| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 
 | /*
 * jidctflt.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * Modified 2010 by Guido Vollbeding.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a floating-point implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * This implementation should be more accurate than either of the integer
 * IDCT implementations.  However, it may not give the same results on all
 * machines because of differences in roundoff behavior.  Speed will depend
 * on the hardware's floating point capacity.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with a fixed-point
 * implementation, accuracy is lost due to imprecise representation of the
 * scaled quantization values.  However, that problem does not arise if
 * we use floating point arithmetic.
 */
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
 * This module is specialized to the case DCTSIZE = 8.
 */
#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce a float result.
 */
#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */
GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  FLOAT_MULT_TYPE * quantptr;
  FAST_FLOAT * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = cinfo->sample_range_limit;
  int ctr;
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
  /* Pass 1: process columns from input, store into work array. */
  inptr = coef_block;
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part */
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    tmp10 = tmp0 + tmp2;	/* phase 3 */
    tmp11 = tmp0 - tmp2;
    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
    tmp0 = tmp10 + tmp13;	/* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    
    /* Odd part */
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    z13 = tmp6 + tmp5;		/* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;
    tmp7 = z11 + z13;		/* phase 5 */
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    tmp6 = tmp12 - tmp7;	/* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 - tmp5;
    wsptr[DCTSIZE*0] = tmp0 + tmp7;
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
    wsptr[DCTSIZE*3] = tmp3 + tmp4;
    wsptr[DCTSIZE*4] = tmp3 - tmp4;
    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * And testing floats for zero is relatively expensive, so we don't bother.
     */
    
    /* Even part */
    /* Apply signed->unsigned and prepare float->int conversion */
    z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
    tmp10 = z5 + wsptr[4];
    tmp11 = z5 - wsptr[4];
    tmp13 = wsptr[2] + wsptr[6];
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
    tmp0 = tmp10 + tmp13;
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    /* Odd part */
    z13 = wsptr[5] + wsptr[3];
    z10 = wsptr[5] - wsptr[3];
    z11 = wsptr[1] + wsptr[7];
    z12 = wsptr[1] - wsptr[7];
    tmp7 = z11 + z13;
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    tmp6 = tmp12 - tmp7;
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 - tmp5;
    /* Final output stage: float->int conversion and range-limit */
    outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
    outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
    outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
    outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
    outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
    outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
    outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
    outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}
#endif /* DCT_FLOAT_SUPPORTED */
 |