1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
|
/*******************************************************************************
* polysolv.cpp
*
* This file was written by Alexander Enzmann. He wrote the code for
* 4th-6th order shapes and generously provided us these enhancements.
*
* ---------------------------------------------------------------------------
* Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
* Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
*
* POV-Ray is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* POV-Ray is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------------
* POV-Ray is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
* ---------------------------------------------------------------------------
* $File: //depot/public/povray/3.x/source/backend/math/polysolv.cpp $
* $Revision: #1 $
* $Change: 6069 $
* $DateTime: 2013/11/06 11:59:40 $
* $Author: chrisc $
*******************************************************************************/
// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/math/polysolv.h"
#include "backend/scene/threaddata.h"
// this must be the last file included
#include "base/povdebug.h"
namespace pov
{
/*****************************************************************************
* Local preprocessor defines
******************************************************************************/
/* WARNING WARNING WARNING
The following three constants have been defined so that quartic equations
will properly render on fpu/compiler combinations that only have 64 bit
IEEE precision. Do not arbitrarily change any of these values.
If you have a machine with a proper fpu/compiler combo - like a Mac with
a 68881, then use the native floating format (96 bits) and tune the
values for a little less tolerance: something like: factor1 = 1.0e15,
factor2 = -1.0e-7, factor3 = 1.0e-10.
The meaning of the three constants are:
factor1 - the magnitude of difference between coefficients in a
quartic equation at which the Sturmian root solver will
kick in. The Sturm solver is quite a bit slower than
the algebraic solver, so the bigger this is, the faster
the root solving will go. The algebraic solver is less
accurate so the bigger this is, the more likely you will
get bad roots.
factor2 - Tolerance value that defines how close the quartic equation
is to being a square of a quadratic. The closer this can
get to zero before roots disappear, the less the chance
you will get spurious roots.
factor3 - Similar to factor2 at a later stage of the algebraic solver.
*/
#ifndef FUDGE_FACTOR1
#define FUDGE_FACTOR1 1.0e12
#endif
#ifndef FUDGE_FACTOR2
#define FUDGE_FACTOR2 -1.0e-5
#endif
#ifndef FUDGE_FACTOR3
#define FUDGE_FACTOR3 1.0e-7
#endif
/* Constants. */
const DBL TWO_M_PI_3 = 2.0943951023931954923084;
const DBL FOUR_M_PI_3 = 4.1887902047863909846168;
/* Max number of iterations. */
const int MAX_ITERATIONS = 50;
/* A coefficient smaller than SMALL_ENOUGH is considered to be zero (0.0). */
const DBL SMALL_ENOUGH = 1.0e-10;
/* Smallest relative error we want. */
const DBL RELERROR = 1.0e-12;
/*****************************************************************************
* Local typedefs
******************************************************************************/
struct polynomial
{
int ord;
DBL coef[MAX_ORDER+1];
};
/*****************************************************************************
* Static functions
******************************************************************************/
static int solve_quadratic (const DBL *x, DBL *y);
static int solve_cubic (const DBL *x, DBL *y);
static int solve_quartic (const DBL *x, DBL *y);
static int polysolve (int order, const DBL *Coeffs, DBL *roots);
static int modp (const polynomial *u, const polynomial *v, polynomial *r);
static int regula_falsa (int order, const DBL *coef, DBL a, DBL b, DBL *val);
static int sbisect (int np, const polynomial *sseq, DBL min, DBL max, int atmin, int atmax, DBL *roots);
static int numchanges (int np, const polynomial *sseq, DBL a);
static DBL polyeval (DBL x, int n, const DBL *Coeffs);
static int buildsturm (int ord, polynomial *sseq);
static int visible_roots (int np, const polynomial *sseq, int *atneg, int *atpos);
static int difficult_coeffs (int n, const DBL *x);
/*****************************************************************************
*
* FUNCTION
*
* modp
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Calculates the modulus of u(x) / v(x) leaving it in r.
* It returns 0 if r(x) is a constant.
*
* NOTE: This function assumes the leading coefficient of v is 1 or -1.
*
* CHANGES
*
* Okt 1996 : Added bug fix by Heiko Eissfeldt. [DB]
*
******************************************************************************/
static int modp(const polynomial *u, const polynomial *v, polynomial *r)
{
int k, j;
*r = *u;
if (v->coef[v->ord] < 0.0)
{
for (k = u->ord - v->ord - 1; k >= 0; k -= 2)
{
r->coef[k] = -r->coef[k];
}
for (k = u->ord - v->ord; k >= 0; k--)
{
for (j = v->ord + k - 1; j >= k; j--)
{
r->coef[j] = -r->coef[j] - r->coef[v->ord + k] * v->coef[j - k];
}
}
}
else
{
for (k = u->ord - v->ord; k >= 0; k--)
{
for (j = v->ord + k - 1; j >= k; j--)
{
r->coef[j] -= r->coef[v->ord + k] * v->coef[j - k];
}
}
}
k = v->ord - 1;
while (k >= 0 && fabs(r->coef[k]) < SMALL_ENOUGH)
{
r->coef[k] = 0.0;
k--;
}
r->ord = (k < 0) ? 0 : k;
return(r->ord);
}
/*****************************************************************************
*
* FUNCTION
*
* buildsturm
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Build the sturmian sequence for a polynomial.
*
* CHANGES
*
* -
*
******************************************************************************/
static int buildsturm(int ord, polynomial *sseq)
{
int i;
DBL f;
DBL *fp, *fc;
polynomial *sp;
sseq[0].ord = ord;
sseq[1].ord = ord - 1;
/* calculate the derivative and normalize the leading coefficient. */
f = fabs(sseq[0].coef[ord] * ord);
fp = sseq[1].coef;
fc = sseq[0].coef + 1;
for (i = 1; i <= ord; i++)
{
*fp++ = *fc++ * i / f;
}
/* construct the rest of the Sturm sequence */
for (sp = sseq + 2; modp(sp - 2, sp - 1, sp); sp++)
{
/* reverse the sign and normalize */
f = -fabs(sp->coef[sp->ord]);
for (fp = &sp->coef[sp->ord]; fp >= sp->coef; fp--)
{
*fp /= f;
}
}
/* reverse the sign */
sp->coef[0] = -sp->coef[0];
return(sp - sseq);
}
/*****************************************************************************
*
* FUNCTION
*
* visible_roots
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Find out how many visible intersections there are.
*
* CHANGES
*
* -
*
******************************************************************************/
static int visible_roots(int np, const polynomial *sseq, int *atzer, int *atpos)
{
int atposinf, atzero;
const polynomial *s;
DBL f, lf;
atposinf = atzero = 0;
/* changes at positve infinity */
lf = sseq[0].coef[sseq[0].ord];
for (s = sseq + 1; s <= sseq + np; s++)
{
f = s->coef[s->ord];
if (lf == 0.0 || lf * f < 0)
{
atposinf++;
}
lf = f;
}
/* Changes at zero */
lf = sseq[0].coef[0];
for (s = sseq+1; s <= sseq + np; s++)
{
f = s->coef[0];
if (lf == 0.0 || lf * f < 0)
{
atzero++;
}
lf = f;
}
*atzer = atzero;
*atpos = atposinf;
return(atzero - atposinf);
}
/*****************************************************************************
*
* FUNCTION
*
* numchanges
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Return the number of sign changes in the Sturm sequence in
* sseq at the value a.
*
* CHANGES
*
* -
*
******************************************************************************/
static int numchanges(int np, const polynomial *sseq, DBL a)
{
int changes;
DBL f, lf;
const polynomial *s;
changes = 0;
lf = polyeval(a, sseq[0].ord, sseq[0].coef);
for (s = sseq + 1; s <= sseq + np; s++)
{
f = polyeval(a, s->ord, s->coef);
if (lf == 0.0 || lf * f < 0)
{
changes++;
}
lf = f;
}
return(changes);
}
/*****************************************************************************
*
* FUNCTION
*
* sbisect
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Uses a bisection based on the sturm sequence for the polynomial
* described in sseq to isolate intervals in which roots occur,
* the roots are returned in the roots array in order of magnitude.
*
* NOTE: This routine has one severe bug: When the interval containing the
* root [min, max] has a root at one of its endpoints, as well as one
* within the interval, the root at the endpoint will be returned
* rather than the one inside.
*
* CHANGES
*
* -
*
******************************************************************************/
static int sbisect(int np, const polynomial *sseq, DBL min_value, DBL max_value, int atmin, int atmax, DBL *roots)
{
DBL mid;
int n1, n2, its, atmid;
if ((atmin - atmax) == 1)
{
/* first try using regula-falsa to find the root. */
if (regula_falsa(sseq->ord, sseq->coef, min_value, max_value, roots))
{
return(1);
}
else
{
/* That failed, so now find it by bisection */
for (its = 0; its < MAX_ITERATIONS; its++)
{
mid = (min_value + max_value) / 2;
atmid = numchanges(np, sseq, mid);
/* The follow only happens if there is a bug. And
unfortunately, there is. CEY 04/97
*/
if ((atmid<atmax) || (atmid>atmin))
{
return(0);
}
if (fabs(mid) > RELERROR)
{
if (fabs((max_value - min_value) / mid) < RELERROR)
{
roots[0] = mid;
return(1);
}
}
else
{
if (fabs(max_value - min_value) < RELERROR)
{
roots[0] = mid;
return(1);
}
}
if ((atmin - atmid) == 0)
{
min_value = mid;
}
else
{
max_value = mid;
}
}
/* Bisection took too long - just return what we got */
roots[0] = mid;
return(1);
}
}
/* There is more than one root in the interval.
Bisect to find new intervals. */
for (its = 0; its < MAX_ITERATIONS; its++)
{
mid = (min_value + max_value) / 2;
atmid = numchanges(np, sseq, mid);
/* The follow only happens if there is a bug. And
unfortunately, there is. CEY 04/97
*/
if ((atmid<atmax) || (atmid>atmin))
{
return(0);
}
if (fabs(mid) > RELERROR)
{
if (fabs((max_value - min_value) / mid) < RELERROR)
{
roots[0] = mid;
return(1);
}
}
else
{
if (fabs(max_value - min_value) < RELERROR)
{
roots[0] = mid;
return(1);
}
}
n1 = atmin - atmid;
n2 = atmid - atmax;
if ((n1 != 0) && (n2 != 0))
{
n1 = sbisect(np, sseq, min_value, mid, atmin, atmid, roots);
n2 = sbisect(np, sseq, mid, max_value, atmid, atmax, &roots[n1]);
return(n1 + n2);
}
if (n1 == 0)
{
min_value = mid;
}
else
{
max_value = mid;
}
}
/* Took too long to bisect. Just return what we got. */
roots[0] = mid;
return(1);
}
/*****************************************************************************
*
* FUNCTION
*
* polyeval
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Evaluate the value of a polynomial at the given value x.
*
* The coefficients are stored in c in the following order:
*
* c[0] + c[1] * x + c[2] * x ^ 2 + c[3] * x ^ 3 + ...
*
* CHANGES
*
* -
*
******************************************************************************/
static DBL polyeval(DBL x, int n, const DBL *Coeffs)
{
int i;
DBL val;
val = Coeffs[n];
for (i = n-1; i >= 0; i--)
{
val = val * x + Coeffs[i];
}
return(val);
}
/*****************************************************************************
*
* FUNCTION
*
* regular_falsa
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Close in on a root by using regula-falsa.
*
* CHANGES
*
* -
*
******************************************************************************/
static int regula_falsa(int order, const DBL *coef, DBL a, DBL b, DBL *val)
{
int its;
DBL fa, fb, x, fx, lfx;
fa = polyeval(a, order, coef);
fb = polyeval(b, order, coef);
if (fa * fb > 0.0)
{
return 0;
}
if (fabs(fa) < SMALL_ENOUGH)
{
*val = a;
return(1);
}
if (fabs(fb) < SMALL_ENOUGH)
{
*val = b;
return(1);
}
lfx = fa;
for (its = 0; its < MAX_ITERATIONS; its++)
{
x = (fb * a - fa * b) / (fb - fa);
fx = polyeval(x, order, coef);
if (fabs(x) > RELERROR)
{
if (fabs(fx / x) < RELERROR)
{
*val = x;
return(1);
}
}
else
{
if (fabs(fx) < RELERROR)
{
*val = x;
return(1);
}
}
if (fa < 0)
{
if (fx < 0)
{
a = x;
fa = fx;
if ((lfx * fx) > 0)
{
fb /= 2;
}
}
else
{
b = x;
fb = fx;
if ((lfx * fx) > 0)
{
fa /= 2;
}
}
}
else
{
if (fx < 0)
{
b = x;
fb = fx;
if ((lfx * fx) > 0)
{
fa /= 2;
}
}
else
{
a = x;
fa = fx;
if ((lfx * fx) > 0)
{
fb /= 2;
}
}
}
/* Check for underflow in the domain */
if (fabs(b-a) < RELERROR)
{
*val = x;
return(1);
}
lfx = fx;
}
return(0);
}
/*****************************************************************************
*
* FUNCTION
*
* solve_quadratic
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Solve the quadratic equation:
*
* x[0] * x^2 + x[1] * x + x[2] = 0.
*
* The value returned by this function is the number of real roots.
* The roots themselves are returned in y[0], y[1].
*
* CHANGES
*
* -
*
******************************************************************************/
static int solve_quadratic(const DBL *x, DBL *y)
{
DBL d, t, a, b, c;
a = x[0];
b = -x[1];
c = x[2];
if (a == 0.0)
{
if (b == 0.0)
{
return(0);
}
y[0] = c / b;
return(1);
}
// normalize the coefficients
b /= a;
c /= a;
a = 1.0;
d = b * b - 4.0 * a * c;
/* Treat values of d around 0 as 0. */
if ((d > -SMALL_ENOUGH) && (d < SMALL_ENOUGH))
{
y[0] = 0.5 * b / a;
return(1);
}
else
{
if (d < 0.0)
{
return(0);
}
}
d = sqrt(d);
t = 2.0 * a;
y[0] = (b + d) / t;
y[1] = (b - d) / t;
return(2);
}
/*****************************************************************************
*
* FUNCTION
*
* solve_cubic
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
*
* Solve the cubic equation:
*
* x[0] * x^3 + x[1] * x^2 + x[2] * x + x[3] = 0.
*
* The result of this function is an integer that tells how many real
* roots exist. Determination of how many are distinct is up to the
* process that calls this routine. The roots that exist are stored
* in (y[0], y[1], y[2]).
*
* NOTE: This function relies very heavily on trigonometric functions and
* the square root function. If an alternative solution is found
* that does not rely on transcendentals this code will be replaced.
*
* CHANGES
*
* -
*
******************************************************************************/
static int solve_cubic(const DBL *x, DBL *y)
{
DBL Q, R, Q3, R2, sQ, d, an, theta;
DBL A2, a0, a1, a2, a3;
a0 = x[0];
if (a0 == 0.0)
{
return(solve_quadratic(&x[1], y));
}
else
{
if (a0 != 1.0)
{
a1 = x[1] / a0;
a2 = x[2] / a0;
a3 = x[3] / a0;
}
else
{
a1 = x[1];
a2 = x[2];
a3 = x[3];
}
}
A2 = a1 * a1;
Q = (A2 - 3.0 * a2) / 9.0;
/* Modified to save some multiplications and to avoid a floating point
exception that occured with DJGPP and full optimization. [DB 8/94] */
R = (a1 * (A2 - 4.5 * a2) + 13.5 * a3) / 27.0;
Q3 = Q * Q * Q;
R2 = R * R;
d = Q3 - R2;
an = a1 / 3.0;
if (d >= 0.0)
{
/* Three real roots. */
d = R / sqrt(Q3);
theta = acos(d) / 3.0;
sQ = -2.0 * sqrt(Q);
y[0] = sQ * cos(theta) - an;
y[1] = sQ * cos(theta + TWO_M_PI_3) - an;
y[2] = sQ * cos(theta + FOUR_M_PI_3) - an;
return(3);
}
else
{
sQ = pow(sqrt(R2 - Q3) + fabs(R), 1.0 / 3.0);
if (R < 0)
{
y[0] = (sQ + Q / sQ) - an;
}
else
{
y[0] = -(sQ + Q / sQ) - an;
}
return(1);
}
}
#ifdef USE_NEW_DIFFICULT_COEFFS
/*****************************************************************************
*
* FUNCTION
*
* difficult_coeffs
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Test to see if any coeffs are more than 6 orders of magnitude
* larger than the smallest.
*
* CHANGES
*
* -
*
******************************************************************************/
static int difficult_coeffs(int n, DBL *x)
{
int i, flag = 0;
DBL t, biggest;
biggest = fabs(x[0]);
for (i = 1; i <= n; i++)
{
t = fabs(x[i]);
if (t > biggest)
{
biggest = t;
}
}
/* Everything is zero no sense in doing any more */
if (biggest == 0.0)
{
return(0);
}
for (i = 0; i <= n; i++)
{
if (x[i] != 0.0)
{
if (fabs(biggest / x[i]) > FUDGE_FACTOR1)
{
x[i] = 0.0;
flag = 1;
}
}
}
return(flag);
}
#else
/*****************************************************************************
*
* FUNCTION
*
* difficult_coeffs
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Test to see if any coeffs are more than 6 orders of magnitude
* larger than the smallest (function from POV 1.0) [DB 8/94].
*
* CHANGES
*
* -
*
******************************************************************************/
static int difficult_coeffs(int n, const DBL *x)
{
int i;
DBL biggest;
biggest = 0.0;
for (i = 0; i <= n; i++)
{
if (fabs(x[i]) > biggest)
{
biggest = x[i];
}
}
/* Everything is zero no sense in doing any more */
if (biggest == 0.0)
{
return(0);
}
for (i = 0; i <= n; i++)
{
if (x[i] != 0.0)
{
if (fabs(biggest / x[i]) > FUDGE_FACTOR1)
{
return(1);
}
}
}
return(0);
}
#endif
#ifdef TEST_SOLVER
/*****************************************************************************
*
* FUNCTION
*
* solve_quartic
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* The old way of solving quartics algebraically.
* This is an adaptation of the method of Lodovico Ferrari (Circa 1731).
*
* CHANGES
*
* -
*
******************************************************************************/
static int solve_quartic(const DBL *x, DBL *results)
{
DBL cubic[4], roots[3];
DBL a0, a1, y, d1, x1, t1, t2;
DBL c0, c1, c2, c3, c4, d2, q1, q2;
int i;
c0 = x[0];
if (c0 != 1.0)
{
c1 = x[1] / c0;
c2 = x[2] / c0;
c3 = x[3] / c0;
c4 = x[4] / c0;
}
else
{
c1 = x[1];
c2 = x[2];
c3 = x[3];
c4 = x[4];
}
/* The first step is to take the original equation:
x^4 + b*x^3 + c*x^2 + d*x + e = 0
and rewrite it as:
x^4 + b*x^3 = -c*x^2 - d*x - e,
adding (b*x/2)^2 + (x^2 + b*x/2)y + y^2/4 to each side gives a
perfect square on the lhs:
(x^2 + b*x/2 + y/2)^2 = (b^2/4 - c + y)x^2 + (b*y/2 - d)x + y^2/4 - e
By choosing the appropriate value for y, the rhs can be made a perfect
square also. This value is found when the rhs is treated as a quadratic
in x with the discriminant equal to 0. This will be true when:
(b*y/2 - d)^2 - 4.0 * (b^2/4 - c*y)*(y^2/4 - e) = 0, or
y^3 - c*y^2 + (b*d - 4*e)*y - b^2*e + 4*c*e - d^2 = 0.
This is called the resolvent of the quartic equation. */
a0 = 4.0 * c4;
cubic[0] = 1.0;
cubic[1] = -1.0 * c2;
cubic[2] = c1 * c3 - a0;
cubic[3] = a0 * c2 - c1 * c1 * c4 - c3 * c3;
i = solve_cubic(&cubic[0], &roots[0]);
if (i > 0)
{
y = roots[0];
}
else
{
return(0);
}
/* What we are left with is a quadratic squared on the lhs and a
linear term on the right. The linear term has one of two signs,
take each and add it to the lhs. The form of the quartic is now:
a' = b^2/4 - c + y, b' = b*y/2 - d, (from rhs quadritic above)
(x^2 + b*x/2 + y/2) = +sqrt(a'*(x + 1/2 * b'/a')^2), and
(x^2 + b*x/2 + y/2) = -sqrt(a'*(x + 1/2 * b'/a')^2).
By taking the linear term from each of the right hand sides and
adding to the appropriate part of the left hand side, two quadratic
formulas are created. By solving each of these the four roots of
the quartic are determined.
*/
i = 0;
a0 = c1 / 2.0;
a1 = y / 2.0;
t1 = a0 * a0 - c2 + y;
if (t1 < 0.0)
{
if (t1 > FUDGE_FACTOR2)
{
t1 = 0.0;
}
else
{
/* First Special case, a' < 0 means all roots are complex. */
return(0);
}
}
if (t1 < FUDGE_FACTOR3)
{
/* Second special case, the "x" term on the right hand side above
has vanished. In this case:
(x^2 + b*x/2 + y/2) = +sqrt(y^2/4 - e), and
(x^2 + b*x/2 + y/2) = -sqrt(y^2/4 - e). */
t2 = a1 * a1 - c4;
if (t2 < 0.0)
{
return(0);
}
x1 = 0.0;
d1 = sqrt(t2);
}
else
{
x1 = sqrt(t1);
d1 = 0.5 * (a0 * y - c3) / x1;
}
/* Solve the first quadratic */
q1 = -a0 - x1;
q2 = a1 + d1;
d2 = q1 * q1 - 4.0 * q2;
if (d2 >= 0.0)
{
d2 = sqrt(d2);
results[0] = 0.5 * (q1 + d2);
results[1] = 0.5 * (q1 - d2);
i = 2;
}
/* Solve the second quadratic */
q1 = q1 + x1 + x1;
q2 = a1 - d1;
d2 = q1 * q1 - 4.0 * q2;
if (d2 >= 0.0)
{
d2 = sqrt(d2);
results[i++] = 0.5 * (q1 + d2);
results[i++] = 0.5 * (q1 - d2);
}
return(i);
}
#else
/*****************************************************************************
*
* FUNCTION
*
* solve_quartic
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Solve a quartic using the method of Francois Vieta (Circa 1735).
*
* CHANGES
*
* -
*
******************************************************************************/
static int solve_quartic(const DBL *x, DBL *results)
{
DBL cubic[4];
DBL roots[3];
DBL c12, z, p, q, q1, q2, r, d1, d2;
DBL c0, c1, c2, c3, c4;
int i;
/* Make sure the quartic has a leading coefficient of 1.0 */
c0 = x[0];
if (c0 != 1.0)
{
c1 = x[1] / c0;
c2 = x[2] / c0;
c3 = x[3] / c0;
c4 = x[4] / c0;
}
else
{
c1 = x[1];
c2 = x[2];
c3 = x[3];
c4 = x[4];
}
/* Compute the cubic resolvant */
c12 = c1 * c1;
p = -0.375 * c12 + c2;
q = 0.125 * c12 * c1 - 0.5 * c1 * c2 + c3;
r = -0.01171875 * c12 * c12 + 0.0625 * c12 * c2 - 0.25 * c1 * c3 + c4;
cubic[0] = 1.0;
cubic[1] = -0.5 * p;
cubic[2] = -r;
cubic[3] = 0.5 * r * p - 0.125 * q * q;
i = solve_cubic(cubic, roots);
if (i > 0)
{
z = roots[0];
}
else
{
return(0);
}
d1 = 2.0 * z - p;
if (d1 < 0.0)
{
if (d1 > -SMALL_ENOUGH)
{
d1 = 0.0;
}
else
{
return(0);
}
}
if (d1 < SMALL_ENOUGH)
{
d2 = z * z - r;
if (d2 < 0.0)
{
return(0);
}
d2 = sqrt(d2);
}
else
{
d1 = sqrt(d1);
d2 = 0.5 * q / d1;
}
/* Set up useful values for the quadratic factors */
q1 = d1 * d1;
q2 = -0.25 * c1;
i = 0;
/* Solve the first quadratic */
p = q1 - 4.0 * (z - d2);
if (p == 0)
{
results[i++] = -0.5 * d1 - q2;
}
else
{
if (p > 0)
{
p = sqrt(p);
results[i++] = -0.5 * (d1 + p) + q2;
results[i++] = -0.5 * (d1 - p) + q2;
}
}
/* Solve the second quadratic */
p = q1 - 4.0 * (z + d2);
if (p == 0)
{
results[i++] = 0.5 * d1 - q2;
}
else
{
if (p > 0)
{
p = sqrt(p);
results[i++] = 0.5 * (d1 + p) + q2;
results[i++] = 0.5 * (d1 - p) + q2;
}
}
return(i);
}
#endif
/*****************************************************************************
*
* FUNCTION
*
* polysolve
*
* INPUT
*
* OUTPUT
*
* RETURNS
*
* AUTHOR
*
* Alexander Enzmann
*
* DESCRIPTION
*
* Root solver based on the Sturm sequences for a polynomial.
*
* CHANGES
*
* Okt 1996 : Added bug fix by Heiko Eissfeldt. [DB]
*
******************************************************************************/
static int polysolve(int order, const DBL *Coeffs, DBL *roots)
{
polynomial sseq[MAX_ORDER+1];
DBL min_value, max_value;
int i, nroots, np, atmin, atmax;
/* Put the coefficients into the top of the stack. */
for (i = 0; i <= order; i++)
{
sseq[0].coef[order-i] = Coeffs[i] / Coeffs[0];
}
/* Build the Sturm sequence */
np = buildsturm(order, &sseq[0]);
/* Get the total number of visible roots */
if ((nroots = visible_roots(np, sseq, &atmin, &atmax)) == 0)
{
return(0);
}
/* Bracket the roots */
min_value = 0.0;
max_value = MAX_DISTANCE;
atmin = numchanges(np, sseq, min_value);
atmax = numchanges(np, sseq, max_value);
nroots = atmin - atmax;
if (nroots == 0)
{
return(0);
}
/* perform the bisection. */
return(sbisect(np, sseq, min_value, max_value, atmin, atmax, roots));
}
/*****************************************************************************
*
* FUNCTION
*
* Solve_Polynomial
*
* INPUT
*
* n - order of polynomial
* c - coefficients
* r - roots
* sturm - true, if sturm should be used for n=3,4
* epsilon - Tolerance to discard small root
*
* OUTPUT
*
* r
*
* RETURNS
*
* int - number of roots found
*
* AUTHOR
*
* Dieter Bayer
*
* DESCRIPTION
*
* Solve the polynomial equation
*
* c[0] * x ^ n + c[1] * x ^ (n-1) + ... + c[n-1] * x + c[n] = 0
*
* If the equation has a root r, |r| < epsilon, this root is eliminated
* and the equation of order n-1 will be solved. This will avoid the problem
* of "surface acne" in (most) cases while increasing the speed of the
* root solving (polynomial's order is reduced by one).
*
* WARNING: This function can only be used for polynomials if small roots
* (i.e. |x| < epsilon) are not needed. This is the case for ray/object
* intersection tests because only intersecions with t > 0 are valid.
*
* NOTE: Only one root at x = 0 will be eliminated.
*
* NOTE: If epsilon = 0 no roots will be eliminated.
*
*
* The method and idea for root elimination was taken from:
*
* Han-Wen Nienhuys, "Polynomials", Ray Tracing News, July 6, 1994,
* Volume 7, Number 3
*
*
* CHANGES
*
* Jul 1994 : Creation.
*
******************************************************************************/
int Solve_Polynomial(int n, const DBL *c0, DBL *r, int sturm, DBL epsilon, TraceThreadData *Thread)
{
int roots, i;
const DBL *c;
Thread->Stats()[Polynomials_Tested]++;
roots = 0;
/*
* Determine the "real" order of the polynomial, i.e.
* eliminate small leading coefficients.
*/
i = 0;
while ((fabs(c0[i]) < SMALL_ENOUGH) && (i < n))
{
i++;
}
n -= i;
c = &c0[i];
switch (n)
{
case 0:
break;
case 1:
/* Solve linear polynomial. */
if (c[0] != 0.0)
{
r[roots++] = -c[1] / c[0];
}
break;
case 2:
/* Solve quadratic polynomial. */
roots = solve_quadratic(c, r);
break;
case 3:
/* Root elimination? */
if (epsilon > 0.0)
{
if ((c[2] != 0.0) && (fabs(c[3]/c[2]) < epsilon))
{
Thread->Stats()[Roots_Eliminated]++;
roots = solve_quadratic(c, r);
break;
}
}
/* Solve cubic polynomial. */
if (sturm)
{
roots = polysolve(3, c, r);
}
else
{
roots = solve_cubic(c, r);
}
break;
case 4:
/* Root elimination? */
if (epsilon > 0.0)
{
if ((c[3] != 0.0) && (fabs(c[4]/c[3]) < epsilon))
{
Thread->Stats()[Roots_Eliminated]++;
if (sturm)
{
roots = polysolve(3, c, r);
}
else
{
roots = solve_cubic(c, r);
}
break;
}
}
/* Test for difficult coeffs. */
if (difficult_coeffs(4, c))
{
sturm = true;
}
/* Solve quartic polynomial. */
if (sturm)
{
roots = polysolve(4, c, r);
}
else
{
roots = solve_quartic(c, r);
}
break;
default:
if (epsilon > 0.0)
{
if ((c[n-1] != 0.0) && (fabs(c[n]/c[n-1]) < epsilon))
{
Thread->Stats()[Roots_Eliminated]++;
roots = polysolve(n-1, c, r);
}
}
/* Solve n-th order polynomial. */
roots = polysolve(n, c, r);
break;
}
return(roots);
}
}
|