1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// This work is licensed under the Creative Commons Attribution 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
// or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
// California, 94041, USA.
// Persistence of Vision Raytracer Scene Description File
// File: tracevines.pov
// Author: Ron Parker
// Description: Algorithm shamelessly lifted from
// "Modeling Plants With Environment-Sensitive Automata"
// Proceedings of Ausgraph '88, pages 27-33
// by James Arvo and David Kirk
//
// -w320 -h240
// -w800 -h600 +a0.3
//
//*******************************************
#version 3.6;
global_settings {assumed_gamma 1.0}
#macro Interfere( A, B, Object )
#local N=<0,0,0>;
#local I=trace( Object, A, B-A, N );
(vlength(N) & (vlength(I-A)<vlength(B-A)))
#end // macro
#macro FindTmp( CurPt, Normal, Object, RandSeed )
#local More = 1;
#local Safety = C3;
#local Q = <0,0,0>;
#while ( More & Safety )
// select random unit T orthogonal to Normal
#local T = <rand(RandSeed)-.5,rand(RandSeed)-.5, rand(RandSeed)-.5>;
#local T = T-vdot(T,Normal)*Normal;
#if ( vlength(T))
#local T = T/vlength(T);
#local Safety = Safety-1;
#local Q = CurPt + C2 * T;
#local More = Interfere( CurPt, Q, Object );
#end // if
#end // while
#if (Safety)
Q;
#else
<0,0,0>;
#end // if
#end // macro
#macro Draw( CurPt, NewPt, Normal, NewNormal )
union {
sphere {CurPt, R1}
sphere {NewPt, R1}
cylinder {CurPt, NewPt, R1}
#local Pr = vcross(NewPt-CurPt, NewNormal );
#local Pl = vnormalize(NewPt-CurPt);
#local Or = vnormalize(.3*NewNormal+.7*Pl);
triangle {NewPt, NewPt+LL*Or, NewPt+.5*LL*Or+.5*LW*Pr
translate R1*NewNormal}
triangle {NewPt, NewPt+LL*Or, NewPt+.5*LL*Or-.5*LW*Pr
translate R1*NewNormal}
texture {
pigment {color green 1}
}
}
#end // macro
#macro Grow( Start, Normal, Object, RandSeed )
#local Continue = 1;
#while ( Continue )
#ifndef (Watchdog)
#local Watchdog = C8;
#else
#declare Watchdog = Watchdog - 1;
#end // ifndef
#ifndef (Gen)
#local Gen = 0;
#else
#local Gen2 = Gen+1;
#local Gen = Gen2;
#end // if
#local Continue = 0;
#local Branch = 0;
#if ( Watchdog )
#local CurPt = Start + C1 * Normal;
#local NewTmp = FindTmp( CurPt, Normal, Object, RandSeed )
#if (vlength( NewTmp ))
#local Dist = 9999;
#local NewRoot = Start;
#local NewNormal = Normal;
#local NewPt = CurPt;
#local Iter = C3;
#while (Iter)
#local R = <rand(RandSeed)-.5,rand(RandSeed)-.5,
rand(RandSeed)-.5>+Bias;
#local N = <0,0,0>;
#local Int = trace( Object, NewTmp, R, N );
#if ( vlength(N) )
#local CurDist = vlength( Int-Start );
#local TestPt = Int + C1 * N;
#if ( (CurDist < Dist) & (CurDist < C4) &
!Interfere( CurPt, TestPt, Object ))
#local Dist = CurDist;
#local NewRoot = Int;
#local NewNormal = vnormalize(N);
#local NewPt = Int+ C1 * N;
#end // if shorter dist
#end // if N
#local Iter = Iter-1;
#end // while Iter
#if ( vlength(CurPt-NewPt))
Draw( CurPt, NewPt, Normal, NewNormal )
#if (rand(RandSeed) > C5 & Gen < C7)
#local Continue = 1;
#if (rand(RandSeed)<C6)
#local Branch = 1;
#end // if branch
#end // if continue
#end // if new point
#end // if NewTmp found
#end // if watchdog
#if (Branch)
Grow( NewRoot, NewNormal, Object, RandSeed )
#end // if branch
#local Start = NewRoot;
#local Normal = NewNormal;
#end // while continue
#end // macro
#declare Fence = union {
cylinder {-2.2*x, <-2.2,2,0>, .2}
cylinder {0, <0,2,0>, .2}
cylinder {2.2*x, <2.2,2,0>, .2}
cylinder {<2.2,1.7,0> <-2.2,1.7,0> .1}
cylinder {<2.2,1,0> <-2.2,1,0> .1}
plane {y 0 pigment {bozo color_map {[0 rgb <1,.8,.5>][1 rgb <.8,.5,.1>]}}}
translate -.02*y
texture {
pigment {
color rgb <.5,.25,.1>
}
}
}
#declare C1 = .02; // distance of the vine from the object it grows on
#declare C2 = .05; // Approximate step distance
#declare C3 = 60; // number of attempts to find a surface to take root
#declare C4 = .1; // Maximum jump between roots
#declare C5 = .05; // probability of quitting after each generation
#declare C6 = .3; // probability of branching after each generation
#declare C7 = 150; // absolute maximum generations
#declare C8 = 10000; // absolute maximum generations along all branches
#declare R1 = .01; // radius of vine
#declare LL = .1; // length of leaf
#declare LW = .1; // width of leaf
#declare Bias = <-.2,.4,0>;
#declare RandSeed = seed(347);
#declare Sa=array[12] {
<-2,0,0>,<-2.4,0,0>,<-2.2,0,.2>,<-2.2,0,-.2>, // left post
<2,0,0>,<2.4,0,0>,<2.2,0,.2>,<2.2,0,-.2>, // right post
<-.2,0,0>,<.2,0,0>,<0,0,.2>,<0,0,-.2> // center post
}
#declare Na=array[12] {x,-x,z,-z,-x,x,z,-z,-x,x,z,-z}
#declare Count=0;
#while (Count<12)
#debug concat("plant ",str(Count+1,0,0), "\n")
Grow( Sa[Count], Na[Count], Fence, RandSeed )
#declare Count=Count+1;
#end
object {Fence}
light_source {<-20,20,-20> rgb 1}
camera { location <-2,3,-4>
right x*image_width/image_height
look_at <-0.4,1,0>
angle 56
}
|