File: safemath.h

package info (click to toggle)
povray 1%3A3.7.0.10-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 147,232 kB
  • sloc: cpp: 845,011; ansic: 122,118; sh: 34,204; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,389; cs: 879; awk: 590; perl: 245; xml: 95
file content (146 lines) | stat: -rw-r--r-- 6,396 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*******************************************************************************
 * safemath.h
 *
 * ---------------------------------------------------------------------------
 * Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
 * Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
 *
 * POV-Ray is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * POV-Ray is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * ---------------------------------------------------------------------------
 * POV-Ray is based on the popular DKB raytracer version 2.12.
 * DKBTrace was originally written by David K. Buck.
 * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
 * ---------------------------------------------------------------------------
 * $File: //depot/public/povray/3.x/source/base/safemath.h $
 * $Revision: #1 $
 * $Change: 6069 $
 * $DateTime: 2013/11/06 11:59:40 $
 * $Author: chrisc $
 *******************************************************************************/

#ifndef POVRAY_BASE_SAFEMATH_H
#define POVRAY_BASE_SAFEMATH_H

#include <cassert>
#include <limits>

#include "base/configbase.h"
#include "base/pov_err.h"

namespace pov_base
{

/// Multiply four (unsigned integer) factors, throwing an exception in case of numerical overflow.
template<typename T, typename T1, typename T2, typename T3, typename T4>
static inline T SafeUnsignedProduct(T1 p1, T2 p2, T3 p3, T4 p4)
{
	// the function is intended for use with unisgned integer parameters only
	// (NB: Instead of testing for (pN >= 0) we could also test for (!std::numeric_limits<TN>::is_signed),
	//  but this would make passing constant factors more cumbersome)
	assert (std::numeric_limits<T>::is_integer);
	assert (std::numeric_limits<T1>::is_integer && (p1 >= 0));
	assert (std::numeric_limits<T2>::is_integer && (p2 >= 0));
	assert (std::numeric_limits<T3>::is_integer && (p3 >= 0));
	assert (std::numeric_limits<T4>::is_integer && (p4 >= 0));

	// avoid divide-by-zero issues
	if ((p1==0) || (p2==0) || (p3==0) || (p4==0))
		return 0;

	if ( (((std::numeric_limits<T>::max() / p4) / p3) / p2) < p1 )
		throw POV_EXCEPTION_CODE(kNumericalLimitErr);

	return T(p1) * T(p2) * T(p3) * T(p4);
}

/// Multiply three (unsigned integer) factors, throwing an exception in case of numerical overflow.
template<typename T, typename T1, typename T2, typename T3>
static inline T SafeUnsignedProduct(T1 p1, T2 p2, T3 p3)
{
	return SafeUnsignedProduct<T,T1,T2,T3,unsigned int>(p1, p2, p3, 1u);
}

/// Multiply two (unsigned integer) factors, throwing an exception in case of numerical overflow.
template<typename T, typename T1, typename T2>
static inline T SafeUnsignedProduct(T1 p1, T2 p2)
{
	return SafeUnsignedProduct<T,T1,T2,unsigned int,unsigned int>(p1, p2, 1u, 1u);
}

#if 0 // not currently used, but I hesitate to throw it away [CLi]

/// Multiply up to four (signed integer) values, throwing an exception in case of numerical overflow.
/// @note: The function will also throw an exception if negating the result would overflow.
template<typename T>
static inline T SafeSignedProduct(T p1, T p2, T p3 = 1, T p4 = 1)
{
	// the function is intended for use with signed integer types only
	assert (std::numeric_limits<T>::is_integer);
	assert (std::numeric_limits<T>::is_signed);

	// avoid divide-by-zero issues
	if ((p1==0) || (p2==0) || (p3==0) || (p4==0))
		return 0;

	if (std::numeric_limits<T>::min() + std::numeric_limits<T>::max() == 0)
	{
		// integer representation appears to be sign-and-magnitude or one's complement; at any rate,
		// abs(pN) is guaranteed to be a safe operation, and so is x/abs(pN) (as we've made sure that
		// pN are all nonzero), and |::min()|==|::max()| is also guaranteed, i.e. the limits in the positive
		// and negative domain are equally stringent.
		if ( (((std::numeric_limits<T>::max() / abs(p4)) / abs(p3)) / abs(p2)) < abs(p1) )
			throw POV_EXCEPTION_CODE(kNumericalLimitErr);
	}
	else if (std::numeric_limits<T>::min() + std::numeric_limits<T>::max() < 0)
	{
		// integer representation appears to be two's complement; at any rate, abs(pN) is a potentially
		// unsafe operation, while -x is a safe operation for positive x; |::max()| > |::min()| is guaranteed,
		// i.e. the limits in the positive domain are more stringent than those in the negative one.

		// specifically handle situations in which abs(pN) would overflow
		// NB we're deliberately not testing for pN == std::numeric_limits<T>::min(), in order to make the test robust
		// against exotic integer representations
		if ((p1 < -std::numeric_limits<T>::max()) ||
			(p2 < -std::numeric_limits<T>::max()) ||
			(p3 < -std::numeric_limits<T>::max()) ||
			(p4 < -std::numeric_limits<T>::max()))
			throw POV_EXCEPTION_CODE(kNumericalLimitErr);

		// we've made sure that abs(pN) is a safe operation, and hence also x/abs(pN) (as we've also made sure that
		// all pN are nonzero); we also know that whatever is safe in the positive domain is also safe in the
		// negative domain
		if ( (((std::numeric_limits<T>::max() / abs(p4)) / abs(p3)) / abs(p2)) < abs(p1) )
			throw POV_EXCEPTION_CODE(kNumericalLimitErr);
	}
	else
	{
		// integer representation is exotic; abs(pN) is guaranteed to be a safe operation, and |::min()| > |::max()|
		// is guaranteed, i.e. the limits in the negative domain are more stringent than those in the positive one.

		// with abs(pN) a safe operation and having made sure all pN are non-zero, x/abs(pN) is guaranteed to be a safe
		// operation as well; we also know that whatever is safe in the negative domain is also safe in the
		// positive domain
		if ( (((abs(std::numeric_limits<T>::min()) / abs(p4)) / abs(p3)) / abs(p2)) < abs(p1) )
			throw POV_EXCEPTION_CODE(kNumericalLimitErr);
	}

	// product is safe, go ahead
	return p1 * p2 * p3 * p4;
}

#endif

}

#endif // POVRAY_BASE_SAFEMATH_H