1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
|
/*******************************************************************************
* bsptree.cpp
*
* ---------------------------------------------------------------------------
* Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
* Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
*
* POV-Ray is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* POV-Ray is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------------
* POV-Ray is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
* ---------------------------------------------------------------------------
* $File: //depot/public/povray/3.x/source/backend/support/bsptree.cpp $
* $Revision: #1 $
* $Change: 6069 $
* $DateTime: 2013/11/06 11:59:40 $
* $Author: chrisc $
*******************************************************************************/
#include <vector>
#include <list>
// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/support/bsptree.h"
#include "backend/shape/boxes.h"
#include "base/pov_err.h"
// this must be the last file included
#include "base/povdebug.h"
namespace pov
{
#ifndef BSP_READNODES
#define BSP_READNODES 0
#endif
#ifndef BSP_WRITEBOUNDS
#define BSP_WRITEBOUNDS 0
#endif
#ifndef BSP_WRITETREE
#define BSP_WRITETREE 0
#endif
#define MAX_BSP_TREE_LEVEL 128
#define OBJECT_ISECT_COST 150.0f
#define BASE_ACCESS_COST 1.0f
#define CHILD_ACCESS_COST 5.0f
#define MISS_CHANCE 0.2f
#define BSP_TOLERANCE 0.00001f
const unsigned int NODE_PROGRESS_INTERVAL = 1000;
// we allow the values to be set by users to promote experimentation with tree
// building. at a later date we may remove this facility since using compile-time
// constants is more efficient.
//
// we use 0.0f as defaults rather than making the defaults equal to the above
// #defines to avoid having to expose the above values to any code that wants
// to construct a BSPTree (e.g. if it only wanted to set mc, for example, it
// would have to know the other values).
//
// missChance is only ever used with 1.0f added to it, so we do that now as well
//
// NB all these values are declared const in the class definition
BSPTree::BSPTree(unsigned int md, float oic, float bac, float cac, float mc) :
maxDepth((md == 0) || (md > MAX_BSP_TREE_LEVEL) ? MAX_BSP_TREE_LEVEL : md),
objectIsectCost(oic == 0.0f ? OBJECT_ISECT_COST : oic),
baseAccessCost(bac == 0.0f ? BASE_ACCESS_COST : bac),
childAccessCost(cac == 0.0f ? CHILD_ACCESS_COST : cac),
missChance(mc == 0.0f ? MISS_CHANCE + 1.0f : mc + 1.0f)
{
}
BSPTree::~BSPTree()
{
}
static FILE *gFile = NULL;
bool BSPTree::operator()(const Ray& ray, Intersect& isect, Mailbox& mailbox, double maxdist)
{
TraceStack tstack[MAX_BSP_TREE_LEVEL];
Vector3d rayorigin(ray.GetOrigin());
Vector3d raydir(ray.GetDirection());
Vector3d invraydir(Vector3d(1.0) / raydir);
double rentry, rexit;
int ignore1, ignore2;
unsigned int tstackpos = 0;
if(Box::Intersect(ray, NULL, *bmin, *bmax, &rentry, &rexit, &ignore1, &ignore2) == false)
return false; // no objects hit
unsigned int inode = 0;
while(rentry < maxdist)
{
// descend into child
if(nodes[inode].type == Node::Split)
{
unsigned int axis = nodes[inode].data;
unsigned int ileft = nodes[inode].index;
unsigned int iright = ileft + 1;
float plane = nodes[inode].plane;
float rdist = (plane - rayorigin[axis]) * invraydir[axis];
// decide which child to descend into
if((rayorigin[axis] > plane) || ((rdist == 0.0f) && (raydir[axis] < 0)))
std::swap(ileft, iright);
// determine which child is next
if((rdist < 0.0f) || (rdist > rexit))
inode = ileft;
else if(rdist < rentry)
inode = iright;
// if both children are intersected, remember one and continue with the other
else
{
// remember right child
tstack[tstackpos].inode = iright;
tstack[tstackpos].rentry = rdist;
tstack[tstackpos].rexit = rexit;
tstackpos++;
// continue with left child
inode = ileft;
rexit = rdist;
}
}
else
{
// insert objects into mailbox
switch(nodes[inode].data)
{
case Node::Empty:
// nothing to do
break;
case Node::SingleObject:
if(mailbox.insert(nodes[inode].index) == true)
isect(nodes[inode].index, maxdist);
break;
case Node::DoubleObject:
if(mailbox.insert(nodes[inode].index) == true)
isect(nodes[inode].index, maxdist);
if(mailbox.insert(nodes[inode].index2) == true)
isect(nodes[inode].index2, maxdist);
break;
case Node::ObjectList:
for(unsigned int i = nodes[inode].index2, e = i + nodes[inode].index; i < e; i++)
{
if(mailbox.insert(lists[i]) == true)
isect(lists[i], maxdist);
}
break;
}
// see if there is another node to process
if(tstackpos > 0)
{
tstackpos--;
inode = tstack[tstackpos].inode;
rentry = tstack[tstackpos].rentry;
rexit = tstack[tstackpos].rexit;
}
// no nodes left, so terminate loop
else
break;
}
}
return isect(); // see if any objects were hit
}
bool BSPTree::operator()(const Vector3d& origin, Inside& inside, Mailbox& mailbox, bool earlyExit)
{
unsigned int tstackpos = 0;
unsigned int tstack[MAX_BSP_TREE_LEVEL];
// make sure the origin is within the bounded volume
if ((origin[X] < bmin[X]) || (origin[Y] < bmin[Y]) || (origin[Z] < bmin[Z]) ||
(origin[X] > bmax[X]) || (origin[Y] > bmax[Y]) || (origin[Z] > bmax[Z]))
return false;
tstack[tstackpos++] = 0;
while(tstackpos > 0)
{
unsigned int inode = tstack[--tstackpos];
if(nodes[inode].type == Node::Split)
{
if(origin[nodes[inode].data] <= nodes[inode].plane)
tstack[tstackpos++] = nodes[inode].index;
if(origin[nodes[inode].data] >= nodes[inode].plane)
tstack[tstackpos++] = nodes[inode].index + 1;
}
else
{
// insert objects into mailbox
switch(nodes[inode].data)
{
case Node::Empty:
// nothing to do
break;
case Node::SingleObject:
if(mailbox.insert(nodes[inode].index) == true)
inside(nodes[inode].index);
break;
case Node::DoubleObject:
if(mailbox.insert(nodes[inode].index) == true)
inside(nodes[inode].index);
if(mailbox.insert(nodes[inode].index2) == true)
inside(nodes[inode].index2);
break;
case Node::ObjectList:
for(unsigned int i = nodes[inode].index2, e = i + nodes[inode].index; i < e; i++)
if(mailbox.insert(lists[i]) == true)
inside(lists[i]);
break;
}
if (earlyExit && inside())
return true;
}
}
return inside();
}
void BSPTree::build(const Progress& progress, const Objects& objects,
unsigned int& totalnodes, unsigned int& splitnodes, unsigned int& objectnodes, unsigned int& emptynodes,
unsigned int& maxobjects, float& averageobjects, unsigned int& maxdepth, float& averagedepth,
unsigned int& aborts, float& averageaborts, float& averageabortobjects, const UCS2String& inputFile)
{
BBOX bbox;
lastProgressNodeCounter = 0;
maxObjectsInNode = 0;
maxTreeDepth = 0;
maxTreeDepthNodes = 0;
emptyNodeCounter = 0;
objectNodeCounter = 0;
objectsInTreeCounter = 0;
objectsAtMaxDepthCounter = 0;
treeDepthCounter = 0;
progress(0);
bbox.pmin[X] = BOUND_HUGE;
bbox.pmin[Y] = BOUND_HUGE;
bbox.pmin[Z] = BOUND_HUGE;
bbox.pmax[X] = -BOUND_HUGE;
bbox.pmax[Y] = -BOUND_HUGE;
bbox.pmax[Z] = -BOUND_HUGE;
// allocate memory that is going to be needed for building
indices.reserve(objects.size() * 4); // can't tell what we need, but we'll start with object count * 4
indices.resize(objects.size());
splits[X].resize(objects.size() * 2);
splits[Y].resize(objects.size() * 2);
splits[Z].resize(objects.size() * 2);
#if BSP_WRITEBOUNDS || BSP_READNODES || BSP_WRITETREE
string tempstr = UCS2toASCIIString(inputFile);
if (tempstr.empty() == true)
tempstr = "default";
string::size_type pos = tempstr.find_last_of('.');
if (pos != string::npos)
tempstr.erase(pos);
#endif
#if BSP_WRITEBOUNDS
FILE *bb = fopen(string(tempstr + ".bounds").c_str(), "w");
#else
FILE *bb = NULL;
#endif
if(bb != NULL)
fprintf(bb, "%d\n", objects.size());
// find bounding box containing all objects
for(unsigned int i = 0; i < objects.size(); i++)
{
bbox.pmin[X] = min(bbox.pmin[X], objects.GetMin(X, i));
bbox.pmin[Y] = min(bbox.pmin[Y], objects.GetMin(Y, i));
bbox.pmin[Z] = min(bbox.pmin[Z], objects.GetMin(Z, i));
bbox.pmax[X] = max(bbox.pmax[X], objects.GetMax(X, i));
bbox.pmax[Y] = max(bbox.pmax[Y], objects.GetMax(Y, i));
bbox.pmax[Z] = max(bbox.pmax[Z], objects.GetMax(Z, i));
indices[i] = i;
if(bb != NULL)
fprintf(bb, "%f %f %f %f %f %f\n",
objects.GetMin(X, i), objects.GetMin(Y, i), objects.GetMin(Z, i),
objects.GetMax(X, i), objects.GetMax(Y, i), objects.GetMax(Z, i));
}
if(bb != NULL)
{
fprintf(bb, "%f %f %f %f %f %f\n",
bbox.pmin[X], bbox.pmin[Y], bbox.pmin[Z], bbox.pmax[X], bbox.pmax[Y], bbox.pmax[Z]);
fflush(bb);
fclose(bb);
}
// remember bounding box for intersection testing
bmin = Vector3d(bbox.pmin[X], bbox.pmin[Y], bbox.pmin[Z]);
bmax = Vector3d(bbox.pmax[X], bbox.pmax[Y], bbox.pmax[Z]);
#if BSP_WRITETREE
gFile = fopen(string(tempstr + ".tree").c_str(), "w");
#endif
if(gFile != NULL)
{
fprintf(gFile, "> %f %f %f %f %f %f\n", bbox.pmin[X], bbox.pmin[Y], bbox.pmin[Z], bbox.pmax[X], bbox.pmax[Y], bbox.pmax[Z]);
fprintf(gFile, "T %d\n", objects.size());
}
// recursively build BSP tree
nodes.push_back(Node());
#if BSP_READNODES
FILE *infile = fopen(string(tempstr + ".nodes").c_str(), "r");
if(infile == NULL)
throw POV_EXCEPTION(kCannotOpenFileErr, "Cannot open BSP nodes file (BSP_READNODES == true, tree generation disabled)");
try
{
ValidateBounds(infile, objects);
}
catch(pov_base::Exception& e)
{
if (gFile != NULL)
fclose (gFile);
if ((e.codevalid() != false) && (e.code() == kFileDataErr))
{
int line = 0;
char str[1024];
long pos = ftell(infile);
fseek(infile, 0, SEEK_SET);
while (fgets(str, sizeof(str) - 1, infile) != NULL)
{
line++;
if (ftell(infile) >= pos)
{
fclose (infile);
sprintf (str, "%s.nodes line %d: %s", tempstr.c_str(), line, e.what());
throw POV_EXCEPTION(e.code(), str);
}
}
}
fclose (infile);
throw;
}
ReadRecursive(progress, infile, 0, 0, objects.size() - 1);
fclose(infile);
#else
BuildRecursive(progress, objects, 0, 0, (unsigned int) indices.size(), bbox, maxDepth);
#endif
if(gFile != NULL)
{
fflush(gFile);
fclose(gFile);
}
// memory was only needed for building
splits[X].clear();
splits[Y].clear();
splits[Z].clear();
progress((unsigned int) nodes.size());
unsigned int nodesoftypeobject = emptyNodeCounter + objectNodeCounter; // number of terminal nodes
totalnodes = (unsigned int) nodes.size();
splitnodes = totalnodes - nodesoftypeobject;
objectnodes = objectNodeCounter;
emptynodes = emptyNodeCounter;
maxobjects = maxObjectsInNode;
averageobjects = float(double(objectsInTreeCounter) / double(nodesoftypeobject));
maxdepth = maxTreeDepth;
averagedepth = float(double(treeDepthCounter) / double(nodesoftypeobject));
aborts = maxTreeDepthNodes;
if(aborts > 0)
{
averageaborts = float(double(aborts) / double(nodesoftypeobject));
averageabortobjects = float(double(objectsAtMaxDepthCounter) / double(aborts));
}
else
{
averageaborts = 0.0f;
averageabortobjects = 0.0f;
}
// free up unused allocation in lists and nodes
vector<unsigned int> tmplists;
tmplists.swap(lists);
lists = tmplists;
vector<Node> tmpnodes;
tmpnodes.swap(nodes);
nodes = tmpnodes;
indices.clear();
}
void BSPTree::clear()
{
nodes.clear();
lists.clear();
}
void BSPTree::BuildRecursive(const Progress& progress, const Objects& objects, unsigned int inode, unsigned int indexbegin, unsigned int indexend, BBOX& cell, unsigned int maxlevel)
{
maxTreeDepth = max(maxTreeDepth, maxDepth - maxlevel);
if((nodes.size() - lastProgressNodeCounter) > NODE_PROGRESS_INTERVAL)
{
lastProgressNodeCounter = (unsigned int) nodes.size();
progress(lastProgressNodeCounter);
}
if(gFile != NULL)
fprintf(gFile, "%*s", (maxDepth - maxlevel) * 2, "");
unsigned int cnt = indexend - indexbegin; // number of objects
// stop if there are no more objects
if(cnt == 0)
{
if(gFile != NULL)
fprintf(gFile, "*\n");
nodes[inode].type = Node::Object;
nodes[inode].data = Node::Empty;
nodes[inode].index = 0;
emptyNodeCounter++;
treeDepthCounter += (maxDepth - maxlevel);
return;
}
// stop if maximum split recursion level reached or we only have one object
if((maxlevel == 0) || (cnt == 1))
{
SetObjectNode(inode, indexbegin, indexend);
if(maxlevel == 0)
{
maxTreeDepthNodes++;
objectsAtMaxDepthCounter += cnt;
}
treeDepthCounter += (maxDepth - maxlevel);
return;
}
unsigned int bestscnt = 0;
unsigned int bestaxis = Node::NoAxis;
unsigned int bestsplit = 0;
// baseAccessCost is TK1 in Eric's article
// objectIsectCost is TP in Eric's article
// childAccessCost is TK3 in Eric's article
// set bestcost to estimated time for processing unsplit node
float bestcost = baseAccessCost + (cnt * objectIsectCost);
// find best split axis and plane
{
float cellsize[5];
cellsize[X] = cellsize[X + 3] = cell.pmax[X] - cell.pmin[X];
cellsize[Y] = cellsize[Y + 3] = cell.pmax[Y] - cell.pmin[Y];
cellsize[Z] = cell.pmax[Z] - cell.pmin[Z];
// enh is node hit expectance
float enh = cellsize[X] * cellsize[Y] + cellsize[X] * cellsize[Z] + cellsize[Y] * cellsize[Z];
float enhinv = 1.0f / enh;
// try every axis
for(unsigned int axis = 0; axis < 3; axis++)
{
unsigned int pa = 0; // objects only in left side
unsigned int pb = cnt; // objects only in right side
unsigned int pab = 0; // objects in both
float bmin = cell.pmin[axis];
float bmax = cell.pmax[axis];
// eph is plane hit expectance
float eph = cellsize[axis + 1] * cellsize[axis + 2];
// cph is plane hit relative chance (eph / enh)
float cph = eph * enhinv;
// relmul is used to calculate 'r' given the offset into the node
float relmul = 1.0f / cellsize[axis];
// chmul is used to calculate cah and cbh once we know r
float chmul = cellsize[axis] * (cellsize[axis + 1] + cellsize[axis + 2]) * enhinv;
// constcost is TK1 + TK2 + (1 + CPH) * TK3 in Eric's article
float constcost = baseAccessCost + ((1.0f + cph) * childAccessCost);
// since cph/2 is used in the main cost calculation we do the division here to avoid
// doing it multiple times in the below loop.
cph *= 0.5;
unsigned int scnt = 0;
for(unsigned int i = indexbegin; i < indexend; i++)
{
float smin = objects.GetMin(axis, indices[i]) - BSP_TOLERANCE;
float smax = objects.GetMax(axis, indices[i]) + BSP_TOLERANCE;
// (if they are equal for our purpose we consider it outside)
if((smin >= bmax) || (smax <= bmin))
continue ;
if(smin < bmin)
{
// definitely intersects a, may not intersect b
// if it does intersect b then as it also intersects a, we need to add
// one to the common count (pab) and decrement the right-only count (pb).
pab++;
pb--;
}
splits[axis][scnt++] = Split(Split::Min, indices[i], smin);
splits[axis][scnt++] = Split(Split::Max, indices[i], smax);
}
sort(splits[axis].begin(), splits[axis].begin() + scnt);
for(unsigned int i = 0; i < scnt; i++)
{
float plane = splits[axis][i].plane;
if(splits[axis][i].se == Split::Max) // leaving object
{
pa++;
pab--;
}
if((plane > bmin) && (plane < bmax))
{
float r = (plane - cell.pmin[axis]) * relmul; // range 0.0 (close boundary) to 1.0 (far boundary)
float cah = r * chmul; // chance of 'a' hit
float cbh = (1.0f - r) * chmul; // chance of 'b' hit
// cost function as presented in Ray Tracing News Vol. 17 No. 1 by Eric Haines [trf]
// NB cph has been pre-divided by 2 and missChance has had 1.0 added to it.
float cost = constcost + (objectIsectCost * (pab + (cph * ((missChance * pa) + (missChance * pb))) + (cah * pa) + (cbh * pb)));
if(cost < bestcost)
{
bestcost = cost;
bestsplit = i;
bestaxis = axis;
bestscnt = scnt;
}
}
if(splits[axis][i].se == Split::Min) // entering object
{
pab++;
pb--;
}
}
}
}
if(bestaxis == Node::NoAxis) // no better split found, so stop at this node
{
SetObjectNode(inode, indexbegin, indexend);
treeDepthCounter += (maxDepth - maxlevel);
}
else // better split found, so create child nodes
{
unsigned int ichild = (unsigned int) nodes.size(); // child node position
float bestplane = splits[bestaxis][bestsplit].plane;
float ptemp = 0.0f;
// create child nodes
nodes.push_back(Node());
nodes.push_back(Node());
// set current node
nodes[inode].type = Node::Split;
nodes[inode].data = bestaxis;
nodes[inode].index = ichild;
nodes[inode].plane = bestplane;
// if the best split is at the maximum side, the split goes
// into the left child, otherwise it goes into the right side
// and thus the mid-point for sorting has to be moved [trf]
if(splits[bestaxis][bestsplit].se == Split::Max)
bestsplit++;
// reorder indices to find objects completely in one child
Split::CompareIndex ci;
sort(splits[bestaxis].begin(), splits[bestaxis].begin() + bestsplit, ci);
sort(splits[bestaxis].begin() + bestsplit, splits[bestaxis].begin() + bestscnt, ci);
if(gFile != NULL)
{
fprintf(gFile, "| %c = %g ", (int)('x' + bestaxis), bestplane);
fprintf(gFile, "[%g,%g,%g -> %g,%g,%g]\n",
cell.pmin[0], cell.pmin[1], cell.pmin[2],
cell.pmax[0], cell.pmax[1], cell.pmax[2]);
}
unsigned int begin = (unsigned int) indices.size();
for (vector<Split>::iterator it = splits[bestaxis].begin(), en = it + bestsplit; it != en; )
{
unsigned int index = it++->index;
indices.push_back(index);
if((it != en) && (it->index == index)) // keep only once if completely in child
it++;
}
unsigned int middle = (unsigned int) indices.size();
for (vector<Split>::iterator it = splits[bestaxis].begin() + bestsplit, en = splits[bestaxis].begin() + bestscnt; it != en; )
{
unsigned int index = it++->index;
indices.push_back(index);
if((it != en) && (it->index == index)) // keep only once if completely in child
it++;
}
unsigned int end = (unsigned int) indices.size();
// split left cell
ptemp = cell.pmax[bestaxis];
cell.pmax[bestaxis] = bestplane;
BuildRecursive(progress, objects, ichild, begin, middle, cell, maxlevel - 1);
cell.pmax[bestaxis] = ptemp;
// split right cell
ptemp = cell.pmin[bestaxis];
cell.pmin[bestaxis] = bestplane;
BuildRecursive(progress, objects, ichild + 1, middle, end, cell, maxlevel - 1);
cell.pmin[bestaxis] = ptemp;
// the efficiency of this code depends on the assumption that resize() does not
// de-allocate memory when truncating a vector.
indices.resize(begin);
}
}
void BSPTree::SetObjectNode(unsigned int inode, unsigned int indexbegin, unsigned int indexend)
{
unsigned int count = indexend - indexbegin;
if(gFile != NULL)
{
fprintf(gFile, "# (%d) ", count);
for(unsigned int i = indexbegin; i < indexend; i++)
fprintf(gFile, " %d", indices[i]);
fprintf(gFile, "\n");
}
objectNodeCounter++;
// single object
if(count == 1)
{
nodes[inode].type = Node::Object;
nodes[inode].data = Node::SingleObject;
nodes[inode].index = indices[indexbegin];
maxObjectsInNode = max(maxObjectsInNode, (unsigned int)1);
objectsInTreeCounter += 1;
}
// double object
else if(count == 2)
{
nodes[inode].type = Node::Object;
nodes[inode].data = Node::DoubleObject;
nodes[inode].index = indices[indexbegin];
nodes[inode].index2 = indices[indexbegin + 1];
maxObjectsInNode = max(maxObjectsInNode, (unsigned int)2);
objectsInTreeCounter += 2;
}
// object list
else
{
unsigned int s((unsigned int) lists.size());
nodes[inode].type = Node::Object;
nodes[inode].data = Node::ObjectList;
nodes[inode].index = count; // length of list
nodes[inode].index2 = s; // list offset
// Note: It is actually *much* faster with the Microsoft STL for large trees to not call lists.reserve() here! [cjc] Need to check this for other STL implementations... [trf]
// lists.reserve(s + c);
// Note: This could first search for an already existing sequence of the same objects
// and then adjust the value of index2 accordingly, which would reduce memory consumption [trf]
lists.insert(lists.end(), indices.begin() + indexbegin, indices.begin() + indexend);
maxObjectsInNode = max(maxObjectsInNode, count);
objectsInTreeCounter += count;
}
}
char *BSPTree::GetLine(char *str, int len, FILE *infile)
{
char *s;
while((s = fgets(str, len, infile)) != NULL)
{
while(isspace(*s))
s++;
if(*s == '\0')
continue;
if(*s != '/')
break;
if(*++s != '/')
throw POV_EXCEPTION(kFileDataErr, "Invalid character in node file");
}
if(s == NULL)
throw POV_EXCEPTION(kFileDataErr, "Unexpected EOF in node file");
return s;
}
void BSPTree::ValidateBounds(FILE *infile, const Objects& objects)
{
int count;
char str[1024];
if(sscanf(GetLine(str, sizeof(str), infile), "%d\n", &count) != 1)
throw POV_EXCEPTION(kFileDataErr, "Expected count of objects at start of node file");
if(count != objects.size())
throw POV_EXCEPTION(kFileDataErr, "Object count in node file does not match parsed file");
for(unsigned int i = 0; i < objects.size(); i++)
{
// since runtime libraries use double internally when dealing with float
// types, we scan in and compare as double rather than float to avoid
// additional float->double->float conversions, which make comparison
// less precise.
double llx1, lly1, llz1, urx1, ury1, urz1;
if (sscanf(GetLine(str, sizeof(str), infile), "%lf %lf %lf %lf %lf %lf\n", &llx1, &lly1, &llz1, &urx1, &ury1, &urz1) != 6)
throw POV_EXCEPTION(kFileDataErr, "Failed to parse bounds line in node file");
double llx2, lly2, llz2, urx2, ury2, urz2;
llx2 = objects.GetMin(X, i);
lly2 = objects.GetMin(Y, i);
llz2 = objects.GetMin(Z, i);
urx2 = objects.GetMax(X, i);
ury2 = objects.GetMax(Y, i);
urz2 = objects.GetMax(Z, i);
if ((fabs (llx1 - llx2) > 0.00001) ||
(fabs (lly1 - lly2) > 0.00001) ||
(fabs (llz1 - llz2) > 0.00001) ||
(fabs (urx1 - urx2) > 0.00001) ||
(fabs (ury1 - ury2) > 0.00001) ||
(fabs (urz1 - urz2) > 0.00001))
throw POV_EXCEPTION(kFileDataErr, "Node file bounds do not match that of parsed file");
}
GetLine(str, sizeof(str), infile);
if (*GetLine(str, sizeof(str), infile) != '-')
throw POV_EXCEPTION(kFileDataErr, "Invalid separator line in node file");
}
void BSPTree::ReadRecursive(const Progress& progress, FILE *infile, unsigned int inode, unsigned int level, unsigned int maxIndex)
{
if (level == MAX_BSP_TREE_LEVEL)
throw POV_EXCEPTION(kFileDataErr, "Depth in node file exceeded MAX_BSP_TREE_LEVEL");
if((nodes.size() - lastProgressNodeCounter) > NODE_PROGRESS_INTERVAL)
{
lastProgressNodeCounter = (unsigned int) nodes.size();
progress(lastProgressNodeCounter);
}
maxTreeDepth = max(maxTreeDepth, level);
int c = fgetc(infile); // read node type
if(c == '|') // split node
{
unsigned int ichild = (unsigned int) nodes.size(); // child node position
unsigned int bestaxis = 0;
float bestplane = 0.0f;
if(fscanf(infile, " %u %f\n", &bestaxis, &bestplane) != 2) // read axis and plane
throw POV_EXCEPTION(kFileDataErr, "Expected axis and plane whilst reading node file");
if(gFile != NULL)
fprintf(gFile, "%*s| %c = %g\n", level * 2, "", 'x' + bestaxis, bestplane);
// create child nodes
nodes.push_back(Node());
nodes.push_back(Node());
// set current node
nodes[inode].type = Node::Split;
nodes[inode].data = bestaxis;
nodes[inode].index = ichild;
nodes[inode].plane = bestplane;
// left cell
ReadRecursive(progress, infile, ichild, level + 1, maxIndex);
// right cell
ReadRecursive(progress, infile, ichild + 1, level + 1, maxIndex);
}
else if(c == '#') // object node
{
unsigned int cnt = 0;
if(fscanf(infile, " %u", &cnt) != 1) // read number of objects
throw POV_EXCEPTION(kFileDataErr, "Expected number of objects whilst reading node file");
vector<unsigned int> ind(cnt);
treeDepthCounter += level;
if (cnt == 0)
{
if(gFile != NULL)
fprintf(gFile, "%*s*\n", level * 2, "");
nodes[inode].type = Node::Object;
nodes[inode].data = Node::Empty;
nodes[inode].index = 0;
emptyNodeCounter++;
fscanf(infile, "\n");
return;
}
if(level == MAX_BSP_TREE_LEVEL - 1)
{
maxTreeDepthNodes++;
objectsAtMaxDepthCounter += cnt;
}
for(unsigned int i = 0; i < cnt; i++)
{
if(fscanf(infile, " %u", &ind[i]) != 1) // read object index
throw POV_EXCEPTION(kFileDataErr, "Expected object index whilst reading node file");
if(ind[i] > maxIndex)
throw POV_EXCEPTION(kFileDataErr, "Invalid object index in node file");
}
fscanf(infile, "\n");
if(gFile != NULL)
fprintf(gFile, "%*s", level * 2, "");
SetObjectNode(inode, 0, (unsigned int) ind.size());
}
else
{
throw POV_EXCEPTION(kFileDataErr, "Unexpected character in node file");
}
}
}
|