File: vector.h

package info (click to toggle)
povray 1%3A3.7.0.10-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 147,232 kB
  • sloc: cpp: 845,011; ansic: 122,118; sh: 34,204; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,389; cs: 879; awk: 590; perl: 245; xml: 95
file content (419 lines) | stat: -rw-r--r-- 9,363 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*******************************************************************************
 * vector.h
 *
 * This module contains macros to perform operations on vectors.
 *
 * ---------------------------------------------------------------------------
 * Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
 * Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
 *
 * POV-Ray is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * POV-Ray is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * ---------------------------------------------------------------------------
 * POV-Ray is based on the popular DKB raytracer version 2.12.
 * DKBTrace was originally written by David K. Buck.
 * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
 * ---------------------------------------------------------------------------
 * $File: //depot/public/povray/3.x/source/backend/math/vector.h $
 * $Revision: #1 $
 * $Change: 6069 $
 * $DateTime: 2013/11/06 11:59:40 $
 * $Author: chrisc $
 *******************************************************************************/

#ifndef VECTOR_H
#define VECTOR_H

#include "backend/frame.h"

namespace pov
{

/*****************************************************************************
* Inline functions
******************************************************************************/

// Vector Add
inline void VAdd(VECTOR a, const VECTOR b, const VECTOR c)
{
	a[X] = b[X] + c[X];
	a[Y] = b[Y] + c[Y];
	a[Z] = b[Z] + c[Z];
}

inline void VAdd(SNGL_VECT a, const VECTOR b, const VECTOR c)
{
	a[X] = b[X] + c[X];
	a[Y] = b[Y] + c[Y];
	a[Z] = b[Z] + c[Z];
}

inline void VAdd(SNGL_VECT a, const SNGL_VECT b, const SNGL_VECT c)
{
	a[X] = b[X] + c[X];
	a[Y] = b[Y] + c[Y];
	a[Z] = b[Z] + c[Z];
}

inline void VAddEq(VECTOR a, const VECTOR b)
{
	a[X] += b[X];
	a[Y] += b[Y];
	a[Z] += b[Z];
}

inline void VAddEq(SNGL_VECT a, const VECTOR b)
{
	a[X] += b[X];
	a[Y] += b[Y];
	a[Z] += b[Z];
}

inline void VAddEq(SNGL_VECT a, const SNGL_VECT b)
{
	a[X] += b[X];
	a[Y] += b[Y];
	a[Z] += b[Z];
}

// Vector Subtract
inline void VSub(VECTOR a, const VECTOR b, const VECTOR c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSub(SNGL_VECT a, const VECTOR b, const VECTOR c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSub(VECTOR a, const SNGL_VECT b, const VECTOR c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSub(VECTOR a, const VECTOR b, const SNGL_VECT c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSub(VECTOR a, const SNGL_VECT b, const SNGL_VECT c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSub(SNGL_VECT a, const SNGL_VECT b, const SNGL_VECT c)
{
	a[X] = b[X] - c[X];
	a[Y] = b[Y] - c[Y];
	a[Z] = b[Z] - c[Z];
}

inline void VSubEq(VECTOR a, const VECTOR b)
{
	a[X] -= b[X];
	a[Y] -= b[Y];
	a[Z] -= b[Z];
}

inline void VSubEq(SNGL_VECT a, const VECTOR b)
{
	a[X] -= b[X];
	a[Y] -= b[Y];
	a[Z] -= b[Z];
}

inline void VSubEq(SNGL_VECT a, const SNGL_VECT b)
{
	a[X] -= b[X];
	a[Y] -= b[Y];
	a[Z] -= b[Z];
}

// Scale - Multiply Vector by a Scalar
inline void VScale(VECTOR a, const VECTOR b, DBL k)
{
	a[X] = b[X] * k;
	a[Y] = b[Y] * k;
	a[Z] = b[Z] * k;
}

// Scale - Multiply Vector by a Scalar
inline void VScale(SNGL_VECT a, const VECTOR b, DBL k)
{
	a[X] = b[X] * k;
	a[Y] = b[Y] * k;
	a[Z] = b[Z] * k;
}

inline void VScale(SNGL_VECT a, const SNGL_VECT b, SNGL k)
{
	a[X] = b[X] * k;
	a[Y] = b[Y] * k;
	a[Z] = b[Z] * k;
}

inline void VScaleEq(VECTOR a, DBL k)
{
	a[X] *= k;
	a[Y] *= k;
	a[Z] *= k;
}

inline void VScaleEq(SNGL_VECT a, SNGL k)
{
	a[X] *= k;
	a[Y] *= k;
	a[Z] *= k;
}

// Inverse Scale - Divide Vector by a Scalar
inline void VInverseScale(VECTOR a, const VECTOR b, DBL k)
{
	DBL tmp = 1.0 / k;
	a[X] = b[X] * tmp;
	a[Y] = b[Y] * tmp;
	a[Z] = b[Z] * tmp;
}

inline void VInverseScale(SNGL_VECT a, const SNGL_VECT b, SNGL k)
{
	SNGL tmp = 1.0 / k;
	a[X] = b[X] * tmp;
	a[Y] = b[Y] * tmp;
	a[Z] = b[Z] * tmp;
}

inline void VInverseScaleEq(VECTOR a, DBL k)
{
	DBL tmp = 1.0 / k;
	a[X] *= tmp;
	a[Y] *= tmp;
	a[Z] *= tmp;
}

inline void VInverseScaleEq(SNGL_VECT a, SNGL k)
{
	SNGL tmp = 1.0 / k;
	a[X] *= tmp;
	a[Y] *= tmp;
	a[Z] *= tmp;
}

// Dot Product - Gives Scalar angle (a) between two vectors (b) and (c)
inline void VDot(DBL& a, const VECTOR b, const VECTOR c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

inline void VDot(SNGL& a, const VECTOR b, const VECTOR c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

inline void VDot(DBL& a, const VECTOR b, const SNGL_VECT c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

inline void VDot(DBL& a, const SNGL_VECT b, const VECTOR c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

inline void VDot(DBL& a, const SNGL_VECT b, const SNGL_VECT c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

inline void VDot(SNGL& a, const SNGL_VECT b, const SNGL_VECT c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z];
}

// Cross Product - returns Vector (a) = (b) x (c)
inline void VCross(VECTOR a, const VECTOR b, const VECTOR c)
{
	VECTOR tmp;

	tmp[X] = b[Y] * c[Z] - b[Z] * c[Y];
	tmp[Y] = b[Z] * c[X] - b[X] * c[Z];
	tmp[Z] = b[X] * c[Y] - b[Y] * c[X];

	Assign_Vector(a, tmp);
}

// Evaluate - returns Vector (a) = Multiply Vector (b) by Vector (c)
inline void VEvaluate(VECTOR a, const VECTOR b, const VECTOR c)
{
	a[X] = b[X] * c[X];
	a[Y] = b[Y] * c[Y];
	a[Z] = b[Z] * c[Z];
}

inline void VEvaluateEq(VECTOR a, const VECTOR b)
{
	a[X] *= b[X];
	a[Y] *= b[Y];
	a[Z] *= b[Z];
}

// Divide - returns Vector (a) = Divide Vector (a) by Vector (b)
inline void VDivEq(VECTOR a, const VECTOR b)
{
	a[X] /= b[X];
	a[Y] /= b[Y];
	a[Z] /= b[Z];
}

// Simple Scalar Square Macro
inline DBL Sqr(DBL a)
{
	return a * a;
}

inline SNGL Sqr(SNGL a)
{
	return a * a;
}

// Vector Length - returs Scalar Euclidean Length (a) of Vector (b)
inline void VLength(DBL& a, const VECTOR b)
{
	a = sqrt(b[X] * b[X] + b[Y] * b[Y] + b[Z] * b[Z]);
}

inline void VLength(SNGL& a, const SNGL_VECT b)
{
	a = sqrt(b[X] * b[X] + b[Y] * b[Y] + b[Z] * b[Z]);
}

// Vector Distance - returs Scalar Euclidean Distance (a) between two points/Vectors (b) and (c)
inline void VDist(DBL& a, const VECTOR b, const VECTOR c)
{
	VECTOR tmp;
	VSub(tmp, b, c);
	VLength(a, tmp);
}

// Normalize a Vector - returns a vector (length of 1) that points at (b)
inline void VNormalize(VECTOR a, const VECTOR b)
{
	DBL tmp;
	VLength(tmp, b);
	VInverseScale(a, b, tmp);
}

inline void VNormalize(SNGL_VECT a, const SNGL_VECT b)
{
	SNGL tmp;
	VLength(tmp, b);
	VInverseScale(a, b, tmp);
}

inline void VNormalizeEq(VECTOR a)
{
	DBL tmp;
	VLength(tmp, a);
	VInverseScaleEq(a, tmp);
}

// Compute a Vector (a) Halfway Between Two Given Vectors (b) and (c)
inline void VHalf(VECTOR a, const VECTOR b, const VECTOR c)
{
	a[X] = 0.5 * (b[X] + c[X]);
	a[Y] = 0.5 * (b[Y] + c[Y]);
	a[Z] = 0.5 * (b[Z] + c[Z]);
}

// Calculate the sum of the sqares of the components of a vector.  (the square of its length)
inline DBL VSumSqr(const VECTOR a)
{
	return a[X] * a[X] + a[Y] * a[Y] + a[Z] * a[Z];
}

// Linear combination of 2 vectors. [DB 7/94]
//   v = k1 * v1 + k2 * v2
inline void VLinComb2(VECTOR v, DBL k1, const VECTOR v1, DBL k2, const VECTOR v2)
{
	v[X] = k1 * v1[X] + k2 * v2[X];
	v[Y] = k1 * v1[Y] + k2 * v2[Y];
	v[Z] = k1 * v1[Z] + k2 * v2[Z];
}

// Linear combination of 3 vectors. [DB 7/94]
//   v = k1 * v1 + k2 * v2 + k3 * v3
inline void VLinComb3(VECTOR v, DBL k1, const VECTOR v1, DBL k2, const VECTOR v2, DBL k3, const VECTOR v3)
{
	v[X] = k1 * v1[X] + k2 * v2[X] + k3 * v3[X];
	v[Y] = k1 * v1[Y] + k2 * v2[Y] + k3 * v3[Y];
	v[Z] = k1 * v1[Z] + k2 * v2[Z] + k3 * v3[Z];
}

// Evaluate a ray equation. [DB 7/94]
//   IPoint = Origin + depth * Direction
inline void VEvaluateRay(VECTOR IPoint, const VECTOR Origin, DBL depth, const VECTOR Direction)
{
	IPoint[X] = Origin[X] + depth * Direction[X];
	IPoint[Y] = Origin[Y] + depth * Direction[Y];
	IPoint[Z] = Origin[Z] + depth * Direction[Z];
}

// Add a scaled vector. [DB 7/94]
//   v  = v1 + k * v2;
//   v += k * v2;
inline void VAddScaled(VECTOR v, const VECTOR v1, DBL k, const VECTOR v2)
{
	v[X] = v1[X] + k * v2[X];
	v[Y] = v1[Y] + k * v2[Y];
	v[Z] = v1[Z] + k * v2[Z];
}

inline void VAddScaledEq(VECTOR v, DBL k, const VECTOR v2)
{
	v[X] += k * v2[X];
	v[Y] += k * v2[Y];
	v[Z] += k * v2[Z];
}

// Inverse Scale - Divide Vector by a Scalar
inline void V4D_InverseScaleEq(VECTOR_4D a, DBL k)
{
	DBL tmp = 1.0 / k;
	a[X] *= tmp;
	a[Y] *= tmp;
	a[Z] *= tmp;
	a[T] *= tmp;
}

// Dot Product - Gives Scalar angle (a) between two vectors (b) and (c)
inline void V4D_Dot(DBL& a, const VECTOR_4D b, const VECTOR_4D c)
{
	a = b[X] * c[X] + b[Y] * c[Y] + b[Z] * c[Z] + b[T] * c[T];
}

}

#endif