1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
|
/*******************************************************************************
* randomsequences.cpp
*
* ---------------------------------------------------------------------------
* Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
* Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
*
* POV-Ray is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* POV-Ray is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------------
* POV-Ray is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
* ---------------------------------------------------------------------------
* $File: //depot/povray/smp/source/backend/support/randomsequences.cpp $
* $Revision: #23 $
* $Change: 6132 $
* $DateTime: 2013/11/25 14:23:41 $
* $Author: clipka $
*******************************************************************************/
#include <cassert>
#include <stdexcept>
#include <map>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/support/randomsequences.h"
// this must be the last file included
#include "base/povdebug.h"
namespace pov
{
using namespace pov_base;
using boost::uniform_int;
using boost::uniform_real;
using boost::variate_generator;
using boost::mt19937;
#ifndef SIZE_MAX
#define SIZE_MAX ((size_t)-1)
#endif
#define PRIME_TABLE_COUNT 25
unsigned int primeTable[PRIME_TABLE_COUNT] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 };
/*****************************************************************************
*
* FUNCTION
*
* stream_rand
*
* INPUT
*
* stream - number of random stream
*
* OUTPUT
*
* RETURNS
*
* DBL - random value
*
* AUTHOR
*
* Dieter Bayer
*
* DESCRIPTION
*
* Standard pseudo-random function.
*
* CHANGES
*
* Feb 1996 : Creation.
* Mar 1996 : Return 2^32 random values instead of 2^16 [AED]
*
******************************************************************************/
DBL POV_rand(unsigned int& next_rand)
{
next_rand = next_rand * 1812433253L + 12345L;
return((DBL)(next_rand & 0xFFFFFFFFUL) / 0xFFFFFFFFUL);
}
/**********************************************************************************
* Legacy Code
*********************************************************************************/
vector<int> RandomInts(int minval, int maxval, size_t count)
{
mt19937 generator;
uniform_int<int> distribution(minval, maxval);
variate_generator<mt19937, uniform_int<int> > sequence(generator, distribution);
vector<int> rands(count);
for(size_t i = 0; i < count; i++)
rands[i] = sequence();
return rands;
}
vector<double> RandomDoubles(double minval, double maxval, size_t count)
{
mt19937 generator;
uniform_real<double> distribution(minval, maxval);
variate_generator<mt19937, uniform_real<double> > sequence(generator, distribution);
vector<double> rands(count);
for(size_t i = 0; i < count; i++)
rands[i] = sequence();
return rands;
}
RandomIntSequence::RandomIntSequence(int minval, int maxval, size_t count) :
values(RandomInts(minval, maxval, count))
{
}
RandomIntSequence::Generator::Generator(RandomIntSequence *seq, size_t seedindex) :
sequence(seq),
index(seedindex)
{
}
int RandomIntSequence::operator()(size_t seedindex)
{
seedindex = seedindex % values.size();
return values[seedindex];
}
int RandomIntSequence::Generator::operator()()
{
index = (index + 1) % sequence->values.size();
return (*sequence)(index);
}
int RandomIntSequence::Generator::operator()(size_t seedindex)
{
return (*sequence)(seedindex);
}
size_t RandomIntSequence::Generator::GetSeed() const
{
return index;
}
void RandomIntSequence::Generator::SetSeed(size_t seedindex)
{
index = seedindex % sequence->values.size();
}
RandomDoubleSequence::RandomDoubleSequence(double minval, double maxval, size_t count) :
values(RandomDoubles(minval, maxval, count))
{
}
RandomDoubleSequence::Generator::Generator(RandomDoubleSequence *seq, size_t seedindex) :
sequence(seq),
index(seedindex)
{
}
double RandomDoubleSequence::operator()(size_t seedindex)
{
seedindex = seedindex % values.size();
return values[seedindex];
}
double RandomDoubleSequence::Generator::operator()()
{
index = (index + 1) % sequence->values.size();
return (*sequence)(index);
}
double RandomDoubleSequence::Generator::operator()(size_t seedindex)
{
return (*sequence)(seedindex);
}
size_t RandomDoubleSequence::Generator::GetSeed() const
{
return index;
}
void RandomDoubleSequence::Generator::SetSeed(size_t seedindex)
{
index = seedindex % sequence->values.size();
}
/**********************************************************************************
* Local Types : Abstract Generators
*********************************************************************************/
/**
* Abstract template class representing a generator for numbers that can be accessed both sequentially and by index.
*/
template<class Type>
class HybridNumberGenerator : public SeedableNumberGenerator<Type>, public IndexedNumberGenerator<Type>
{
public:
HybridNumberGenerator(size_t size = 0);
virtual Type operator()();
virtual shared_ptr<vector<Type> > GetSequence(size_t count);
virtual size_t MaxIndex() const;
virtual size_t CycleLength() const;
virtual void Seed(size_t seed);
protected:
const size_t size;
size_t index;
};
/**********************************************************************************
* Local Types : Linear Generators
*********************************************************************************/
/**
* Template class representing a generator for uniformly distributed numbers in a given range.
*/
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH = SIZE_MAX>
class UniformRandomNumberGenerator : public SequentialNumberGenerator<Type>
{
public:
struct ParameterStruct {
ParameterStruct(Type minval, Type maxval);
Type minval, maxval;
bool operator< (const ParameterStruct& other) const;
};
UniformRandomNumberGenerator(const ParameterStruct& param);
UniformRandomNumberGenerator(Type minval, Type maxval);
virtual Type operator()();
virtual size_t CycleLength() const;
protected:
variate_generator<BoostGenerator, UniformType> generator;
};
typedef UniformRandomNumberGenerator<int, mt19937, uniform_int<int> > Mt19937IntGenerator;
typedef UniformRandomNumberGenerator<double, mt19937, uniform_real<double> > Mt19937DoubleGenerator;
/**
* Generator for a 1-dimensional Halton sequence (aka van-der-Corput sequence).
* This class fulfills the boost UniformRandomNumberGenerator requirements,
* except that the numbers generated are actually sub-random.
*/
template<class Type>
class HaltonGenerator : public HybridNumberGenerator<Type>
{
public:
struct ParameterStruct {
ParameterStruct(unsigned int base, Type minval, Type maxval);
unsigned int base;
Type minval, maxval;
bool operator< (const ParameterStruct& other) const;
};
HaltonGenerator(const ParameterStruct& param);
HaltonGenerator(unsigned int base, Type minval, Type maxval);
/// Returns a particular number from the sequence.
virtual double operator[](size_t index) const;
protected:
unsigned int base;
Type minval;
Type scale;
};
typedef HaltonGenerator<int> HaltonIntGenerator;
typedef HaltonGenerator<double> HaltonDoubleGenerator;
/**********************************************************************************
* Local Types : Vector Generators
*********************************************************************************/
/**
* Class generating a cosine-weighted hemispherical direction vector compatible with earlier POV-Ray versions.
* This class uses a 1600-element hard-coded directions originally used for radiosity.
*/
class LegacyCosWeightedDirectionGenerator : public HybridNumberGenerator<Vector3d>
{
public:
static const int NumEntries = 1600;
struct ParameterStruct
{
bool operator< (const ParameterStruct& other) const;
};
LegacyCosWeightedDirectionGenerator(const ParameterStruct& dummy);
virtual Vector3d operator[](size_t i) const;
};
/**
* Abstract template class generating a vector based on a 2D Halton sequence.
*/
template<class Type, class TypeA, class TypeB = TypeA>
class Halton2dBasedGenerator : public HybridNumberGenerator<Type>
{
public:
struct ParameterStruct
{
ParameterStruct(unsigned int baseA, unsigned int baseB, TypeA minvalA, TypeA maxvalA, TypeB minvalB, TypeB maxvalB);
unsigned int baseA, baseB;
TypeA minvalA, maxvalA;
TypeB minvalB, maxvalB;
bool operator< (const ParameterStruct& other) const;
};
Halton2dBasedGenerator(const ParameterStruct& param);
virtual Type operator[](size_t i) const = 0;
protected:
shared_ptr<HaltonDoubleGenerator> generatorA;
shared_ptr<HaltonDoubleGenerator> generatorB;
};
/**
* Class generating cosine-weighted hemispherical direction vectors, centered around the Y axis, based on a 2D Halton sequence.
*/
class HaltonCosWeightedDirectionGenerator : public Halton2dBasedGenerator<Vector3d, double>
{
public:
struct ParameterStruct : public Halton2dBasedGenerator<Vector3d, double>::ParameterStruct
{
ParameterStruct(unsigned int baseA, unsigned int baseB);
};
HaltonCosWeightedDirectionGenerator(const ParameterStruct& param);
virtual Vector3d operator[](size_t i) const;
};
/**
* Class generating uniformly distributed points within the unit circle based on a 2D Halton sequence.
*/
class HaltonOnDiscGenerator : public Halton2dBasedGenerator<Vector2d, double>
{
public:
struct ParameterStruct : public Halton2dBasedGenerator<Vector2d, double>::ParameterStruct
{
ParameterStruct(unsigned int baseA, unsigned int baseB, double radius);
};
HaltonOnDiscGenerator(const ParameterStruct& param);
virtual Vector2d operator[](size_t i) const;
};
/**
* Class generating uniformly distributed points on the unit sphere based on a 2D Halton sequence.
*/
class HaltonUniformDirectionGenerator : public Halton2dBasedGenerator<Vector3d, double>
{
public:
struct ParameterStruct : public Halton2dBasedGenerator<Vector3d, double>::ParameterStruct
{
ParameterStruct(unsigned int baseA, unsigned int baseB);
};
HaltonUniformDirectionGenerator(const ParameterStruct& param);
virtual Vector3d operator[](size_t i) const;
};
/**
* Class generating uniformly distributed points within a square based on a 2D Halton sequence.
*/
class Halton2dGenerator : public Halton2dBasedGenerator<Vector2d, double>
{
public:
Halton2dGenerator(const ParameterStruct& param);
virtual Vector2d operator[](size_t i) const;
};
/**********************************************************************************
* Local Types : Auxiliary
*********************************************************************************/
/**
* Template class representing a factory for pre-computed number tables.
*/
template<class Type>
class NumberSequenceFactory
{
public:
/// Sets up the factory to use a given sequence.
NumberSequenceFactory(shared_ptr<vector<Type> const> masterSequence);
/// Sets up the factory to use a given number source.
NumberSequenceFactory(shared_ptr<SequentialNumberGenerator<Type> > master);
/// Sets up the factory to use a given number source, pre-computing a given number of elements.
NumberSequenceFactory(shared_ptr<SequentialNumberGenerator<Type> > master, size_t count);
/// Gets a reference to a table of pre-computed numbers having at least the given size.
/// @note The vector returned may contain more elements than requested.
shared_ptr<vector<Type> const> operator()(size_t count);
protected:
typedef SequentialNumberGenerator<Type> Generator;
typedef shared_ptr<Generator> GeneratorPtr;
typedef vector<Type> Sequence;
typedef shared_ptr<Sequence> SequencePtr;
typedef shared_ptr<Sequence const> SequenceConstPtr;
GeneratorPtr master;
SequenceConstPtr masterSequence;
boost::mutex masterMutex;
};
typedef NumberSequenceFactory<int> IntSequenceFactory;
typedef NumberSequenceFactory<double> DoubleSequenceFactory;
typedef NumberSequenceFactory<Vector3d> VectorSequenceFactory;
/**
* Template class representing a meta-factory for factories for pre-computed number tables.
*/
template<class ValueType, class GeneratorType>
class NumberSequenceMetaFactory
{
public:
static shared_ptr<NumberSequenceFactory<ValueType> > GetFactory(const typename GeneratorType::ParameterStruct& param);
protected:
typedef NumberSequenceFactory<ValueType> Factory;
typedef shared_ptr<Factory> FactoryPtr;
typedef weak_ptr<Factory> FactoryWeakPtr;
typedef std::map<typename GeneratorType::ParameterStruct, FactoryWeakPtr> FactoryTable;
static FactoryTable* lookupTable;
static boost::mutex lookupMutex;
};
typedef NumberSequenceMetaFactory<int, Mt19937IntGenerator> Mt19937IntMetaFactory;
typedef NumberSequenceMetaFactory<double, Mt19937DoubleGenerator> Mt19937DoubleMetaFactory;
typedef NumberSequenceMetaFactory<Vector3d, LegacyCosWeightedDirectionGenerator> LegacyCosWeightedDirectionMetaFactory;
typedef NumberSequenceMetaFactory<Vector3d, HaltonCosWeightedDirectionGenerator> HaltonCosWeightedDirectionMetaFactory;
typedef NumberSequenceMetaFactory<double, HaltonDoubleGenerator> HaltonUniformDoubleMetaFactory;
typedef NumberSequenceMetaFactory<Vector3d, HaltonUniformDirectionGenerator> HaltonUniformDirectionMetaFactory;
typedef NumberSequenceMetaFactory<Vector2d, HaltonOnDiscGenerator> HaltonOnDiscMetaFactory;
typedef NumberSequenceMetaFactory<Vector2d, Halton2dGenerator> Halton2dMetaFactory;
/**
* Template class representing a generator for pre-computed numbers using a shared values table.
*/
template<class Type>
class PrecomputedNumberGenerator : public HybridNumberGenerator<Type>
{
public:
/// Construct from a sequence factory.
PrecomputedNumberGenerator(shared_ptr<NumberSequenceFactory<Type> > master, size_t size) :
HybridNumberGenerator<Type>(size),
values((*master)(size))
{}
/// Returns a particular number from the sequence.
virtual Type operator[](size_t i) const
{
// According to C++ standard, template classes cannot refer to parent template classes' members by unqualified name
const size_t& size = HybridNumberGenerator<Type>::size;
return (*values)[i % size];
}
/// Returns a particular subset from the sequence.
virtual shared_ptr<vector<Type> > GetSequence(size_t index, size_t count) const
{
// According to C++ standard, template classes cannot refer to parent template classes' members by unqualified name
const size_t& size = HybridNumberGenerator<Type>::size;
shared_ptr<vector<Type> > data(new vector<Type>);
data->reserve(count);
size_t i = index % size;
while (count >= size - i) // handle wrap-around
{
data->insert(data->end(), values->begin() + i, values->begin() + size);
count -= (size - i);
i = 0;
}
data->insert(data->end(), values->begin() + i, values->begin() + i + count);
return data;
}
protected:
shared_ptr<vector<Type> const> values;
};
typedef PrecomputedNumberGenerator<int> PrecomputedIntGenerator;
typedef PrecomputedNumberGenerator<double> PrecomputedDoubleGenerator;
typedef PrecomputedNumberGenerator<Vector3d> PrecomputedVectorGenerator;
typedef PrecomputedNumberGenerator<Vector2d> PrecomputedVector2dGenerator;
/**********************************************************************************
* HybridNumberGenerator implementation
*********************************************************************************/
template<class Type>
HybridNumberGenerator<Type>::HybridNumberGenerator(size_t size) :
size(size),
index(0)
{}
template<class Type>
Type HybridNumberGenerator<Type>::operator()()
{
const Type& data = (*this)[index ++];
if (size != 0)
index = index % size;
return data;
}
template<class Type>
shared_ptr<vector<Type> > HybridNumberGenerator<Type>::GetSequence(size_t count)
{
shared_ptr<vector<Type> > data(IndexedNumberGenerator<Type>::GetSequence(index, count));
index += count;
if (size != 0)
index = index % size;
return data;
}
template<class Type>
size_t HybridNumberGenerator<Type>::MaxIndex() const
{
return size - 1;
}
template<class Type>
size_t HybridNumberGenerator<Type>::CycleLength() const
{
return size;
}
template<class Type>
void HybridNumberGenerator<Type>::Seed(size_t seed)
{
index = seed % size;
}
/**********************************************************************************
* UniformRandomNumberGenerator implementation
*********************************************************************************/
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::ParameterStruct::ParameterStruct(Type minval, Type maxval) :
minval(minval), maxval(maxval)
{}
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
bool UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::ParameterStruct::operator< (const ParameterStruct& other) const
{
if (minval != other.minval)
return (minval < other.minval);
else
return (maxval < other.maxval);
}
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::UniformRandomNumberGenerator(const ParameterStruct& param) :
generator(BoostGenerator(), UniformType(param.minval, param.maxval))
{}
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::UniformRandomNumberGenerator(Type minval, Type maxval) :
generator(BoostGenerator(), UniformType(minval, maxval))
{}
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
Type UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::operator()()
{
return generator();
}
template<class Type, class BoostGenerator, class UniformType, size_t CYCLE_LENGTH>
size_t UniformRandomNumberGenerator<Type,BoostGenerator,UniformType,CYCLE_LENGTH>::CycleLength() const
{
return CYCLE_LENGTH;
}
/**********************************************************************************
* HaltonGenerator implementation
*********************************************************************************/
template<class Type>
HaltonGenerator<Type>::ParameterStruct::ParameterStruct(unsigned int base, Type minval, Type maxval) :
base(base), minval(minval), maxval(maxval)
{}
template<class Type>
bool HaltonGenerator<Type>::ParameterStruct::operator< (const ParameterStruct& other) const
{
if (base != other.base)
return (base < other.base);
else if (minval != other.minval)
return (minval < other.minval);
else
return (maxval < other.maxval);
}
template<class Type>
HaltonGenerator<Type>::HaltonGenerator(const ParameterStruct& param) :
base(param.base),
minval(param.minval),
scale(param.maxval-param.minval)
{
}
template<class Type>
HaltonGenerator<Type>::HaltonGenerator(unsigned int base, Type minval, Type maxval) :
base(base),
minval(minval),
scale(maxval-minval)
{
}
template<class Type>
double HaltonGenerator<Type>::operator[](size_t index) const
{
size_t i = 1 + index; // index starts at 0, but halton sequence as implemented here starts at 1
double h = 0;
double q = 1.0/base;
unsigned int digit;
while (i > 0)
{
digit = (unsigned int)(i % base);
h = h + digit * q;
i /= base;
q /= base;
}
return minval + (Type)(h * scale);
}
/**********************************************************************************
* NumberSequenceFactory implementation
*********************************************************************************/
template<class Type>
NumberSequenceFactory<Type>::NumberSequenceFactory(shared_ptr<vector<Type> const> masterSequence) :
masterSequence(masterSequence)
{}
template<class Type>
NumberSequenceFactory<Type>::NumberSequenceFactory(shared_ptr<SequentialNumberGenerator<Type> > master) :
master(master)
{}
template<class Type>
NumberSequenceFactory<Type>::NumberSequenceFactory(shared_ptr<SequentialNumberGenerator<Type> > master, size_t count) :
master(master)
{
(*this)(count); // force initial sequence to be generated
}
template<class Type>
shared_ptr<vector<Type> const> NumberSequenceFactory<Type>::operator()(size_t count)
{
boost::mutex::scoped_lock lock(masterMutex);
if (!masterSequence)
{
// No values pre-computed yet; do it now.
masterSequence = SequenceConstPtr(master->GetSequence(count));
}
else if ((masterSequence->size() < count) && master)
{
// Not enough values pre-computed; release the current values list and build a larger one.
// NB: We're not simply appending to the current values list, because that might require re-allocation
// and interfere with other threads trying to read from the list. To avoid having to synchronize
// all read accesses, we're going for the less memory-efficient approach.
size_t newCount = count;
if (masterSequence->size() > newCount / 2)
{
// make sure to pre-compute at least twice the already-computed size, so we don't waste too much space with
if (masterSequence->size() > SIZE_MAX / 2) // play it safe (though that'll have us run out of memory anyway)
newCount = SIZE_MAX;
else
newCount = masterSequence->size() * 2;
}
// Pull more data from our master generator.
// NB: We're using a temporary pointer to the new values list, so we can keep the master list const,
// lest anyone might accidently modify it while other threads are reading it.
SequenceConstPtr newSequence(master->GetSequence(newCount - masterSequence->size()));
SequencePtr mergedSequence(new Sequence(*masterSequence));
mergedSequence->insert(mergedSequence->end(), newSequence->begin(), newSequence->end());
masterSequence = mergedSequence;
}
return masterSequence;
}
/**********************************************************************************
* NumberSequenceMetaFactory implementation
*********************************************************************************/
template<class ValueType, class GeneratorType>
std::map<typename GeneratorType::ParameterStruct, weak_ptr<NumberSequenceFactory<ValueType> > >* NumberSequenceMetaFactory<ValueType, GeneratorType>::lookupTable;
template<class ValueType, class GeneratorType>
boost::mutex NumberSequenceMetaFactory<ValueType, GeneratorType>::lookupMutex;
template<class ValueType, class GeneratorType>
shared_ptr<NumberSequenceFactory<ValueType> > NumberSequenceMetaFactory<ValueType, GeneratorType>::GetFactory(const typename GeneratorType::ParameterStruct& param)
{
boost::mutex::scoped_lock lock(lookupMutex);
if (!lookupTable)
lookupTable = new FactoryTable();
FactoryPtr factory = (*lookupTable)[param].lock();
if (!factory)
{
shared_ptr<GeneratorType> masterGenerator(new GeneratorType(param));
factory = FactoryPtr(new Factory(shared_ptr<SequentialNumberGenerator<ValueType> >(masterGenerator)));
(*lookupTable)[param] = factory;
}
return factory;
}
/**********************************************************************************
* LegacyCosWeightedDirectionGenerator implementation
*********************************************************************************/
extern BYTE_XYZ rad_samples[]; // defined in rad_data.cpp
bool LegacyCosWeightedDirectionGenerator::ParameterStruct::operator< (const ParameterStruct& other) const
{
return false; // all instances are equal
}
LegacyCosWeightedDirectionGenerator::LegacyCosWeightedDirectionGenerator(const ParameterStruct& dummy)
{}
Vector3d LegacyCosWeightedDirectionGenerator::operator[](size_t i) const
{
Vector3d result;
VUnpack(result, &(rad_samples[i % NumEntries]));
return result;
}
/**********************************************************************************
* Halton2dBasedGenerator implementation
*********************************************************************************/
template<class Type, class TypeA, class TypeB>
Halton2dBasedGenerator<Type, TypeA, TypeB>::ParameterStruct::ParameterStruct(unsigned int baseA, unsigned int baseB, TypeA minvalA, TypeA maxvalA, TypeB minvalB, TypeB maxvalB) :
baseA(baseA), baseB(baseB),
minvalA(minvalA), maxvalA(maxvalA),
minvalB(minvalB), maxvalB(maxvalB)
{}
template<class Type, class TypeA, class TypeB>
bool Halton2dBasedGenerator<Type, TypeA, TypeB>::ParameterStruct::operator< (const ParameterStruct& other) const
{
if (baseA != other.baseA)
return (baseA < other.baseA);
else if (baseB != other.baseB)
return (baseB < other.baseB);
else if (minvalA != other.minvalA)
return (minvalA < other.minvalA);
else if (maxvalA != other.maxvalA)
return (maxvalA < other.maxvalA);
else if (minvalB != other.minvalB)
return (minvalB < other.minvalB);
else
return (maxvalB < other.maxvalB);
}
template<class Type, class TypeA, class TypeB>
Halton2dBasedGenerator<Type, TypeA, TypeB>::Halton2dBasedGenerator(const ParameterStruct& param) :
generatorA(new HaltonDoubleGenerator(param.baseA, param.minvalA, param.maxvalA)),
generatorB(new HaltonDoubleGenerator(param.baseB, param.minvalB, param.maxvalB))
{}
/**********************************************************************************
* HaltonCosWeightedDirectionGenerator implementation
*********************************************************************************/
HaltonCosWeightedDirectionGenerator::HaltonCosWeightedDirectionGenerator(const ParameterStruct& param) :
Halton2dBasedGenerator<Vector3d,double,double>(param)
{}
HaltonCosWeightedDirectionGenerator::ParameterStruct::ParameterStruct(unsigned int baseA, unsigned int baseB) :
Halton2dBasedGenerator<Vector3d,double,double>::ParameterStruct(baseA, baseB, 0.0, 1.0, 0.0, 2*M_PI)
{}
Vector3d HaltonCosWeightedDirectionGenerator::operator[](size_t i) const
{
double r = sqrt((*generatorA)[i]);
double theta = (*generatorB)[i];
double x = r * cos(theta);
double z = r * sin(theta);
double y = sqrt (1 - x*x - z*z);
return Vector3d(x, y, z);
}
/**********************************************************************************
* HaltonOnDiscGenerator implementation
*********************************************************************************/
HaltonOnDiscGenerator::HaltonOnDiscGenerator(const ParameterStruct& param) :
Halton2dBasedGenerator<Vector2d,double,double>(param)
{}
HaltonOnDiscGenerator::ParameterStruct::ParameterStruct(unsigned int baseA, unsigned int baseB, double radius) :
Halton2dBasedGenerator<Vector2d,double,double>::ParameterStruct(baseA, baseB, 0.0, radius*radius, 0.0, 2*M_PI)
{}
Vector2d HaltonOnDiscGenerator::operator[](size_t i) const
{
double r = sqrt((*generatorA)[i]);
double theta = (*generatorB)[i];
double x = r * cos(theta);
double y = r * sin(theta);
return Vector2d(x, y);
}
/**********************************************************************************
* Halton2dGenerator implementation
*********************************************************************************/
Halton2dGenerator::Halton2dGenerator(const ParameterStruct& param) :
Halton2dBasedGenerator<Vector2d,double,double>(param)
{}
Vector2d Halton2dGenerator::operator[](size_t i) const
{
double x = (*generatorA)[i];
double y = (*generatorB)[i];
return Vector2d(x, y);
}
/**********************************************************************************
* HaltonUniformDirectionGenerator implementation
*********************************************************************************/
HaltonUniformDirectionGenerator::HaltonUniformDirectionGenerator(const ParameterStruct& param) :
Halton2dBasedGenerator<Vector3d,double,double>(param)
{}
HaltonUniformDirectionGenerator::ParameterStruct::ParameterStruct(unsigned int baseA, unsigned int baseB) :
Halton2dBasedGenerator<Vector3d,double,double>::ParameterStruct(baseA, baseB, -1.0, 1.0, 0.0, 2*M_PI)
{}
Vector3d HaltonUniformDirectionGenerator::operator[](size_t i) const
{
double x = (*generatorA)[i];
double r = sqrt(1 - x*x);
double theta = (*generatorB)[i];
double y = r * cos(theta);
double z = r * sin(theta);
return Vector3d(x, y, z);
}
/**********************************************************************************
* Factory Functions
*********************************************************************************/
SeedableIntGeneratorPtr GetRandomIntGenerator(int minval, int maxval, size_t count)
{
assert (count > 0);
Mt19937IntGenerator::ParameterStruct param(minval, maxval);
shared_ptr<NumberSequenceFactory<int> > factory = Mt19937IntMetaFactory::GetFactory(param);
SeedableIntGeneratorPtr generator(new PrecomputedIntGenerator(factory, count));
(void)(*generator)(); // legacy fix
return generator;
}
SeedableDoubleGeneratorPtr GetRandomDoubleGenerator(double minval, double maxval, size_t count)
{
assert (count > 0);
Mt19937DoubleGenerator::ParameterStruct param(minval, maxval);
shared_ptr<NumberSequenceFactory<double> > factory(Mt19937DoubleMetaFactory::GetFactory(param));
SeedableDoubleGeneratorPtr generator(new PrecomputedDoubleGenerator(factory, count));
(void)(*generator)(); // legacy fix
return generator;
}
SequentialDoubleGeneratorPtr GetRandomDoubleGenerator(double minval, double maxval)
{
Mt19937DoubleGenerator::ParameterStruct param(minval, maxval);
SequentialDoubleGeneratorPtr generator(new Mt19937DoubleGenerator(param));
(void)(*generator)(); // legacy fix
return generator;
}
IndexedDoubleGeneratorPtr GetIndexedRandomDoubleGenerator(double minval, double maxval, size_t count)
{
assert (count > 0);
Mt19937DoubleGenerator::ParameterStruct param(minval, maxval);
shared_ptr<NumberSequenceFactory<double> > factory(Mt19937DoubleMetaFactory::GetFactory(param));
return IndexedDoubleGeneratorPtr(new PrecomputedDoubleGenerator(factory, count));
}
SequentialVectorGeneratorPtr GetSubRandomCosWeightedDirectionGenerator(unsigned int id, size_t count)
{
if ((id == 0) && count && (count < LegacyCosWeightedDirectionGenerator::NumEntries))
{
LegacyCosWeightedDirectionGenerator::ParameterStruct param;
shared_ptr<NumberSequenceFactory<Vector3d> > factory(LegacyCosWeightedDirectionMetaFactory::GetFactory(param));
return SequentialVectorGeneratorPtr(new PrecomputedVectorGenerator(factory, count));
}
else
{
HaltonCosWeightedDirectionGenerator::ParameterStruct param(primeTable[id % PRIME_TABLE_COUNT], primeTable[(id+1) % PRIME_TABLE_COUNT]);
if (count)
{
shared_ptr<NumberSequenceFactory<Vector3d> > factory(HaltonCosWeightedDirectionMetaFactory::GetFactory(param));
return SequentialVectorGeneratorPtr(new PrecomputedVectorGenerator(factory, count));
}
else
return SequentialVectorGeneratorPtr(new HaltonCosWeightedDirectionGenerator(param));
}
}
SequentialDoubleGeneratorPtr GetSubRandomDoubleGenerator(unsigned int id, double minval, double maxval, size_t count)
{
HaltonDoubleGenerator::ParameterStruct param(primeTable[id % PRIME_TABLE_COUNT], minval, maxval);
if (count)
{
shared_ptr<NumberSequenceFactory<double> > factory(HaltonUniformDoubleMetaFactory::GetFactory(param));
return SequentialDoubleGeneratorPtr(new PrecomputedDoubleGenerator(factory, count));
}
else
return SequentialDoubleGeneratorPtr(new HaltonDoubleGenerator(param));
}
SequentialVectorGeneratorPtr GetSubRandomDirectionGenerator(unsigned int id, size_t count)
{
HaltonUniformDirectionGenerator::ParameterStruct param(primeTable[id % PRIME_TABLE_COUNT], primeTable[(id+1) % PRIME_TABLE_COUNT]);
if (count)
{
shared_ptr<NumberSequenceFactory<Vector3d> > factory(HaltonUniformDirectionMetaFactory::GetFactory(param));
return SequentialVectorGeneratorPtr(new PrecomputedVectorGenerator(factory, count));
}
else
return SequentialVectorGeneratorPtr(new HaltonUniformDirectionGenerator(param));
}
SequentialVector2dGeneratorPtr GetSubRandomOnDiscGenerator(unsigned int id, double radius, size_t count)
{
HaltonOnDiscGenerator::ParameterStruct param(primeTable[id % PRIME_TABLE_COUNT], primeTable[(id+1) % PRIME_TABLE_COUNT], radius);
if (count)
{
shared_ptr<NumberSequenceFactory<Vector2d> > factory(HaltonOnDiscMetaFactory::GetFactory(param));
return SequentialVector2dGeneratorPtr(new PrecomputedVector2dGenerator(factory, count));
}
else
return SequentialVector2dGeneratorPtr(new HaltonOnDiscGenerator(param));
}
SequentialVector2dGeneratorPtr GetSubRandom2dGenerator(unsigned int id, double minX, double maxX, double minY, double maxY, size_t count)
{
Halton2dGenerator::ParameterStruct param(primeTable[id % PRIME_TABLE_COUNT], primeTable[(id+1) % PRIME_TABLE_COUNT], minX, maxX, minY, maxY);
if (count)
{
shared_ptr<NumberSequenceFactory<Vector2d> > factory(Halton2dMetaFactory::GetFactory(param));
return SequentialVector2dGeneratorPtr(new PrecomputedVector2dGenerator(factory, count));
}
else
return SequentialVector2dGeneratorPtr(new Halton2dGenerator(param));
}
} // end of namespace pov
|