, but it is also
needed for specular lighting.</p>

<p>This is calculated into the <code>Refl</code> identifier in the code
above. What we do is to take the vector from the intersection point to
the starting point (<code>P-IP</code>) and mirror it with respect to
the normal vector. The formula for mirroring a vector <code>V</code> with
respect to a unit vector (let's call it <code>Axis</code>) is:</p>

<p><code>MirroredV = 2*Axis*(Axis&#183;V) - V</code></p>

<p>(We could look at the theory behind this formula in more detail, but let's
not go too deep into math in this tutorial, shall we?)</p>
</div>
<a name="t2_3_11_8_4"></a>
<div class="content-level-h5" contains="Going through the light sources" id="t2_3_11_8_4">
<h5>2.3.11.8.4 Going through the light sources</h5>
<pre>
    // Lighting:
    #local Pixel = AmbientLight;
    #local Ind = 0;
    #while(Ind &lt; LightAmnt)
      #local L = LVect[Ind][0];
</pre>

<p>Now we can calculate the lighting of the intersection point. For this
we need to go through all the light sources.</p>
<p class="Note"><strong>Note:</strong> <code>L</code> contains the direction vector which
points towards the light source, not its location.</p>

<p>We also initialize the color to be returned (<code>Pixel</code>) with
the ambient light value (given in the global settings part). The goal is to
add colors to this (the colors come from diffuse and specular lighting, and
reflection).</p>

</div>



<a name="t2_3_11_8_5"></a>
<div class="content-level-h5" contains="Shadow test" id="t2_3_11_8_5">
<h5>2.3.11.8.5 Shadow test</h5>
<p>The very first thing to do for calculating the lighting for a light source
is to see if the light source is illuminating the intersection point in the
first place (this is one of the nicest features of raytracing: shadow
calculations are laughably easy to do):</p>

<pre>
      // Shadowtest:
      #local Shadowed = false;
      #local Ind2 = 0;
      #while(Ind2 &lt; ObjAmnt)
        #if(Ind2!=closest &amp; calcRaySphereIntersection(IP,L,nd2)&gt;0)
          #local Shadowed = true;
          #local Ind2 = ObjAmnt;
        #end
        #local Ind2 = Ind2+1;
      #end
</pre>

<p>What we do is to go through all the spheres (we skip the current sphere
although it is not necessary, but a little optimization is still a little
optimization), take the intersection point as starting point and the
light direction as the direction vector and see if the ray-sphere intersection
test returns a positive value for any of them (and quit the loop immediately
when one is found, as we do not need to check the rest anymore).</p>

<p>The result of the shadow test is put into the <code>Shadowed</code>
identifier as a boolean value (<code>true</code> if the point is shadowed).</p>

</div>
<a name="t2_3_11_8_6"></a>
<div class="content-level-h5" contains="Diffuse lighting" id="t2_3_11_8_6">
<h5>2.3.11.8.6 Diffuse lighting</h5>
<p>The diffuse component of lighting is generated when a light ray hits
a surface and it is reflected equally to all directions. The brightest part
of the surface is where the normal vector points directly in the direction
of the light. The lighting diminishes in relation to the cosine of the
angle between the normal vector and the light vector.</p>

<pre>
      #if(!Shadowed)
        // Diffuse:
        #local Factor = vdot(Normal, L);
        #if(Factor &gt; 0)
          #local Pixel = 
             Pixel + LVect[Ind][1]*Coord[closest][2]*Factor;
        #end
</pre>

<p>The code for diffuse lighting is surprisingly short.</p>

<p>There is an extremely nice trick in mathematics to get the cosine of the
angle between two unit vectors: It is their dot-product.</p>

<p>What we do is to calculate the dot-product of the normal vector and the
light vector (both have been normalized previously). If the dot-product
is negative it means that the normal vector points in the opposite direction
than the light vector. Thus we are only interested in positive values.</p>

<p>Thus, we add to the pixel color the color of the light source multiplied
by the color of the surface of the sphere multiplied by the dot-product.
This gives us the diffuse component of the lighting.</p>

</div>
<a name="t2_3_11_8_7"></a>
<div class="content-level-h5" contains="Specular lighting" id="t2_3_11_8_7">
<h5>2.3.11.8.7 Specular lighting</h5>
<p>The specular component of lighting comes from the fact that most surfaces
do not reflect light equally to all directions, but they reflect more light
to the reflected ray direction, that is, the surface has some mirror
properties. The brightest part of the surface is where the reflected ray
points in the direction of the light.</p>

<p>Photorealistic lighting is a very complicated issue and there are lots
of different lighting models out there, which try to simulate real-world
lighting more or less accurately. For our simple raytracer we just use
a simple Phong lighting model, which suffices more than enough.</p>

<pre>
        // Specular:
        #local Factor = vdot(vnormalize(Refl), L);
        #if(Factor &gt; 0)
          #local Pixel = Pixel + LVect[Ind][1]*
                         pow(Factor, Coord[closest][3].x)*
                         Coord[closest][3].y;
        #end
</pre>

<p>The calculation is similar to the diffuse lighting with the following
differences:</p>

<ul>
<li>We do not use the normal vector, but the reflected vector.</li>
<li>The color of the surface is not taken into account (a very simple
Phong lighting model).</li>
<li>We do not take the dot-product as is, but we raise it to a power given
in the scene definition (phong size).</li>
<li>We use a brightness factor given in the scene definition to multiply
the color (phong amount).</li>
</ul>

<p>Thus, the color we add to the pixel color is the color of the light
source multiplied by the dot-product (which is raised to the given power)
and by the given brightness amount.</p>

<p>Then we close the code blocks:</p>

<pre>
      #end // if(!Shadowed)
      #local Ind = Ind+1;
    #end // while(Ind &lt; LightAmnt)
</pre>

</div>
<a name="t2_3_11_8_8"></a>
<div class="content-level-h5" contains="Reflection Calculation" id="t2_3_11_8_8">
<h5>2.3.11.8.8 Reflection Calculation</h5>
<pre>
    // Reflection:
    #if(recLev &lt; MaxRecLev &amp; Coord[closest][1].y &gt; 0)
      #local Pixel = 
        Pixel + Trace(IP, Refl, recLev+1)*Coord[closest][1].y;
    #end
</pre>

<p>Another nice aspect of raytracing is that reflection is very easy to 
calculate.</p>

<p>Here we check that the recursion level has not reached the limit and 
that the sphere has a reflection component defined. If both are so, we 
add the reflected component (the color of the reflected ray multiplied 
by the reflection factor) to the pixel color.</p>

<p>This is where the recursive call happens (the macro calls itself). The 
recursion level (recLev) is increased by one for the next call so that 
somewhere down the line, the series of Trace() calls will know to stop 
(preventing a ray from bouncing back and forth forever between two 
mirrors). This is basically how the max_trace_level global setting works 
in POV-Ray.</p>

<p>Finally, we close the code blocks and return the pixel color from the 
macro:</p>

<pre>
  #end // else

  Pixel
#end
</pre>

</div>
<a name="t2_3_11_9"></a>
<div class="content-level-h4" contains="Calculating the image" id="t2_3_11_9">
<h4>2.3.11.9 Calculating the image</h4>
<pre>
#debug &quot;Rendering...\n\n&quot;
#declare Image = array[ImageWidth][ImageHeight]

#declare IndY = 0;
#while(IndY &lt; ImageHeight)
  #declare CoordY = IndY/(ImageHeight-1)*2-1;
  #declare IndX = 0;
  #while(IndX &lt; ImageWidth)
    #declare CoordX =
       (IndX/(ImageWidth-1)-.5)*2*ImageWidth/ImageHeight;
    #declare Image[IndX][IndY] =
      Trace(-z*3, &lt;CoordX, CoordY, 3&gt;, 1);
    #declare IndX = IndX+1;
  #end
  #declare IndY = IndY+1;
  #debug concat(&quot;\rDone &quot;, str(100*IndY/ImageHeight,0,1),
    &quot;%  (line &quot;, str(IndY,0,0),&quot; out of &quot;,str(ImageHeight,0,0),&quot;)&quot;)
#end
#debug &quot;\n&quot;
</pre>

<p>Now we just have to calculate the image into an array of colors. This
array is defined at the beginning of the code above; it is a two-dimensional
array representing the final image we are calculating.</p>

<p>Notice how we use the <code>#debug</code> stream to output useful information
about the rendering process while we are calculating. This is nice because
the rendering process is quite slow and it is good to give the user some
feedback about what is happening and how long it will take. (Also note that
the &quot;<code>%</code>&quot; character in the string of the second
<code>#debug</code> command will work ok only in the Windows version of
POV-Ray; for other versions it may be necessary to convert it to
&quot;<code>%%</code>&quot;.)</p>

<p>What we do here is to go through each pixel of the image (ie. the
array) and for each one calculate the camera location (fixed to
<code>-z*3</code> here) and the direction of the ray that goes through the
pixel (in this code the viewing plane is fixed and located in the
x-y-plane and its height is fixed to 1).</p>

<p>What the following line:</p>

<pre>
  #declare CoordY = IndY/(ImageHeight-1)*2-1;
</pre>

<p>does is to scale the <code>IndY</code> so that it goes from -1 to 1.
It is first divided by the maximum value it gets (which is
<code>ImageHeight-1</code>) and then it is multiplied by 2 and substracted
by 1. This results in a value which goes from -1 to 1.</p>

<p>The <code>CoordX</code> is calculated similarly, but it is also multiplied
by the aspect ratio of the image we are calculating (so that we do not get
a squeezed image).</p>

</div>
<a name="t2_3_11_10"></a>
<div class="content-level-h4" contains="Creating the colored mesh" id="t2_3_11_10">
<h4>2.3.11.10 Creating the colored mesh</h4>
<p>If you think that these things we have been examining are advanced, then
you have not seen anything. Now comes real hard-core advanced POV-Ray code,
so be prepared. This could be called <em>The really advanced section</em>.</p>

<p>We have now calculated the image into the array of colors. However, we
still have to show these color pixels on screen, that is, we have to make
POV-Ray to render our pixels so that it creates a real image.</p>

<p>There are several ways of doing this, all of them being more or less
kludges (as there is currently no way of directly creating an image map
from a group of colors). One could create colored boxes representing each
pixel, or one could output to an ascii-formatted image file (mainly PPM)
and then read it as an image map. The first one has the disadvantage of
requiring huge amounts of memory and missing bilinear interpolation of the
image; the second one has the disadvantage of requiring a temporary file.</p>

<p>What we are going to do is to calculate a colored mesh2 which represents
the screen.
As colors are interpolated between the vertices of a triangle, the
bilinear interpolation comes for free (almost).</p>

</div>
<a name="t2_3_11_10_1"></a>
<div class="content-level-h5" contains="The structure of the mesh" id="t2_3_11_10_1">
<h5>2.3.11.10.1 The structure of the mesh</h5>
<p>Although all the triangles are located in the x-y plane and they are all
the same size, the structure of the mesh is quite complicated (so complicated
it deserves its own section here).</p>

<p>The following image shows how the triangles are arranged for a 4x3 pixels
image:</p>

<table class="centered" width="660px" cellpadding="0" cellspacing="10">
<tr>
  <td>
    <img class="center" width="640px" src="images/9/9a/TutImgTriangles.gif">
  </td>
</tr>
<tr>
  <td>
    <p class="caption">Triangle arrangement for a 4x3 image</p>
  </td>
</tr>
</table>

<p>The number pairs in parentheses represent image pixel coordinates
(eg. <code>(0,0)</code> refers to the pixel at the lower left corner of
the image and <code>(3,2)</code> to the pixel at the upper right corner).
That is, the triangles will be colored as the image pixels at these
points. The colors will then be interpolated between them along the surface
of the triangles.</p>

<p>The filled and non-filled circles in the image represent the vertex points
of the triangles and the lines connecting them show how the triangles are
arranged. The smaller numbers near these circles indicate their index value
(the one which will be created inside the <code>mesh2</code>).</p>

<p>We notice two things which may seem odd: Firstly there are extra vertex
points outside the mesh, and secondly, there are extra vertex points in the
middle of each square.</p>

<p>Let's start with the vertices in the middle of the squares: We could
have just made each square with two triangles instead of four, as we have
done here. However, the color interpolation is not nice this way, as there
appears a clear diagonal line where the triangle edges go. If we make
each square with four triangles instead, then the diagonal lines are
less apparent, and the interpolation resembles a lot better a true
bilinear interpolation. And what is the color of the middle points? Of
course it is the average of the color of the four points in the corners.</p>

<p>Secondly: Yes, the extra vertex points outside the mesh are completely
obsolete and take no part in the creation of the mesh. We could perfectly
create the exact same mesh without them. However, getting rid of these
extra vertex points makes our lives more difficult when creating the
triangles, as it would make the indexing of the points more difficult.
It may not be too much work to get rid of them, but they do not take
any considerable amount of resources and they make our lives easier, so
let's just let them be (if you want to remove them, go ahead).</p>

</div>
<a name="t2_3_11_10_2"></a>
<div class="content-level-h5" contains="Creating the mesh" id="t2_3_11_10_2">
<h5>2.3.11.10.2 Creating the mesh</h5>
<p>What this means is that for each pixel we create two vertex points,
one at the pixel location and one shifted by 0.5 in the x and y directions.
Then we specify the color for each vertex points: For the even vertex points
it is directly the color of the correspondent pixel; for the odd vertex points
it is the average of the four surrounding pixels.</p>

<p>Let's examine the creation of the mesh step by step:</p>

</div>
<a name="t2_3_11_10_3"></a>
<div class="content-level-h5" contains="Creating the vertex points" id="t2_3_11_10_3">
<h5>2.3.11.10.3 Creating the vertex points</h5>
<pre>
#default { finish { ambient 1 } }

#debug &quot;Creating colored mesh to show image...\n&quot;
mesh2
{ vertex_vectors
  { ImageWidth*ImageHeight*2,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth)
        &lt;(IndX/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
         IndY/(ImageHeight-1)*2-1, 0&gt;,
        &lt;((IndX+.5)/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
         (IndY+.5)/(ImageHeight-1)*2-1, 0&gt;
        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
</pre>

<p>First of all we use a nice trick in POV-Ray: Since we are not using
light sources and there is nothing illuminating our mesh, what we do
is to set the ambient value of the mesh to 1. We do this by just making
it the default with the <code>#default</code> command, so we do not have
to bother later.</p>

<p>As we saw above, what we are going to do is to create two vertex points
for each pixel. Thus we know without further thinking how many vertex
vectors there will be: <code>ImageWidth*ImageHeight*2</code></p>

<p>That was the easy part; now we have to figure out how to create the
vertex points themselves. Each vertex location should correspond to the
pixel location it is representing, thus we go through each pixel index
(practically the number pairs in parentheses in the image above) and
create vertex points using these index values. The location of these
pixels and vertices are the same as we assumed when we calculated the
image itself (in the previous part). Thus the y coordinate of each vertex
point should go from -1 to 1 and similarly the x coordinate, but scaled
with the aspect ratio.</p>

<p>If you look at the creation of the first vector in the code above, you will
see that it is almost identical to the direction vector we calculated when
creating the image.</p>

<p>The second vector should be shifted by 0.5 in both directions, and that is
exactly what is done there. The second vector definition is identical to
the first one except that the index values are shifted by 0.5. This creates
the points in the middle of the squares.</p>

<p>The index values of these points will be arranged as shown in the image
above.</p>

</div>
<a name="t2_3_11_10_4"></a>
<div class="content-level-h5" contains="Creating the textures" id="t2_3_11_10_4">
<h5>2.3.11.10.4 Creating the textures</h5>
<pre>
  texture_list
  { ImageWidth*ImageHeight*2,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth)
        texture { pigment { rgb Image[IndX][IndY] } }
        #if(IndX &lt; ImageWidth-1 &amp; IndY &lt; ImageHeight-1)
          texture { pigment { rgb
            (Image[IndX][IndY]+Image[IndX+1][IndY]+
             Image[IndX][IndY+1]+Image[IndX+1][IndY+1])/4 } }
        #else
          texture { pigment { rgb 0 } }
        #end
        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
</pre>

<p>Creating the textures is very similar to creating the vertex points
(we could have done both inside the same loop, but due to the syntax
of the <code>mesh2</code> we have to do it separately).</p>

<p>So what we do is to go through all the pixels in the image and create
textures for each one. The first texture is just the pixel color itself.
The second texture is the average of the four surrounding pixels. </p>
<p class="Note"><strong>Note:</strong> We can calculate it only for the vertex points in the middle of
the squares; for the extra vertex points outside the image we just define
a dummy black texture.</p>

<p>The textures have the same index values as the vertex points.</p>

</div>
<a name="t2_3_11_10_5"></a>
<div class="content-level-h5" contains="Creating the triangles" id="t2_3_11_10_5">
<h5>2.3.11.10.5 Creating the triangles</h5>
<p>This one is a bit trickier. Basically we have to create four triangles
for each square between pixels. How many triangles will there be?</p>

<p>Let's examine the creation loop first:</p>

<pre>
  face_indices
  { (ImageWidth-1)*(ImageHeight-1)*4,
    #declare IndY = 0;
    #while(IndY &lt; ImageHeight-1)
      #declare IndX = 0;
      #while(IndX &lt; ImageWidth-1)

        ...

        #declare IndX = IndX+1;
      #end
      #declare IndY = IndY+1;
    #end
  }
</pre>

<p>The number of squares is one less than the number of pixels in each
direction. That is, the number of squares in the x direction will be one
less than the number of pixels in the x direction. The same for the y
direction. As we want four triangles for each square, the total number of
triangles will then be <code>(ImageWidth-1)*(ImageHeight-1)*4</code>.</p>

<p>Then to create each square we loop the amount of pixels minus one for
each direction.</p>

<p>Now in the inside of the loop we have to create the four triangles.
Let's examine the first one:</p>

<pre>
        &lt;IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),
</pre>

<p>This creates a triangle with a texture in each vertex. The first three
values (the indices to vertex points) are identical to the next three values
(the indices to the textures) because the index values were exactly the same
for both.</p>

<p>The <code>IndX</code> is always multiplied by 2 because we had two vertex
points for each pixel and <code>IndX</code> is basically going through the
pixels. Likewise <code>IndY</code> is always multiplied by
<code>ImageWidth*2</code> because that is how long a row of index points
is (ie. to get from one row to the next at the same x coordinate we have
to advance <code>ImageWidth*2</code> in the index values).</p>

<p>These two things are identical in all the triangles. What decides which
vertex point is chosen is the &quot;+1&quot; or &quot;+2&quot; (or &quot;+0&quot; when there is nothing).
For <code>IndX</code> &quot;+0&quot; is the current pixel, &quot;+1&quot; chooses the point in
the middle of the square and &quot;+2&quot; chooses the next pixel. For
<code>IndY</code> &quot;+1&quot; chooses the next row of pixels.</p>

<p>Thus this triangle definition creates a triangle using the vertex point
for the current pixel, the one for the next pixel and the vertex point in
the middle of the square.</p>

<p>The next triangle definition is likewise:</p>

<pre>
        &lt;IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  IndY    *(ImageWidth*2),
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),
</pre>

<p>This one defines the triangle using the current point, the point in the
next row and the point in the middle of the square.</p>

<p>The next two definitions define the other two triangles:</p>

<pre>
        &lt;IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+  (IndY+1)*(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2),

        &lt;IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)&gt;,
         IndX*2+2+IndY    *(ImageWidth*2),
         IndX*2+2+(IndY+1)*(ImageWidth*2),
         IndX*2+1+IndY    *(ImageWidth*2)
</pre>

</div>
<a name="t2_3_11_11"></a>
<div class="content-level-h4" contains="The Camera-setup" id="t2_3_11_11">
<h4>2.3.11.11 The Camera-setup</h4>
<p>The only thing left is the camera definition, so that POV-Ray can
calculate the image correctly:</p>

<pre>
  camera { orthographic location -z*2 look_at 0 }
</pre>

<p>Why 2? As the default <code>direction</code> vector is
<code>&lt;0,0,1&gt;</code> and the default <code>up</code> vector is
<code>&lt;0,1,0&gt;</code> and we want the up direction to cover 2 units,
we have to move the camera two units away.</p>

</div>

</div>

</div>
</body>
</html>