1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
|
/*******************************************************************************
* trace.cpp
*
* ---------------------------------------------------------------------------
* Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
* Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
*
* POV-Ray is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* POV-Ray is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ---------------------------------------------------------------------------
* POV-Ray is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
* ---------------------------------------------------------------------------
* $File: //depot/public/povray/3.x/source/backend/render/trace.cpp $
* $Revision: #1 $
* $Change: 6069 $
* $DateTime: 2013/11/06 11:59:40 $
* $Author: chrisc $
*******************************************************************************/
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <float.h>
// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/colour/colour.h"
#include "backend/math/vector.h"
#include "backend/math/matrices.h"
#include "backend/scene/objects.h"
#include "backend/pattern/pattern.h"
#include "backend/pattern/warps.h"
#include "backend/support/imageutil.h"
#include "backend/texture/normal.h"
#include "backend/texture/pigment.h"
#include "backend/texture/texture.h"
#include "backend/render/trace.h"
#include "backend/render/tracetask.h"
#include "backend/scene/scene.h"
#include "backend/scene/view.h"
#include "backend/lighting/point.h"
#include "backend/lighting/radiosity.h"
#include "backend/lighting/subsurface.h"
#include "backend/shape/csg.h"
#include "backend/shape/boxes.h"
#include "backend/support/bsptree.h"
// this must be the last file included
#include "base/povdebug.h"
namespace pov
{
#define SHADOW_TOLERANCE 1.0e-3
#define MEDIA_AFTER_TEXTURE_INTERPOLATION 1
Trace::Trace(shared_ptr<SceneData> sd, TraceThreadData *td, unsigned int qf,
CooperateFunctor& cf, MediaFunctor& mf, RadiosityFunctor& rf) :
threadData(td),
sceneData(sd),
maxFoundTraceLevel(0),
qualityFlags(qf),
mailbox(0),
crandRandomNumberGenerator(0),
randomNumbers(0.0, 1.0, 32768),
randomNumberGenerator(&randomNumbers),
ssltUniformDirectionGenerator(),
ssltUniformNumberGenerator(),
ssltCosWeightedDirectionGenerator(),
cooperate(cf),
media(mf),
radiosity(rf),
lightColorCacheIndex(-1)
{
lightSourceLevel1ShadowCache.resize(max(1, (int) threadData->lightSources.size()));
for(vector<ObjectPtr>::iterator i(lightSourceLevel1ShadowCache.begin()); i != lightSourceLevel1ShadowCache.end(); i++)
*i = NULL;
lightSourceOtherShadowCache.resize(max(1, (int) threadData->lightSources.size()));
for(vector<ObjectPtr>::iterator i(lightSourceOtherShadowCache.begin()); i != lightSourceOtherShadowCache.end(); i++)
*i = NULL;
lightColorCache.resize(max(20U, sd->parsedMaxTraceLevel + 1));
for(LightColorCacheListList::iterator it = lightColorCache.begin(); it != lightColorCache.end(); it++)
it->resize(max(1, (int) threadData->lightSources.size()));
if(sceneData->boundingMethod == 2)
mailbox = BSPTree::Mailbox(sceneData->numberOfFiniteObjects);
}
Trace::~Trace()
{
}
double Trace::TraceRay(const Ray& ray, Colour& colour, COLC weight, TraceTicket& ticket, bool continuedRay, DBL maxDepth)
{
Intersection bestisect;
bool found;
NoSomethingFlagRayObjectCondition precond;
TrueRayObjectCondition postcond;
POV_ULONG nrays = threadData->Stats()[Number_Of_Rays]++;
if(ray.IsPrimaryRay() || (((unsigned char) nrays & 0x0f) == 0x00))
cooperate();
// Check for max. trace level or ADC bailout.
if((ticket.traceLevel >= ticket.maxAllowedTraceLevel) || (weight < ticket.adcBailout))
{
if(weight < ticket.adcBailout)
threadData->Stats()[ADC_Saves]++;
colour.clear();
return HUGE_VAL;
}
if (maxDepth >= EPSILON)
bestisect.Depth = maxDepth;
found = FindIntersection(bestisect, ray, precond, postcond);
// Check if we're busy shooting too many radiosity sample rays at an unimportant object
if (ticket.radiosityImportanceQueried >= 0.0)
{
if (found)
{
ticket.radiosityImportanceFound = bestisect.Object->RadiosityImportance(sceneData->radiositySettings.defaultImportance);
}
else
ticket.radiosityImportanceFound = sceneData->radiositySettings.defaultImportance;
if (ticket.radiosityImportanceFound < ticket.radiosityImportanceQueried)
{
if(found == false)
return HUGE_VAL;
else
return bestisect.Depth;
}
}
float oldRadiosityImportanceQueried = ticket.radiosityImportanceQueried;
ticket.radiosityImportanceQueried = -1.0; // indicates that recursive calls to TraceRay() should not check for radiosity importance
const bool traceLevelIncremented = !continuedRay;
if(traceLevelIncremented)
{
// Set highest level traced.
ticket.traceLevel++;
ticket.maxFoundTraceLevel = (unsigned int) max(ticket.maxFoundTraceLevel, ticket.traceLevel);
}
if((qualityFlags & Q_VOLUME) && (ray.IsPhotonRay() == true) && (ray.IsHollowRay() == true))
{
// Note: this version of ComputeMedia does not deposit photons. This is
// intentional. Even though we're processing a photon ray, we don't want
// to deposit photons in the infinite atmosphere, only in contained
// media, which is processed later (in ComputeLightedTexture). [nk]
media.ComputeMedia(sceneData->atmosphere, ray, bestisect, colour, ticket);
if(sceneData->fog != NULL)
ComputeFog(ray, bestisect, colour);
}
if(found)
ComputeTextureColour(bestisect, colour, ray, weight, false, ticket);
else
ComputeSky(ray, colour, ticket);
if((qualityFlags & Q_VOLUME) && (ray.IsPhotonRay() == false) && (ray.IsHollowRay() == true))
{
if((sceneData->rainbow != NULL) && (ray.IsShadowTestRay() == false))
ComputeRainbow(ray, bestisect, colour);
media.ComputeMedia(sceneData->atmosphere, ray, bestisect, colour, ticket);
if(sceneData->fog != NULL)
ComputeFog(ray, bestisect, colour);
}
if(traceLevelIncremented)
ticket.traceLevel--;
maxFoundTraceLevel = (unsigned int) max(maxFoundTraceLevel, ticket.maxFoundTraceLevel);
ticket.radiosityImportanceQueried = oldRadiosityImportanceQueried;
if(found == false)
return HUGE_VAL;
else
return bestisect.Depth;
}
bool Trace::FindIntersection(Intersection& bestisect, const Ray& ray)
{
switch(sceneData->boundingMethod)
{
case 2:
{
BSPIntersectFunctor ifn(bestisect, ray, sceneData->objects, threadData);
bool found = false;
mailbox.clear();
found = (*(sceneData->tree))(ray, ifn, mailbox, bestisect.Depth);
// test infinite objects
for(vector<ObjectPtr>::iterator it = sceneData->objects.begin() + sceneData->numberOfFiniteObjects; it != sceneData->objects.end(); it++)
{
Intersection isect;
if(FindIntersection(*it, isect, ray) && (isect.Depth < bestisect.Depth))
{
bestisect = isect;
found = true;
}
}
return found;
}
case 1:
{
if(sceneData->boundingSlabs != NULL)
return (Intersect_BBox_Tree(priorityQueue, sceneData->boundingSlabs, ray, &bestisect, threadData));
}
// FALLTHROUGH
case 0:
{
bool found = false;
for(vector<ObjectPtr>::iterator it = sceneData->objects.begin(); it != sceneData->objects.end(); it++)
{
Intersection isect;
if(FindIntersection(*it, isect, ray) && (isect.Depth < bestisect.Depth))
{
bestisect = isect;
found = true;
}
}
return found;
}
}
return false;
}
bool Trace::FindIntersection(Intersection& bestisect, const Ray& ray, const RayObjectCondition& precondition, const RayObjectCondition& postcondition)
{
switch(sceneData->boundingMethod)
{
case 2:
{
BSPIntersectCondFunctor ifn(bestisect, ray, sceneData->objects, threadData, precondition, postcondition);
bool found = false;
mailbox.clear();
found = (*(sceneData->tree))(ray, ifn, mailbox, bestisect.Depth);
// test infinite objects
for(vector<ObjectPtr>::iterator it = sceneData->objects.begin() + sceneData->numberOfFiniteObjects; it != sceneData->objects.end(); it++)
{
if(precondition(ray, *it, 0.0) == true)
{
Intersection isect;
if(FindIntersection(*it, isect, ray, postcondition) && (isect.Depth < bestisect.Depth))
{
bestisect = isect;
found = true;
}
}
}
return found;
}
case 1:
{
if(sceneData->boundingSlabs != NULL)
return (Intersect_BBox_Tree(priorityQueue, sceneData->boundingSlabs, ray, &bestisect, precondition, postcondition, threadData));
}
// FALLTHROUGH
case 0:
{
bool found = false;
for(vector<ObjectPtr>::iterator it = sceneData->objects.begin(); it != sceneData->objects.end(); it++)
{
if(precondition(ray, *it, 0.0) == true)
{
Intersection isect;
if(FindIntersection(*it, isect, ray, postcondition) && (isect.Depth < bestisect.Depth))
{
bestisect = isect;
found = true;
}
}
}
return found;
}
}
return false;
}
bool Trace::FindIntersection(ObjectPtr object, Intersection& isect, const Ray& ray, double closest)
{
if(object != NULL)
{
BBOX_VECT origin;
BBOX_VECT invdir;
ObjectBase::BBoxDirection variant;
Vector3d tmp(1.0 / ray.GetDirection()[X], 1.0 / ray.GetDirection()[Y], 1.0 /ray.GetDirection()[Z]);
Assign_Vector(origin, ray.Origin);
Assign_Vector(invdir, *tmp);
variant = (ObjectBase::BBoxDirection)((int(invdir[X] < 0.0) << 2) | (int(invdir[Y] < 0.0) << 1) | int(invdir[Z] < 0.0));
if(object->Intersect_BBox(variant, origin, invdir, closest) == false)
return false;
if(object->Bound.empty() == false)
{
if(Ray_In_Bound(ray, object->Bound, threadData) == false)
return false;
}
IStack depthstack(stackPool);
assert(depthstack->empty()); // verify that the IStack pulled from the pool is in a cleaned-up condition
if(object->All_Intersections(ray, depthstack, threadData))
{
bool found = false;
double tmpDepth = 0;
while(depthstack->size() > 0)
{
tmpDepth = depthstack->top().Depth;
// TODO FIXME - This was SMALL_TOLERANCE, but that's too rough for some scenes [cjc] need to check what it was in the old code [trf]
if(tmpDepth < closest && (ray.IsSubsurfaceRay() || tmpDepth >= MIN_ISECT_DEPTH))
{
isect = depthstack->top();
closest = tmpDepth;
found = true;
}
depthstack->pop();
}
return (found == true);
}
assert(depthstack->empty()); // verify that the IStack is in a cleaned-up condition (again)
}
return false;
}
bool Trace::FindIntersection(ObjectPtr object, Intersection& isect, const Ray& ray, const RayObjectCondition& postcondition, double closest)
{
if(object != NULL)
{
BBOX_VECT origin;
BBOX_VECT invdir;
ObjectBase::BBoxDirection variant;
Vector3d tmp(1.0 / ray.GetDirection()[X], 1.0 / ray.GetDirection()[Y], 1.0 /ray.GetDirection()[Z]);
Assign_Vector(origin, ray.Origin);
Assign_Vector(invdir, *tmp);
variant = (ObjectBase::BBoxDirection)((int(invdir[X] < 0.0) << 2) | (int(invdir[Y] < 0.0) << 1) | int(invdir[Z] < 0.0));
if(object->Intersect_BBox(variant, origin, invdir, closest) == false)
return false;
if(object->Bound.empty() == false)
{
if(Ray_In_Bound(ray, object->Bound, threadData) == false)
return false;
}
IStack depthstack(stackPool);
assert(depthstack->empty()); // verify that the IStack pulled from the pool is in a cleaned-up condition
if(object->All_Intersections(ray, depthstack, threadData))
{
bool found = false;
double tmpDepth = 0;
while(depthstack->size() > 0)
{
tmpDepth = depthstack->top().Depth;
// TODO FIXME - This was SMALL_TOLERANCE, but that's too rough for some scenes [cjc] need to check what it was in the old code [trf]
if(tmpDepth < closest && (ray.IsSubsurfaceRay() || tmpDepth >= MIN_ISECT_DEPTH) && postcondition(ray, object, tmpDepth))
{
isect = depthstack->top();
closest = tmpDepth;
found = true;
}
depthstack->pop();
}
return (found == true);
}
assert(depthstack->empty()); // verify that the IStack is in a cleaned-up condition (again)
}
return false;
}
unsigned int Trace::GetHighestTraceLevel()
{
return maxFoundTraceLevel;
}
void Trace::ComputeTextureColour(Intersection& isect, Colour& colour, const Ray& ray, COLC weight, bool photonPass, TraceTicket& ticket)
{
// NOTE: when called during the photon pass this method is used to deposit photons
// on the surface and not, per se, to compute texture color.
WeightedTextureVector wtextures;
double normaldirection;
Colour tmpCol;
Colour c1;
Vector2d uvcoords;
Vector3d rawnormal;
Vector3d ipoint(isect.IPoint);
if (++lightColorCacheIndex >= lightColorCache.size())
{
lightColorCache.resize(lightColorCacheIndex + 10);
for (LightColorCacheListList::iterator it = lightColorCache.begin() + lightColorCacheIndex; it != lightColorCache.end(); it++)
it->resize(lightColorCache[0].size());
}
for (LightColorCacheList::iterator it = lightColorCache[lightColorCacheIndex].begin(); it != lightColorCache[lightColorCacheIndex].end(); it++)
it->tested = false;
// compute the surface normal
isect.Object->Normal(*rawnormal, &isect, threadData);
// I added this to flip the normal if the object is inverted (for CSG).
// However, I subsequently commented it out for speed reasons - it doesn't
// make a difference (no pun intended). The preexisting flip code below
// produces a similar (though more extensive) result. [NK]
// Actually, we should keep this code to guarantee that Normal_Direction
// is set properly. [NK]
if(Test_Flag(isect.Object, INVERTED_FLAG))
rawnormal = -rawnormal;
// if the surface normal points away, flip its direction
normaldirection = dot(rawnormal, Vector3d(ray.Direction));
if(normaldirection > 0.0)
rawnormal = -rawnormal;
Assign_Vector(isect.INormal, *rawnormal);
Assign_Vector(isect.PNormal, *rawnormal);
if(Test_Flag(isect.Object, UV_FLAG))
{
// TODO FIXME
// I think we have a serious problem here regarding bump mapping:
// The UV vector contains doesn't contain any information about the (local) *orientation* of U and V in our XYZ co-ordinate system!
// This causes slopes do be applied in the wrong directions.
// get the UV vect of the intersection
isect.Object->UVCoord(*uvcoords, &isect, threadData);
// save the normal and UV coords into Intersection
Assign_UV_Vect(isect.Iuv, *uvcoords);
}
// now switch to UV mapping if we need to
if(Test_Flag(isect.Object, UV_FLAG))
ipoint = Vector3d(uvcoords.u(), uvcoords.v(), 0.0);
bool isMultiTextured = Test_Flag(isect.Object, MULTITEXTURE_FLAG) ||
((isect.Object->Texture == NULL) && Test_Flag(isect.Object, CUTAWAY_TEXTURES_FLAG));
// get textures and weights
if(isMultiTextured == true)
{
isect.Object->Determine_Textures(&isect, normaldirection > 0.0, wtextures, threadData);
}
else if(isect.Object->Texture != NULL)
{
if((normaldirection > 0.0) && (isect.Object->Interior_Texture != NULL))
wtextures.push_back(WeightedTexture(1.0, isect.Object->Interior_Texture)); /* Chris Huff: Interior Texture patch */
else
wtextures.push_back(WeightedTexture(1.0, isect.Object->Texture));
}
else
{
// don't need to do anything as the texture list will be empty.
// TODO: could we perform these tests earlier ? [cjc]
lightColorCacheIndex--;
return;
}
// Now, we perform the lighting calculations by stepping through
// the list of textures and summing the weighted color.
for(WeightedTextureVector::iterator i(wtextures.begin()); i != wtextures.end(); i++)
{
TextureVector warps(texturePool);
assert(warps->empty()); // verify that the TextureVector pulled from the pool is in a cleaned-up condition
// if the contribution of this texture is neglectable skip ahead
if((i->weight < ticket.adcBailout) || (i->texture == NULL))
continue;
if(photonPass == true)
{
// For the photon pass, colour (and thus c1) represents the
// light energy being transmitted by the photon. Because of this, we
// compute the weighted energy value, then pass it to the texture for
// processing.
c1.red() = colour.red() * i->weight;
c1.green() = colour.green() * i->weight;
c1.blue() = colour.blue() * i->weight;
// NOTE that ComputeOneTextureColor is being used for a secondary purpose, and
// that to place photons on the surface and trigger recursive photon shooting
ComputeOneTextureColour(c1, i->texture, *warps, ipoint, rawnormal, ray, weight, isect, false, true, ticket);
}
else
{
ComputeOneTextureColour(c1, i->texture, *warps, ipoint, rawnormal, ray, weight, isect, false, false, ticket);
tmpCol.red() += i->weight * c1.red();
tmpCol.green() += i->weight * c1.green();
tmpCol.blue() += i->weight * c1.blue();
tmpCol.transm() += i->weight * c1.transm();
}
}
#if MEDIA_AFTER_TEXTURE_INTERPOLATION
// [CLi] moved this here from Trace::ComputeShadowTexture() and Trace::ComputeLightedTexture(), respectively,
// to avoid media to be computed twice when dealing with averaged textures.
// TODO - For photon rays we're still potentially doing double work on media.
// TODO - For shadow rays we're still potentially doing double work on distance-based attenuation.
// Calculate participating media effects.
if(!photonPass && (qualityFlags & Q_VOLUME) && (!ray.GetInteriors().empty()) && (ray.IsHollowRay() == true))
media.ComputeMedia(ray.GetInteriors(), ray, isect, tmpCol, ticket);
#endif
colour += tmpCol;
lightColorCacheIndex--;
}
void Trace::ComputeOneTextureColour(Colour& resultcolour, const TEXTURE *texture, vector<const TEXTURE *>& warps, const Vector3d& ipoint,
const Vector3d& rawnormal, const Ray& ray, COLC weight, Intersection& isect, bool shadowflag, bool photonPass, TraceTicket& ticket)
{
// NOTE: this method is used by the photon pass to deposit photons on the surface
// (and not, per se, to compute texture color)
const BLEND_MAP *blendmap = texture->Blend_Map;
const BLEND_MAP_ENTRY *prev, *cur;
double value1, value2; // TODO FIXME - choose better names!
Vector3d tpoint;
Vector2d uvcoords;
Colour c2;
switch(texture->Type)
{
case NO_PATTERN:
case PLAIN_PATTERN:
break;
case AVERAGE_PATTERN:
case UV_MAP_PATTERN:
case BITMAP_PATTERN:
default:
warps.push_back(texture);
break;
}
// ipoint - interseciton point (and evaluation point)
// epoint - evaluation point
// tpoint - turbulated/transformed point
if(texture->Type <= LAST_SPECIAL_PATTERN)
{
switch(texture->Type)
{
case NO_PATTERN:
resultcolour = Colour(1.0, 1.0, 1.0, 1.0, 1.0);
break;
case AVERAGE_PATTERN:
Warp_EPoint(*tpoint, *ipoint, reinterpret_cast<const TPATTERN *>(warps.back()));
ComputeAverageTextureColours(resultcolour, texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
break;
case UV_MAP_PATTERN:
// Don't bother warping, simply get the UV vect of the intersection
isect.Object->UVCoord(*uvcoords, &isect, threadData);
tpoint = Vector3d(uvcoords[U], uvcoords[V], 0.0);
cur = &(texture->Blend_Map->Blend_Map_Entries[0]);
ComputeOneTextureColour(resultcolour, cur->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
break;
case BITMAP_PATTERN:
Warp_EPoint(*tpoint, *ipoint, reinterpret_cast<const TPATTERN *>(texture));
ComputeOneTextureColour(resultcolour, material_map(*tpoint, texture), warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
break;
case PLAIN_PATTERN:
if(shadowflag == true)
ComputeShadowTexture(resultcolour, texture, warps, ipoint, rawnormal, ray, isect, ticket);
else
ComputeLightedTexture(resultcolour, texture, warps, ipoint, rawnormal, ray, weight, isect, ticket);
break;
default:
throw POV_EXCEPTION_STRING("Bad texture type in ComputeOneTextureColour");
}
}
else
{
// NK 19 Nov 1999 added Warp_EPoint
Warp_EPoint(*tpoint, *ipoint, reinterpret_cast<const TPATTERN *>(texture));
value1 = Evaluate_TPat(reinterpret_cast<const TPATTERN *>(texture), *tpoint, &isect, &ray, threadData);
Search_Blend_Map(value1, blendmap, &prev, &cur);
// NK phmap
if(photonPass)
{
if(prev == cur)
ComputeOneTextureColour(resultcolour, cur->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
else
{
value1 = (value1 - prev->value) / (cur->value - prev->value);
value2 = 1.0 - value1;
VScale(*c2, *resultcolour, value1); // modifies RGB, but leaves Filter and Transmit unchanged
ComputeOneTextureColour(c2, cur->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
VScale(*c2, *resultcolour, value2); // modifies RGB, but leaves Filter and Transmit unchanged
ComputeOneTextureColour(c2, prev->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
}
}
else
{
ComputeOneTextureColour(resultcolour, cur->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
if(prev != cur)
{
ComputeOneTextureColour(c2, prev->Vals.Texture, warps, tpoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
value1 = (value1 - prev->value) / (cur->value - prev->value);
value2 = 1.0 - value1;
resultcolour = value1 * resultcolour + value2 * c2;
}
}
}
}
void Trace::ComputeAverageTextureColours(Colour& resultcolour, const TEXTURE *texture, vector<const TEXTURE *>& warps, const Vector3d& ipoint,
const Vector3d& rawnormal, const Ray& ray, COLC weight, Intersection& isect, bool shadowflag, bool photonPass, TraceTicket& ticket)
{
const BLEND_MAP *bmap = texture->Blend_Map;
SNGL total = 0.0;
Colour lc;
if(photonPass == false)
{
resultcolour.clear();
for(int i = 0; i < bmap->Number_Of_Entries; i++)
{
SNGL val = bmap->Blend_Map_Entries[i].value;
ComputeOneTextureColour(lc, bmap->Blend_Map_Entries[i].Vals.Texture, warps, ipoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
resultcolour += lc * val;
total += val;
}
resultcolour /= total;
}
else
{
for(int i = 0; i < bmap->Number_Of_Entries; i++)
total += bmap->Blend_Map_Entries[i].value;
for(int i = 0; i < bmap->Number_Of_Entries; i++)
{
VScale(*lc, *resultcolour, bmap->Blend_Map_Entries[i].value / total); // modifies RGB, but leaves Filter and Transmit unchanged
ComputeOneTextureColour(lc, bmap->Blend_Map_Entries[i].Vals.Texture, warps, ipoint, rawnormal, ray, weight, isect, shadowflag, photonPass, ticket);
}
}
}
void Trace::ComputeLightedTexture(Colour& resultcolour, const TEXTURE *texture, vector<const TEXTURE *>& warps, const Vector3d& ipoint,
const Vector3d& rawnormal, const Ray& ray, COLC weight, Intersection& isect, TraceTicket& ticket)
{
Interior *interior;
const TEXTURE *layer;
int i;
bool radiosity_done, radiosity_back_done, radiosity_needed;
int layer_number;
double w1;
double new_Weight;
double att, trans, max_Radiosity_Contribution;
double cos_Angle_Incidence;
Vector3d layNormal, topNormal;
RGBColour attCol;
Colour layCol, rflCol, rfrCol;
RGBColour filCol;
RGBColour tmpCol, tmp;
RGBColour ambCol; // Note that there is no gathering of filter or transparency
RGBColour ambBackCol;
bool one_colour_found, colour_found;
bool tir_occured;
std::auto_ptr<PhotonGatherer> surfacePhotonGatherer(NULL); // TODO FIXME - auto_ptr why? [CLi] why, to auto-destruct it of course! (e.g. in case of exception)
WNRXVector listWNRX(wnrxPool); // "Weight, Normal, Reflectivity, eXponent"
assert(listWNRX->empty()); // verify that the WNRXVector pulled from the pool is in a cleaned-up condition
// resultcolour builds up the apparent visible color of the point.
// Note that besides the RGB components, this also includes Transmission
// for alpha channel computation.
resultcolour.clear();
// filCol serves two purposes. It accumulates the filter properties
// of a multi-layer texture so that if a ray makes it all the way through
// all layers, the color of object behind is filtered by this object.
// It also is used to attenuate how much of an underlayer you
// can see in a layered texture. Note that when computing the reflective
// properties of a layered texture, the upper layers don't filter the
// light from the lower layers -- the layer colors add together (even
// before we added additive transparency via the "transmit" 5th
// color channel). However when computing the transmitted rays, all layers
// filter the light from any objects behind this object. [CY 1/95]
// NK layers - switched transmit component to zero
// [CLi] changed filCol to RGB, as filter and transmit were always pinned to 1.0 and 0.0 respectively anyway
filCol = RGBColour(1.0, 1.0, 1.0);
trans = 1.0;
// Add in radiosity (stochastic interreflection-based ambient light) if desired
radiosity_done = false;
radiosity_back_done = false;
// This block just sets up radiosity for the code inside the loop, which is first-time-through.
radiosity_needed = (sceneData->radiositySettings.radiosityEnabled == true) &&
(radiosity.CheckRadiosityTraceLevel(ticket) == true) &&
(Test_Flag(isect.Object, IGNORE_RADIOSITY_FLAG) == false);
// Loop through the layers and compute the ambient, diffuse,
// phong and specular for these textures.
one_colour_found = false;
if(sceneData->photonSettings.photonsEnabled && sceneData->surfacePhotonMap.numPhotons > 0)
surfacePhotonGatherer.reset(new PhotonGatherer(&sceneData->surfacePhotonMap, sceneData->photonSettings));
for(layer_number = 0, layer = texture; (layer != NULL) && (trans > ticket.adcBailout); layer_number++, layer = reinterpret_cast<const TEXTURE *>(layer->Next))
{
// Get perturbed surface normal.
layNormal = rawnormal;
if((qualityFlags & Q_NORMAL) && (layer->Tnormal != NULL))
{
for(vector<const TEXTURE *>::iterator i(warps.begin()); i != warps.end(); i++)
Warp_Normal(*layNormal, *layNormal, reinterpret_cast<const TPATTERN *>(*i), Test_Flag((*i), DONT_SCALE_BUMPS_FLAG));
Perturb_Normal(*layNormal, layer->Tnormal, *ipoint, &isect, &ray, threadData);
if((Test_Flag(layer->Tnormal, DONT_SCALE_BUMPS_FLAG)))
layNormal.normalize();
for(vector<const TEXTURE *>::reverse_iterator i(warps.rbegin()); i != warps.rend(); i++)
UnWarp_Normal(*layNormal, *layNormal, reinterpret_cast<const TPATTERN *>(*i), Test_Flag((*i), DONT_SCALE_BUMPS_FLAG));
}
// Store top layer normal.
if(layer_number == 0)
topNormal = layNormal;
// Get surface colour.
new_Weight = weight * trans;
colour_found = Compute_Pigment(layCol, layer->Pigment, *ipoint, &isect, &ray, threadData);
// If a valid color was returned set one_colour_found to true.
// An invalid color is returned if a surface point is outside
// an image map used just once.
one_colour_found = (one_colour_found || colour_found);
// This section of code used to be the routine Compute_Reflected_Colour.
// I copied it in here to rearrange some of it more easily and to
// see if we could eliminate passing a zillion parameters for no
// good reason. [CY 1/95]
if(qualityFlags & Q_FULL_AMBIENT)
{
// Only use top layer and kill transparency if low quality.
resultcolour = layCol;
resultcolour.filter() = 0.0;
resultcolour.transm() = 0.0;
}
else
{
// Store vital information for later reflection.
listWNRX->push_back(WNRX(new_Weight, layNormal, RGBColour(), layer->Finish->Reflect_Exp));
// angle-dependent reflectivity
cos_Angle_Incidence = -dot(Vector3d(ray.Direction), layNormal);
if((isect.Object->interior != NULL) || (layer->Finish->Reflection_Type != 1))
{
ComputeReflectivity(listWNRX->back().weight, listWNRX->back().reflec,
layer->Finish->Reflection_Max, layer->Finish->Reflection_Min,
layer->Finish->Reflection_Type, layer->Finish->Reflection_Falloff,
cos_Angle_Incidence, ray, isect.Object->interior);
}
else
throw POV_EXCEPTION_STRING("Reflection_Type 1 used with no interior."); // TODO FIXME - wrong place to report this [trf]
// for metallic reflection, apply the surface color using the fresnel equation
// (use the same equaltion as "metallic" in phong and specular
if(layer->Finish->Reflect_Metallic != 0.0)
{
double R_M = layer->Finish->Reflect_Metallic;
double x = fabs(acos(cos_Angle_Incidence)) / M_PI_2;
double F = 0.014567225 / Sqr(x - 1.12) - 0.011612903;
F = min(1.0, max(0.0, F));
listWNRX->back().reflec.red() *= (1.0 + R_M * (1.0 - F) * (layCol.red() - 1.0));
listWNRX->back().reflec.green() *= (1.0 + R_M * (1.0 - F) * (layCol.green() - 1.0));
listWNRX->back().reflec.blue() *= (1.0 + R_M * (1.0 - F) * (layCol.blue() - 1.0));
}
// NK - I think we SHOULD do something like this: (to apply the layer's color) */
// listWNRX->back().reflec.red() *= filCol.red();
// listWNRX->back().reflec.green() *= filCol.green();
// listWNRX->back().reflec.blue() *= filCol.blue();
// We need to reduce the layer's own brightness if it is transparent.
if (sceneData->EffectiveLanguageVersion() < 370)
// this formula is bogus, but it has been around for a while so we're keeping it for compatibility with legacy scenes
att = (1.0 - (layCol.filter() * max3(layCol.red(), layCol.green(), layCol.blue()) + layCol.transm()));
else
att = layCol.opacity();
// now compute the BRDF or BSSRDF contribution
tmpCol.clear();
if(sceneData->useSubsurface && layer->Finish->UseSubsurface && (qualityFlags & Q_SUBSURFACE))
{
// Add diffuse & single scattering contribution.
ComputeSubsurfaceScattering(layer->Finish, RGBColour(layCol), isect, ray, layNormal, tmpCol, att, ticket);
// [CLi] moved multiplication with filCol to further below
// Radiosity-style ambient may be subject to subsurface light transport.
// In that case, the respective computations are handled by the BSSRDF code already.
if (sceneData->subsurfaceUseRadiosity)
radiosity_needed = false;
}
// Add radiosity ambient contribution.
if(radiosity_needed)
{
// if radiosity calculation needed, but not yet done, do it now
// TODO FIXME - [CLi] with "normal on", shouldn't we compute radiosity for each layer separately (if it has pertubed normals)?
if(radiosity_done == false)
{
// calculate max possible contribution of radiosity, to see if calculating it is worthwhile
// TODO FIXME - other layers may see a higher weight!
// Maybe we should go along and compute *first* the total contribution radiosity will make,
// and at the *end* apply it.
max_Radiosity_Contribution = (filCol * RGBColour(layCol)).greyscale() * att * layer->Finish->RawDiffuse;
if(max_Radiosity_Contribution > ticket.adcBailout)
{
radiosity.ComputeAmbient(Vector3d(isect.IPoint), rawnormal, layNormal, ambCol, weight * max_Radiosity_Contribution, ticket);
radiosity_done = true;
}
}
// [CLi] moved multiplication with filCol to further below
tmpCol += (RGBColour(layCol) * ambCol) * (att * layer->Finish->RawDiffuse);
// if backside radiosity calculation needed, but not yet done, do it now
// TODO FIXME - [CLi] with "normal on", shouldn't we compute radiosity for each layer separately (if it has pertubed normals)?
if(layer->Finish->DiffuseBack != 0.0)
{
if(radiosity_back_done == false)
{
// calculate max possible contribution of radiosity, to see if calculating it is worthwhile
// TODO FIXME - other layers may see a higher weight!
// Maybe we should go along and compute *first* the total contribution radiosity will make,
// and at the *end* apply it.
max_Radiosity_Contribution = (filCol * RGBColour(layCol)).greyscale() * att * layer->Finish->RawDiffuseBack;
if(max_Radiosity_Contribution > ticket.adcBailout)
{
radiosity.ComputeAmbient(Vector3d(isect.IPoint), -rawnormal, -layNormal, ambBackCol, weight * max_Radiosity_Contribution, ticket);
radiosity_back_done = true;
}
}
// [CLi] moved multiplication with filCol to further below
tmpCol += (RGBColour(layCol) * ambBackCol) * (att * layer->Finish->RawDiffuseBack);
}
}
// Add emissive ("classic" ambient) contribution.
// [CLi] moved multiplication with filCol to further below
if (!sceneData->radiositySettings.radiosityEnabled || (sceneData->EffectiveLanguageVersion() < 370))
// only use "ambient" setting when radiosity is disabled (or in legacy scenes)
tmpCol += (RGBColour(layCol) * layer->Finish->Ambient * sceneData->ambientLight * att);
tmpCol += (RGBColour(layCol) * layer->Finish->Emission * att);
// set up the "litObjectIgnoresPhotons" flag (thread variable) so that
// ComputeShadowColour will know whether or not this lit object is
// ignoring photons, which affects partial-shadowing (i.e. filter and transmit)
threadData->litObjectIgnoresPhotons = Test_Flag(isect.Object,PH_IGNORE_PHOTONS_FLAG);
// Add diffuse, phong, specular, and iridescence contribution.
// (We don't need to do this for (non-radiosity) rays during pretrace, as it does not affect radiosity sampling)
if(!ray.IsPretraceRay())
{
Vector3d tmpIPoint(isect.IPoint);
if((layer->Finish->Diffuse != 0.0) || (layer->Finish->DiffuseBack != 0.0) || (layer->Finish->Specular != 0.0) || (layer->Finish->Phong != 0.0))
ComputeDiffuseLight(layer->Finish, tmpIPoint, ray, layNormal, RGBColour(layCol), tmpCol, att, isect.Object, ticket);
}
if(sceneData->photonSettings.photonsEnabled && sceneData->surfacePhotonMap.numPhotons > 0)
{
// NK phmap - now do the same for the photons in the area
if(!Test_Flag(isect.Object, PH_IGNORE_PHOTONS_FLAG))
{
Vector3d tmpIPoint(isect.IPoint);
ComputePhotonDiffuseLight(layer->Finish, tmpIPoint, ray, layNormal, rawnormal, RGBColour(layCol), tmpCol, att, isect.Object, *surfacePhotonGatherer);
}
}
tmpCol *= filCol;
VAddEq(*resultcolour, *tmpCol); // modifies RGB, but leaves Filter and Transmit unchanged
}
// Get new filter color.
if(colour_found)
{
filCol *= layCol.rgbTransm();
if(layer->Finish->Conserve_Energy != 0 && listWNRX->empty() == false)
{
// adjust filCol based on reflection
// this would work so much better with r,g,b,rt,gt,bt
filCol *= RGBColour(min(1.0, 1.0 - listWNRX->back().reflec.red()),
min(1.0, 1.0 - listWNRX->back().reflec.green()),
min(1.0, 1.0 - listWNRX->back().reflec.blue()));
}
}
// Get new remaining translucency.
// [CLi] changed filCol to RGB, as filter and transmit were always pinned to 1.0 and 0.0, respectively anyway
// TODO CLARIFY - is this working properly if filCol.greyscale() is negative? (what would be the right thing then?)
trans = min(1.0, (double)fabs(filCol.greyscale()));
}
// Calculate transmitted component.
//
// If the surface is translucent a transmitted ray is traced
// and its contribution is added to the total ResCol after
// filtering it by filCol.
tir_occured = false;
if(((interior = isect.Object->interior) != NULL) && (trans > ticket.adcBailout) && (qualityFlags & Q_REFRACT))
{
// [CLi] changed filCol to RGB, as filter and transmit were always pinned to 1.0 and 0.0, respectively anyway
// TODO CLARIFY - is this working properly if some filCol component is negative? (what would be the right thing then?)
w1 = max3(fabs(filCol.red()), fabs(filCol.green()), fabs(filCol.blue()));
new_Weight = weight * w1;
// Trace refracted ray.
Vector3d tmpIPoint(isect.IPoint);
Colour tempcolor;
tir_occured = ComputeRefraction(texture->Finish, interior, tmpIPoint, ray, topNormal, rawnormal, tempcolor, new_Weight, ticket);
if(tir_occured == true)
rfrCol += tempcolor;
else
rfrCol = tempcolor;
// Get distance based attenuation.
// TODO - virtually the same code is used in ComputeShadowTexture().
attCol.set(interior->Old_Refract);
if((interior != NULL) && ray.IsInterior(interior) == true)
{
if(fabs(interior->Fade_Distance) > EPSILON)
{
// NK attenuate
if(interior->Fade_Power >= 1000)
{
double depth = isect.Depth / interior->Fade_Distance;
attCol *= exp(-(RGBColour(1.0) - interior->Fade_Colour) * depth);
}
else
{
att = 1.0 + pow(isect.Depth / interior->Fade_Distance, (double)interior->Fade_Power);
attCol *= (interior->Fade_Colour + (RGBColour(1.0) - interior->Fade_Colour) / att);
}
}
}
// If total internal reflection occured the transmitted light is not filtered.
if(tir_occured)
{
resultcolour.red() += attCol.red() * rfrCol.red();
resultcolour.green() += attCol.green() * rfrCol.green();
resultcolour.blue() += attCol.blue() * rfrCol.blue();
// NOTE: pTRANSM (alpha channel) stays zero
}
else
{
if(one_colour_found)
{
// [CLi] changed filCol to RGB, as filter and transmit were always pinned to 1.0 and 0.0, respectively anyway
resultcolour.red() += attCol.red() * rfrCol.red() * filCol.red();
resultcolour.green() += attCol.green() * rfrCol.green() * filCol.green();
resultcolour.blue() += attCol.blue() * rfrCol.blue() * filCol.blue();
// We need to know the transmittance value for the alpha channel. [DB]
resultcolour.transm() = attCol.greyscale() * rfrCol.transm() * trans;
}
else
{
resultcolour.red() += attCol.red() * rfrCol.red();
resultcolour.green() += attCol.green() * rfrCol.green();
resultcolour.blue() += attCol.blue() * rfrCol.blue();
// We need to know the transmittance value for the alpha channel. [DB]
resultcolour.transm() = attCol.greyscale() * rfrCol.transm();
}
}
}
// Calculate reflected component.
//
// If total internal reflection occured all reflections using
// TopNormal are skipped.
if(qualityFlags & Q_REFLECT)
{
layer = texture;
for(i = 0; i < layer_number; i++)
{
if((!tir_occured) ||
(fabs(topNormal[X]-(*listWNRX)[i].normal[X]) > EPSILON) ||
(fabs(topNormal[Y]-(*listWNRX)[i].normal[Y]) > EPSILON) ||
(fabs(topNormal[Z]-(*listWNRX)[i].normal[Z]) > EPSILON))
{
if(!(*listWNRX)[i].reflec.isZero())
{
Vector3d tmpIPoint(isect.IPoint);
rflCol.clear();
ComputeReflection(layer->Finish, tmpIPoint, ray, (*listWNRX)[i].normal, rawnormal, rflCol, (*listWNRX)[i].weight, ticket);
if((*listWNRX)[i].reflex != 1.0)
{
resultcolour.red() += (*listWNRX)[i].reflec.red() * pow(rflCol.red(), (*listWNRX)[i].reflex);
resultcolour.green() += (*listWNRX)[i].reflec.green() * pow(rflCol.green(), (*listWNRX)[i].reflex);
resultcolour.blue() += (*listWNRX)[i].reflec.blue() * pow(rflCol.blue(), (*listWNRX)[i].reflex);
}
else
{
resultcolour.red() += (*listWNRX)[i].reflec.red() * rflCol.red();
resultcolour.green() += (*listWNRX)[i].reflec.green() * rflCol.green();
resultcolour.blue() += (*listWNRX)[i].reflec.blue() * rflCol.blue();
}
}
}
layer = reinterpret_cast<const TEXTURE *>(layer->Next);
}
}
#if MEDIA_AFTER_TEXTURE_INTERPOLATION
// [CLi] moved this to Trace::ComputeTextureColour() and Trace::ComputeShadowColour(), respectively
// to avoid media to be computed twice when dealing with averaged textures.
#else
// Calculate participating media effects.
if((qualityFlags & Q_VOLUME) && (!ray.GetInteriors().empty()) && (ray.IsHollowRay() == true))
media.ComputeMedia(ray.GetInteriors(), ray, isect, resultcolour, ticket);
#endif
}
void Trace::ComputeShadowTexture(Colour& filtercolour, const TEXTURE *texture, vector<const TEXTURE *>& warps, const Vector3d& ipoint,
const Vector3d& rawnormal, const Ray& ray, Intersection& isect, TraceTicket& ticket)
{
Interior *interior = isect.Object->interior;
const TEXTURE *layer;
double caustics, dotval, k;
Vector3d layer_Normal;
RGBColour refraction;
Colour layer_Pigment_Colour;
bool one_colour_found, colour_found;
RGBColour tmpCol = RGBColour(1.0, 1.0, 1.0);
one_colour_found = false;
// [CLI] removed obsolete test for filtercolour.filter() and filtercolour.transm(), as they remain unchanged during loop
for(layer = texture; layer != NULL; layer = reinterpret_cast<TEXTURE *>(layer->Next))
{
colour_found = Compute_Pigment(layer_Pigment_Colour, layer->Pigment, *ipoint, &isect, &ray, threadData);
if(colour_found)
{
one_colour_found = true;
tmpCol *= layer_Pigment_Colour.rgbTransm();
}
// Get normal for faked caustics (will rewrite later to cache).
if((interior != NULL) && ((caustics = interior->Caustics) != 0.0))
{
layer_Normal = rawnormal;
if((qualityFlags & Q_NORMAL) && (layer->Tnormal != NULL))
{
for(vector<const TEXTURE *>::iterator i(warps.begin()); i != warps.end(); i++)
Warp_Normal(*layer_Normal, *layer_Normal, reinterpret_cast<const TPATTERN *>(*i), Test_Flag((*i), DONT_SCALE_BUMPS_FLAG));
Perturb_Normal(*layer_Normal, layer->Tnormal, *ipoint, &isect, &ray, threadData);
if((Test_Flag(layer->Tnormal,DONT_SCALE_BUMPS_FLAG)))
layer_Normal.normalize();
for(vector<const TEXTURE *>::reverse_iterator i(warps.rbegin()); i != warps.rend(); i++)
UnWarp_Normal(*layer_Normal, *layer_Normal, reinterpret_cast<const TPATTERN *>(*i), Test_Flag((*i), DONT_SCALE_BUMPS_FLAG));
}
// Get new filter/transmit values.
dotval = dot(layer_Normal, Vector3d(ray.Direction));
k = (1.0 + pow(fabs(dotval), caustics));
tmpCol *= k;
}
}
// TODO - [CLi] aren't spatial effects (distance attenuation, media) better handled in Trace::ComputeTextureColour()? We may be doing double work here!
// Get distance based attenuation.
// TODO - virtually the same code is used in ComputeLightedTexture().
refraction = RGBColour(1.0, 1.0, 1.0);
if((interior != NULL) && (ray.IsInterior(interior) == true))
{
if((interior->Fade_Power > 0.0) && (fabs(interior->Fade_Distance) > EPSILON))
{
// NK - attenuation
if(interior->Fade_Power>=1000)
{
refraction *= exp( -(RGBColour(1.0) - interior->Fade_Colour) * (isect.Depth / interior->Fade_Distance) );
}
else
{
k = 1.0 + pow(isect.Depth / interior->Fade_Distance, (double)interior->Fade_Power);
refraction *= (interior->Fade_Colour + (RGBColour(1.0) - interior->Fade_Colour) / k);
}
}
}
// Get distance based attenuation.
filtercolour = Colour(tmpCol * refraction, 1.0, 0.0);
#if MEDIA_AFTER_TEXTURE_INTERPOLATION
// [CLi] moved this to Trace::ComputeTextureColour() and Trace::ComputeShadowColour(), respectively
// to avoid media to be computed twice when dealing with averaged textures.
#else
// Calculate participating media effects.
if((qualityFlags & Q_VOLUME) && (!ray.GetInteriors().empty()) && (ray.IsHollowRay() == true))
media.ComputeMedia(ray.GetInteriors(), ray, isect, filtercolour, ticket);
#endif
}
void Trace::ComputeReflection(const FINISH* finish, const Vector3d& ipoint, const Ray& ray, const Vector3d& normal, const Vector3d& rawnormal, Colour& colour, COLC weight, TraceTicket& ticket)
{
Ray nray(ray);
double n, n2;
nray.SetFlags(Ray::ReflectionRay, ray);
// The rest of this is essentally what was originally here, with small changes.
n = -2.0 * dot(Vector3d(ray.Direction), normal);
VAddScaled(nray.Direction, ray.Direction, n, *normal);
// Nathan Kopp & CEY 1998 - Reflection bugfix
// if the new ray is going the opposite direction as raw normal, we
// need to fix it.
n = dot(Vector3d(nray.Direction), rawnormal);
if(n < 0.0)
{
// It needs fixing. Which kind?
n2 = dot(Vector3d(nray.Direction), normal);
if(n2 < 0.0)
{
// reflected inside rear virtual surface. Reflect Ray using Raw_Normal
n = -2.0 * dot(Vector3d(ray.Direction), rawnormal);
VAddScaled(nray.Direction, ray.Direction, n, *rawnormal);
}
else
{
// Double reflect NRay using Raw_Normal
// n = dot(Vector3d(New_Ray.Direction),Vector3d(Jitter_Raw_Normal)); - kept the old n around
n *= -2.0;
VAddScaledEq(nray.Direction, n, *rawnormal);
}
}
VNormalizeEq(nray.Direction);
Assign_Vector(nray.Origin, *ipoint);
threadData->Stats()[Reflected_Rays_Traced]++;
// Trace reflected ray.
bool alphaBackground = ticket.alphaBackground;
ticket.alphaBackground = false;
if (!ray.IsPhotonRay() && (finish->Irid > 0.0))
{
Colour tmpCol;
TraceRay(nray, tmpCol, weight, ticket, false);
RGBColour tmpCol2(tmpCol);
ComputeIridColour(finish, Vector3d(nray.Direction), Vector3d(ray.Direction), normal, ipoint, tmpCol2);
colour += Colour(tmpCol2);
}
else
{
TraceRay(nray, colour, weight, ticket, false);
}
ticket.alphaBackground = alphaBackground;
}
bool Trace::ComputeRefraction(const FINISH* finish, Interior *interior, const Vector3d& ipoint, const Ray& ray, const Vector3d& normal, const Vector3d& rawnormal, Colour& colour, COLC weight, TraceTicket& ticket)
{
Ray nray(ray);
Vector3d localnormal;
double n, ior, dispersion;
unsigned int dispersionelements = interior->Disp_NElems;
bool havedispersion = (dispersionelements > 0);
nray.SetFlags(Ray::RefractionRay, ray);
// Set up new ray.
Assign_Vector(nray.Origin, *ipoint);
// Get ratio of iors depending on the interiors the ray is traversing.
// Note:
// For the purpose of refraction, the space occupied by "nested" objects is considered to be "outside" the containing objects,
// i.e. when encountering (A (B B) A) we pretend that it's (A A|B B|A A).
// (Here "(X" and "X)" denote the entering and leaving of object X, and "X|Y" denotes an interface between objects X and Y.)
// In case of overlapping objects, the intersecting region is considered to be part of whatever object is encountered last,
// i.e. when encountering (A (B A) B) we pretend that it's (A A|B B|B B).
if(nray.GetInteriors().empty())
{
// The ray is entering from the atmosphere.
nray.AppendInterior(interior);
ior = sceneData->atmosphereIOR / interior->IOR;
if(havedispersion == true)
dispersion = sceneData->atmosphereDispersion / interior->Dispersion;
}
else
{
// The ray is currently inside an object.
if(interior == nray.GetInteriors().back()) // The ray is leaving the "innermost" object
{
nray.RemoveInterior(interior);
if(nray.GetInteriors().empty())
{
// The ray is leaving into the atmosphere
ior = interior->IOR / sceneData->atmosphereIOR;
if(havedispersion == true)
dispersion = interior->Dispersion / sceneData->atmosphereDispersion;
}
else
{
// The ray is leaving into another object, i.e. (A (B B) ...
// For the purpose of refraction, pretend that we weren't inside that other object,
// i.e. pretend that we didn't encounter (A (B B) ... but (A A|B B|A ...
ior = interior->IOR / nray.GetInteriors().back()->IOR;
if(havedispersion == true)
{
dispersion = interior->Dispersion / nray.GetInteriors().back()->Dispersion;
dispersionelements = max(dispersionelements, (unsigned int)(nray.GetInteriors().back()->Disp_NElems));
}
}
}
else if(nray.RemoveInterior(interior) == true) // The ray is leaving the intersection of overlapping objects, i.e. (A (B A) ...
{
// For the purpose of refraction, pretend that we had already left the other member of the intersection when we entered the overlap,
// i.e. pretend that we didn't encounter (A (B A) ... but (A A|B B|B ...
ior = 1.0;
dispersion = 1.0;
}
else
{
// The ray is entering a new object.
// For the purpose of refraction, pretend that we're leaving any containing objects,
// i.e. pretend that we didn't encounter (A (B ... but (A A|B ...
ior = nray.GetInteriors().back()->IOR / interior->IOR;
if(havedispersion == true)
dispersion = nray.GetInteriors().back()->Dispersion / interior->Dispersion;
nray.AppendInterior(interior);
}
}
// Do the two mediums traversed have the same indices of refraction?
if((fabs(ior - 1.0) < EPSILON) && (fabs(dispersion - 1.0) < EPSILON))
{
// Only transmit the ray.
Assign_Vector(nray.Direction, ray.Direction);
// Trace a transmitted ray.
threadData->Stats()[Transmitted_Rays_Traced]++;
colour.clear();
TraceRay(nray, colour, weight, ticket, true);
}
else
{
// Refract the ray.
n = dot(Vector3d(ray.Direction), normal);
if(n <= 0.0)
{
localnormal = normal;
n = -n;
}
else
localnormal = -normal;
// TODO FIXME: also for first radiosity pass ? (see line 3272 of v3.6 lighting.cpp)
if(fabs (dispersion - 1.0) < EPSILON) // TODO FIXME - radiosity: || (!isFinalTrace)
return TraceRefractionRay(finish, ipoint, ray, nray, ior, n, normal, rawnormal, localnormal, colour, weight, ticket);
else if(ray.IsMonochromaticRay() == true)
return TraceRefractionRay(finish, ipoint, ray, nray, ray.GetSpectralBand().GetDispersionIOR(ior, dispersion), n, normal, rawnormal, localnormal, colour, weight, ticket);
else
{
RGBColour sumcol;
for(unsigned int i = 0; i < dispersionelements; i++)
{
Colour tempcolour;
// NB setting the dispersion factor also causes the MonochromaticRay flag to be set
SpectralBand spectralBand(i, dispersionelements);
nray.SetSpectralBand(spectralBand);
(void)TraceRefractionRay(finish, ipoint, ray, nray, spectralBand.GetDispersionIOR(ior, dispersion), n, normal, rawnormal, localnormal, tempcolour, weight, ticket);
sumcol += RGBColour(tempcolour) * spectralBand.GetHue();
}
colour = Colour(sumcol / double(dispersionelements));
}
}
return false;
}
bool Trace::TraceRefractionRay(const FINISH* finish, const Vector3d& ipoint, const Ray& ray, Ray& nray, double ior, double n, const Vector3d& normal, const Vector3d& rawnormal, const Vector3d& localnormal, Colour& colour, COLC weight, TraceTicket& ticket)
{
// Compute refrated ray direction using Heckbert's method.
double t = 1.0 + Sqr(ior) * (Sqr(n) - 1.0);
if(t < 0.0)
{
Colour tempcolour;
// Total internal reflection occures.
threadData->Stats()[Internal_Reflected_Rays_Traced]++;
ComputeReflection(finish, ipoint, ray, normal, rawnormal, tempcolour, weight, ticket);
colour += tempcolour;
return true;
}
t = ior * n - sqrt(t);
VLinComb2(nray.Direction, ior, ray.Direction, t, *localnormal);
// Trace a refracted ray.
threadData->Stats()[Refracted_Rays_Traced]++;
colour.clear();
TraceRay(nray, colour, weight, ticket, false);
return false;
}
// see Diffuse in the 3.6 code (lighting.cpp)
void Trace::ComputeDiffuseLight(const FINISH *finish, const Vector3d& ipoint, const Ray& eye, const Vector3d& layer_normal, const RGBColour& layer_pigment_colour,
RGBColour& colour, double attenuation, ObjectPtr object, TraceTicket& ticket)
{
Vector3d reye;
// TODO FIXME - [CLi] why is this computed here? Not so exciting, is it?
if(finish->Specular != 0.0)
reye = -Vector3d(eye.Direction);
// global light sources, if not turned off for this object
if((object->Flags & NO_GLOBAL_LIGHTS_FLAG) != NO_GLOBAL_LIGHTS_FLAG)
{
for(int i = 0; i < threadData->lightSources.size(); i++)
ComputeOneDiffuseLight(*threadData->lightSources[i], reye, finish, ipoint, eye, layer_normal, layer_pigment_colour, colour, attenuation, object, ticket, i);
}
// local light sources from a light group, if any
if(!object->LLights.empty())
{
for(int i = 0; i < object->LLights.size(); i++)
ComputeOneDiffuseLight(*object->LLights[i], reye, finish, ipoint, eye, layer_normal, layer_pigment_colour, colour, attenuation, object, ticket);
}
}
void Trace::ComputePhotonDiffuseLight(const FINISH *Finish, const Vector3d& IPoint, const Ray& Eye, const Vector3d& Layer_Normal, const Vector3d& Raw_Normal,
const RGBColour& Layer_Pigment_Colour, RGBColour& colour, double Attenuation, ConstObjectPtr Object, PhotonGatherer& gatherer)
{
double Cos_Shadow_Angle;
Ray Light_Source_Ray;
Vector3d REye;
RGBColour Light_Colour;
RGBColour tmpCol, tmpCol2;
double r;
int n;
int j;
double thisDensity=0;
double prevDensity=0.0000000000000001; // avoid div-by-zero error
int expanded = false;
double att; // attenuation for lambertian compensation & filters
if (!sceneData->photonSettings.photonsEnabled || sceneData->surfacePhotonMap.numPhotons<1)
return;
if ((Finish->Diffuse == 0.0) && (Finish->DiffuseBack == 0.0) && (Finish->Specular == 0.0) && (Finish->Phong == 0.0))
return;
// statistics
threadData->Stats()[Gather_Performed_Count]++;
if (Finish->Specular != 0.0)
{
REye[X] = -Eye.Direction[X];
REye[Y] = -Eye.Direction[Y];
REye[Z] = -Eye.Direction[Z];
}
if(gatherer.gathered)
r = gatherer.alreadyGatheredRadius;
else
r = gatherer.gatherPhotonsAdaptive(*IPoint, *Layer_Normal, true);
n = gatherer.gatheredPhotons.numFound;
tmpCol.clear();
// now go through these photons and add up their contribution
for(j=0; j<n; j++)
{
// double theta,phi;
int theta,phi;
bool backside = false;
// convert small color to normal color
photonRgbe2colour(Light_Colour, gatherer.gatheredPhotons.photonGatherList[j]->colour);
// convert theta/phi to vector direction
// Use a pre-computed array of sin/cos to avoid many calls to the
// sin() and cos() functions. These arrays were initialized in
// InitBacktraceEverything.
theta = gatherer.gatheredPhotons.photonGatherList[j]->theta+127;
phi = gatherer.gatheredPhotons.photonGatherList[j]->phi+127;
Light_Source_Ray.Direction[Y] = sinCosData.sinTheta[theta];
Light_Source_Ray.Direction[X] = sinCosData.cosTheta[theta];
Light_Source_Ray.Direction[Z] = Light_Source_Ray.Direction[X]*sinCosData.sinTheta[phi];
Light_Source_Ray.Direction[X] = Light_Source_Ray.Direction[X]*sinCosData.cosTheta[phi];
VSub(Light_Source_Ray.Origin, gatherer.gatheredPhotons.photonGatherList[j]->Loc, Light_Source_Ray.Direction);
// this compensates for real lambertian (diffuse) lighting (see paper)
// use raw normal, not layer normal
// att = dot(Layer_Normal, Vector3d(Light_Source_Ray.Direction));
att = dot(Raw_Normal, Vector3d(Light_Source_Ray.Direction));
if (att>1) att=1.0;
if (att<.1) att = 0.1; // limit to 10x - otherwise we get bright dots
att = 1.0 / fabs(att);
// do gaussian filter
//att *= 0.918*(1.0-(1.0-exp((-1.953) * gatherer.photonDistances[j])) / (1.0-exp(-1.953)) );
// do cone filter
//att *= 1.0-(sqrt(gatherer.photonDistances[j])/(4.0 * r)) / (1.0-2.0/(3.0*4.0));
Light_Colour *= att;
// See if light on far side of surface from camera.
if (!(Test_Flag(Object, DOUBLE_ILLUMINATE_FLAG)))
{
Cos_Shadow_Angle = dot(Layer_Normal, Vector3d(Light_Source_Ray.Direction));
if (Cos_Shadow_Angle < EPSILON)
{
if (Finish->DiffuseBack != 0.0)
backside = true;
else
continue;
}
}
// now add diffuse, phong, specular, irid contribution
tmpCol2.clear();
if (!(sceneData->useSubsurface && Finish->UseSubsurface))
// (Diffuse contribution is not supported in combination with BSSRDF, to emphasize the fact that the BSSRDF
// model is intended to provide for all the diffuse term by default. If users want to add some additional
// surface-only diffuse term, they should use layered textures.
ComputeDiffuseColour(Finish, Light_Source_Ray, Layer_Normal, tmpCol2, Light_Colour, Layer_Pigment_Colour, Attenuation, backside);
// NK rad - don't compute highlights for radiosity gather rays, since this causes
// problems with colors being far too bright
// don't compute highlights for diffuse backside illumination
if(!Eye.IsRadiosityRay() && !backside) // TODO FIXME radiosity - is this really the right way to do it (speaking of realism)?
{
if (Finish->Phong > 0.0)
{
Vector3d ed(Eye.Direction);
ComputePhongColour(Finish, Light_Source_Ray, ed, Layer_Normal, tmpCol2, Light_Colour, Layer_Pigment_Colour);
}
if (Finish->Specular > 0.0)
{
ComputeSpecularColour(Finish, Light_Source_Ray, REye, Layer_Normal, tmpCol2, Light_Colour, Layer_Pigment_Colour);
}
}
if (Finish->Irid > 0.0)
{
ComputeIridColour(Finish, Vector3d(Light_Source_Ray.Direction), Vector3d(Eye.Direction), Layer_Normal, IPoint, tmpCol2);
}
tmpCol += tmpCol2;
}
// finish the photons equation
tmpCol /= M_PI*r*r;
// add photon contribution to total lighting
colour += tmpCol;
}
// see Diffuse_One_Light in the 3.6 code (lighting.cpp)
void Trace::ComputeOneDiffuseLight(const LightSource &lightsource, const Vector3d& reye, const FINISH *finish, const Vector3d& ipoint, const Ray& eye, const Vector3d& layer_normal,
const RGBColour& layer_pigment_colour, RGBColour& colour, double attenuation, ConstObjectPtr object, TraceTicket& ticket, int light_index)
{
double lightsourcedepth, cos_shadow_angle;
Ray lightsourceray(eye);
RGBColour lightcolour;
bool backside = false;
RGBColour tmpCol;
// Get a colour and a ray.
ComputeOneLightRay(lightsource, lightsourcedepth, lightsourceray, ipoint, lightcolour);
// Don't calculate spotlights when outside of the light's cone.
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON))
return;
// See if light on far side of surface from camera.
if(!(Test_Flag(object, DOUBLE_ILLUMINATE_FLAG)) // NK 1998 double_illuminate - changed to Test_Flag
&& !lightsource.Use_Full_Area_Lighting) // JN2007: Easiest way of getting rid of sharp shadow lines
{
cos_shadow_angle = dot(layer_normal, Vector3d(lightsourceray.Direction));
if(cos_shadow_angle < EPSILON)
{
if (finish->DiffuseBack != 0.0)
backside = true;
else
return;
}
}
// If light source was not blocked by any intervening object, then
// calculate it's contribution to the object's overall illumination.
if ((qualityFlags & Q_SHADOW) && ((lightsource.Projected_Through_Object != NULL) || (lightsource.Light_Type != FILL_LIGHT_SOURCE)))
{
if (lightColorCacheIndex != -1 && light_index != -1)
{
if (lightColorCache[lightColorCacheIndex][light_index].tested == false)
{
// note that lightColorCache may be re-sized during trace, so we don't store a reference to it across the call
TraceShadowRay(lightsource, lightsourcedepth, lightsourceray, ipoint, lightcolour, ticket);
lightColorCache[lightColorCacheIndex][light_index].tested = true;
lightColorCache[lightColorCacheIndex][light_index].colour = lightcolour;
}
else
lightcolour = lightColorCache[lightColorCacheIndex][light_index].colour;
}
else
TraceShadowRay(lightsource, lightsourcedepth, lightsourceray, ipoint, lightcolour, ticket);
}
if((fabs(lightcolour.red()) > EPSILON) ||
(fabs(lightcolour.green()) > EPSILON) ||
(fabs(lightcolour.blue()) > EPSILON))
{
if(lightsource.Area_Light && lightsource.Use_Full_Area_Lighting &&
(qualityFlags & Q_AREA_LIGHT)) // JN2007: Full area lighting
{
ComputeFullAreaDiffuseLight(lightsource, reye, finish, ipoint, eye,
layer_normal, layer_pigment_colour, colour, attenuation,
lightsourcedepth, lightsourceray, lightcolour,
Test_Flag(object, DOUBLE_ILLUMINATE_FLAG));
return;
}
if(!(sceneData->useSubsurface && finish->UseSubsurface))
// (Diffuse contribution is not supported in combination with BSSRDF, to emphasize the fact that the BSSRDF
// model is intended to provide for all the diffuse term by default. If users want to add some additional
// surface-only diffuse term, they should use layered textures.
ComputeDiffuseColour(finish, lightsourceray, layer_normal, tmpCol, lightcolour, layer_pigment_colour, attenuation, backside);
// NK rad - don't compute highlights for radiosity gather rays, since this causes
// problems with colors being far too bright
// don't compute highlights for diffuse backside illumination
if((lightsource.Light_Type != FILL_LIGHT_SOURCE) && !eye.IsRadiosityRay() && !backside) // TODO FIXME radiosity - is this really the right way to do it (speaking of realism)?
{
if(finish->Phong > 0.0)
{
Vector3d ed(eye.Direction);
ComputePhongColour(finish, lightsourceray, ed, layer_normal, tmpCol, lightcolour, layer_pigment_colour);
}
if(finish->Specular > 0.0)
ComputeSpecularColour(finish, lightsourceray, reye, layer_normal, tmpCol, lightcolour, layer_pigment_colour);
}
if(finish->Irid > 0.0)
ComputeIridColour(finish, Vector3d(lightsourceray.Direction), Vector3d(eye.Direction), layer_normal, ipoint, tmpCol);
}
colour += tmpCol;
}
// JN2007: Full area lighting:
void Trace::ComputeFullAreaDiffuseLight(const LightSource &lightsource, const Vector3d& reye, const FINISH *finish, const Vector3d& ipoint, const Ray& eye,
const Vector3d& layer_normal, const RGBColour& layer_pigment_colour, RGBColour& colour, double attenuation,
double lightsourcedepth, Ray& lightsourceray, const RGBColour& lightcolour, bool isDoubleIlluminated)
{
Vector3d temp;
Vector3d axis1Temp, axis2Temp;
double axis1_Length, cos_shadow_angle;
axis1Temp = Vector3d(lightsource.Axis1);
axis2Temp = Vector3d(lightsource.Axis2);
if(lightsource.Orient == true)
{
// Orient the area light to face the intersection point [ENB 9/97]
// Do Light source to get the correct lightsourceray
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lightsourceray, ipoint);
// Save the lengths of the axises
axis1_Length = axis1Temp.length();
// Make axis 1 be perpendicular with the light-ray
if(fabs(fabs(lightsourceray.Direction[Z]) - 1.0) < 0.01)
// too close to vertical for comfort, so use cross product with horizon
temp = Vector3d(0.0, 1.0, 0.0);
else
temp = Vector3d(0.0, 0.0, 0.1);
axis1Temp = cross(Vector3d(lightsourceray.Direction), temp).normalized();
// Make axis 2 be perpendicular with the light-ray and with Axis1. A simple cross-product will do the trick.
axis2Temp = cross(Vector3d(lightsourceray.Direction), axis1Temp).normalized();
// make it square
axis1Temp *= axis1_Length;
axis2Temp *= axis1_Length;
}
RGBColour sampleLightcolour = lightcolour / (lightsource.Area_Size1 * lightsource.Area_Size2);
RGBColour attenuatedLightcolour;
for(int v = 0; v < lightsource.Area_Size2; ++v)
{
for(int u = 0; u < lightsource.Area_Size1; ++u)
{
Vector3d jitterAxis1, jitterAxis2;
Ray lsr(lightsourceray);
double jitter_u = (double)u;
double jitter_v = (double)v;
bool backside = false;
RGBColour tmpCol;
if(lightsource.Jitter)
{
jitter_u += randomNumberGenerator() - 0.5;
jitter_v += randomNumberGenerator() - 0.5;
}
// Create circular are lights [ENB 9/97]
// First, make jitter_u and jitter_v be numbers from -1 to 1
// Second, set scaleFactor to the abs max (jitter_u,jitter_v) (for shells)
// Third, divide scaleFactor by the length of <jitter_u,jitter_v>
// Fourth, scale jitter_u & jitter_v by scaleFactor
// Finally scale Axis1 by jitter_u & Axis2 by jitter_v
if(lightsource.Circular == true)
{
jitter_u = jitter_u / (lightsource.Area_Size1 - 1) - 0.5 + 0.001;
jitter_v = jitter_v / (lightsource.Area_Size2 - 1) - 0.5 + 0.001;
double scaleFactor = ((fabs(jitter_u) > fabs(jitter_v)) ? fabs(jitter_u) : fabs(jitter_v));
scaleFactor /= sqrt(jitter_u * jitter_u + jitter_v * jitter_v);
jitter_u *= scaleFactor;
jitter_v *= scaleFactor;
jitterAxis1 = axis1Temp * jitter_u;
jitterAxis2 = axis2Temp * jitter_v;
}
else
{
if(lightsource.Area_Size1 > 1)
{
double scaleFactor = jitter_u / (double)(lightsource.Area_Size1 - 1) - 0.5;
jitterAxis1 = axis1Temp * scaleFactor;
}
else
jitterAxis1 = Vector3d(0.0, 0.0, 0.0);
if(lightsource.Area_Size2 > 1)
{
double scaleFactor = jitter_v / (double)(lightsource.Area_Size2 - 1) - 0.5;
jitterAxis2 = axis2Temp * scaleFactor;
}
else
jitterAxis2 = Vector3d(0.0, 0.0, 0.0);
}
// Recalculate the light source ray but not the colour
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lsr, ipoint, jitterAxis1 + jitterAxis2);
// Calculate distance- and angle-based light attenuation
attenuatedLightcolour = sampleLightcolour * Attenuate_Light(&lightsource, lsr, lightsourcedepth);
// If not double-illuminated, check if the normal is pointing away:
if(!isDoubleIlluminated)
{
cos_shadow_angle = dot(layer_normal, Vector3d(lsr.Direction));
if(cos_shadow_angle < EPSILON)
{
if (finish->DiffuseBack != 0.0)
backside = true;
else
continue;
}
}
if(!(sceneData->useSubsurface && finish->UseSubsurface))
// (Diffuse contribution is not supported in combination with BSSRDF, to emphasize the fact that the BSSRDF
// model is intended to provide for all the diffuse term by default. If users want to add some additional
// surface-only diffuse term, they should use layered textures.
ComputeDiffuseColour(finish, lsr, layer_normal, tmpCol, attenuatedLightcolour, layer_pigment_colour, attenuation, backside);
// NK rad - don't compute highlights for radiosity gather rays, since this causes
// problems with colors being far too bright
// don't compute highlights for diffuse backside illumination
if((lightsource.Light_Type != FILL_LIGHT_SOURCE) && !eye.IsRadiosityRay() && !backside) // TODO FIXME radiosity - is this really the right way to do it (speaking of realism)?
{
if(finish->Phong > 0.0)
{
Vector3d ed(eye.Direction);
ComputePhongColour(finish, lsr, ed, layer_normal, tmpCol, attenuatedLightcolour, layer_pigment_colour);
}
if(finish->Specular > 0.0)
ComputeSpecularColour(finish, lsr, reye, layer_normal, tmpCol, attenuatedLightcolour, layer_pigment_colour);
}
if(finish->Irid > 0.0)
ComputeIridColour(finish, Vector3d(lightsourceray.Direction), Vector3d(eye.Direction), layer_normal, ipoint, tmpCol);
colour += tmpCol;
}
}
}
// see do_light in version 3.6's lighting.cpp
void Trace::ComputeOneLightRay(const LightSource &lightsource, double& lightsourcedepth, Ray& lightsourceray, const Vector3d& ipoint, RGBColour& lightcolour, bool forceAttenuate)
{
double attenuation;
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lightsourceray, ipoint);
// Get the light source colour.
lightcolour = lightsource.colour;
// Attenuate light source color.
if (lightsource.Area_Light && lightsource.Use_Full_Area_Lighting && (qualityFlags & Q_AREA_LIGHT) && !forceAttenuate)
// for full area lighting we apply distance- and angle-based attenuation to each "lightlet" individually later
attenuation = 1.0;
else
attenuation = Attenuate_Light(&lightsource, lightsourceray, lightsourcedepth);
// Now scale the color by the attenuation
lightcolour *= attenuation;
}
// see block_light_source in the version 3.6 source
void Trace::TraceShadowRay(const LightSource &lightsource, double depth, const Ray& lightsourceray, const Vector3d& point, RGBColour& colour, TraceTicket& ticket)
{
// test and set highest level traced. We do it differently than TraceRay() does,
// for compatibility with the way max_trace_level is tested and reported in v3.6
// and earlier.
if(ticket.traceLevel > ticket.maxAllowedTraceLevel)
{
colour.clear();
return;
}
ticket.maxFoundTraceLevel = (unsigned int) max(ticket.maxFoundTraceLevel, ticket.traceLevel);
ticket.traceLevel++;
double newdepth;
Intersection isect;
Ray newray(lightsourceray);
// Store current depth and ray because they will be modified.
newdepth = depth;
// NOTE: shadow rays are never photon rays, so flag can be hard-coded to false
newray.SetFlags(Ray::OtherRay, true, false);
// Get shadows from current light source.
if((lightsource.Area_Light) && (qualityFlags & Q_AREA_LIGHT))
TraceAreaLightShadowRay(lightsource, newdepth, newray, point, colour, ticket);
else
TracePointLightShadowRay(lightsource, newdepth, newray, colour, ticket);
// If there's some distance left for the ray to reach the light source
// we have to apply atmospheric stuff to this part of the ray.
if((newdepth > SHADOW_TOLERANCE) && (lightsource.Media_Interaction) && (lightsource.Media_Attenuation))
{
isect.Depth = newdepth;
isect.Object = NULL;
ComputeShadowMedia(newray, isect, colour, (lightsource.Media_Interaction) && (lightsource.Media_Attenuation), ticket);
}
ticket.traceLevel--;
maxFoundTraceLevel = (unsigned int) max(maxFoundTraceLevel, ticket.maxFoundTraceLevel);
}
// moved this here (was originally inside TracePointLightShadowRay) because
// for some reason the Intel compiler (version W_CC_PC_8.1.027) will fail
// to link the exe, complaining of an unresolved external.
//
// TODO: try moving it back in at some point in the future.
struct NoShadowFlagRayObjectCondition : public RayObjectCondition
{
virtual bool operator()(const Ray&, const ObjectBase* object, double) const { return !Test_Flag(object, NO_SHADOW_FLAG); }
};
struct SmallToleranceRayObjectCondition : public RayObjectCondition
{
virtual bool operator()(const Ray&, const ObjectBase*, double dist) const { return dist > SMALL_TOLERANCE; }
};
void Trace::TracePointLightShadowRay(const LightSource &lightsource, double& lightsourcedepth, Ray& lightsourceray, RGBColour& lightcolour, TraceTicket& ticket)
{
Intersection boundedIntersection;
ObjectPtr cacheObject = NULL;
bool foundTransparentObjects = false;
bool foundIntersection;
// Projected through main tests
double projectedDepth = 0.0;
if(lightsource.Projected_Through_Object != NULL)
{
Intersection tempIntersection;
if(FindIntersection(lightsource.Projected_Through_Object, tempIntersection, lightsourceray))
{
if((tempIntersection.Depth - lightsourcedepth) < 0.0)
projectedDepth = lightsourcedepth - fabs(tempIntersection.Depth) + SMALL_TOLERANCE;
else
{
lightcolour.clear();
return;
}
}
else
{
lightcolour.clear();
return;
}
// Make sure we don't do shadows for fill light sources.
// (Note that if Projected_Through_Object is NULL, the test for FILL_LIGHT_SOURCE has happened earlier already)
if(lightsource.Light_Type == FILL_LIGHT_SOURCE)
return;
}
NoShadowFlagRayObjectCondition precond;
SmallToleranceRayObjectCondition postcond;
// check for object in the light source shadow cache (object that fully shadowed during last test) first
if(lightsource.lightGroupLight == false) // we don't cache for light groups
{
if((ticket.traceLevel == 2) && (lightSourceLevel1ShadowCache[lightsource.index] != NULL))
cacheObject = lightSourceLevel1ShadowCache[lightsource.index];
else if(lightSourceOtherShadowCache[lightsource.index] != NULL)
cacheObject = lightSourceOtherShadowCache[lightsource.index];
// if there was an object in the light source shadow cache, check that first
if(cacheObject != NULL)
{
if(FindIntersection(cacheObject, boundedIntersection, lightsourceray, lightsourcedepth - projectedDepth) == true)
{
if(!Test_Flag(boundedIntersection.Object, NO_SHADOW_FLAG))
{
ComputeShadowColour(lightsource, boundedIntersection, lightsourceray, lightcolour, ticket);
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON) &&
(Test_Flag(boundedIntersection.Object, OPAQUE_FLAG)))
{
threadData->Stats()[Shadow_Ray_Tests]++;
threadData->Stats()[Shadow_Rays_Succeeded]++;
threadData->Stats()[Shadow_Cache_Hits]++;
return;
}
}
else
cacheObject = NULL;
}
else
cacheObject = NULL;
}
}
foundTransparentObjects = false;
while(true)
{
boundedIntersection.Object = boundedIntersection.Csg = NULL;
boundedIntersection.Depth = lightsourcedepth - projectedDepth;
threadData->Stats()[Shadow_Ray_Tests]++;
foundIntersection = FindIntersection(boundedIntersection, lightsourceray, precond, postcond);
if((foundIntersection == true) && (boundedIntersection.Object != cacheObject) &&
(boundedIntersection.Depth < lightsourcedepth - SHADOW_TOLERANCE) &&
(lightsourcedepth - boundedIntersection.Depth > projectedDepth) &&
(boundedIntersection.Depth > SHADOW_TOLERANCE))
{
threadData->Stats()[Shadow_Rays_Succeeded]++;
ComputeShadowColour(lightsource, boundedIntersection, lightsourceray, lightcolour, ticket);
ObjectPtr testObject(boundedIntersection.Csg != NULL ? boundedIntersection.Csg : boundedIntersection.Object);
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON) &&
(Test_Flag(testObject, OPAQUE_FLAG)))
{
// Hit a fully opaque object; cache that object, so that next time we can test for it first;
// don't cache for light groups though (why not??)
if((lightsource.lightGroupLight == false) && (foundTransparentObjects == false))
{
cacheObject = testObject;
if(ticket.traceLevel == 2)
lightSourceLevel1ShadowCache[lightsource.index] = cacheObject;
else
lightSourceOtherShadowCache[lightsource.index] = cacheObject;
}
break;
}
foundTransparentObjects = true;
// Move the ray to the point of intersection, plus some
lightsourcedepth -= boundedIntersection.Depth;
Assign_Vector(lightsourceray.Origin, boundedIntersection.IPoint);
}
else
// No further intersections in the direction of the ray.
break;
}
}
void Trace::TraceAreaLightShadowRay(const LightSource &lightsource, double& lightsourcedepth, Ray& lightsourceray,
const Vector3d& ipoint, RGBColour& lightcolour, TraceTicket& ticket)
{
Vector3d temp;
Vector3d axis1Temp, axis2Temp;
double axis1_Length;
lightGrid.resize(lightsource.Area_Size1 * lightsource.Area_Size2);
// Flag uncalculated points with a negative value for Red
/*
for(i = 0; i < lightsource.Area_Size1; i++)
{
for(j = 0; j < lightsource.Area_Size2; j++)
lightGrid[i * lightsource.Area_Size2 + j].red() = -1.0; // TODO FIXME - Old bug: This will not work with negative color values! [trf]
}
*/
for(size_t ind = 0; ind < lightGrid.size(); ++ind)
lightGrid[ind].red() = -1.0;
axis1Temp = Vector3d(lightsource.Axis1);
axis2Temp = Vector3d(lightsource.Axis2);
if(lightsource.Orient == true)
{
// Orient the area light to face the intersection point [ENB 9/97]
// Do Light source to get the correct lightsourceray
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lightsourceray, ipoint);
// Save the lengths of the axes
axis1_Length = axis1Temp.length();
// Make axis 1 be perpendicular with the light-ray
if(fabs(fabs(lightsourceray.Direction[Z]) - 1.0) < 0.01)
// too close to vertical for comfort, so use cross product with horizon
temp = Vector3d(0.0, 1.0, 0.0);
else
temp = Vector3d(0.0, 0.0, 1.0);
axis1Temp = cross(Vector3d(lightsourceray.Direction), temp).normalized();
// Make axis 2 be perpendicular with the light-ray and with Axis1. A simple cross-product will do the trick.
axis2Temp = cross(Vector3d(lightsourceray.Direction), axis1Temp).normalized();
// make it square
axis1Temp *= axis1_Length;
axis2Temp *= axis1_Length;
}
TraceAreaLightSubsetShadowRay(lightsource, lightsourcedepth, lightsourceray, ipoint, lightcolour, 0, 0, lightsource.Area_Size1 - 1, lightsource.Area_Size2 - 1, 0, axis1Temp, axis2Temp, ticket);
}
void Trace::TraceAreaLightSubsetShadowRay(const LightSource &lightsource, double& lightsourcedepth, Ray& lightsourceray,
const Vector3d& ipoint, RGBColour& lightcolour, int u1, int v1, int u2, int v2, int level, const Vector3d& axis1, const Vector3d& axis2, TraceTicket& ticket)
{
RGBColour sample_Colour[4];
int i, u, v, new_u1, new_v1, new_u2, new_v2;
double jitter_u, jitter_v, scaleFactor;
// Sample the four corners of the region
for(i = 0; i < 4; i++)
{
Vector3d center(lightsource.Center);
Ray lsr(lightsourceray);
switch(i)
{
case 0: u = u1; v = v1; break;
case 1: u = u2; v = v1; break;
case 2: u = u1; v = v2; break;
case 3: u = u2; v = v2; break;
default: u = v = 0; // Should never happen!
}
if(lightGrid[u * lightsource.Area_Size2 + v].red() >= 0.0)
// We've already calculated this point, reuse it
sample_Colour[i] = lightGrid[u * lightsource.Area_Size2 + v];
else
{
Vector3d jitterAxis1, jitterAxis2;
jitter_u = (double)u;
jitter_v = (double)v;
if(lightsource.Jitter)
{
jitter_u += randomNumberGenerator() - 0.5;
jitter_v += randomNumberGenerator() - 0.5;
}
// Create circular are lights [ENB 9/97]
// First, make jitter_u and jitter_v be numbers from -1 to 1
// Second, set scaleFactor to the abs max (jitter_u,jitter_v) (for shells)
// Third, divide scaleFactor by the length of <jitter_u,jitter_v>
// Fourth, scale jitter_u & jitter_v by scaleFactor
// Finally scale Axis1 by jitter_u & Axis2 by jitter_v
if(lightsource.Circular == true)
{
jitter_u = jitter_u / (lightsource.Area_Size1 - 1) - 0.5 + 0.001;
jitter_v = jitter_v / (lightsource.Area_Size2 - 1) - 0.5 + 0.001;
scaleFactor = ((fabs(jitter_u) > fabs(jitter_v)) ? fabs(jitter_u) : fabs(jitter_v));
scaleFactor /= sqrt(jitter_u * jitter_u + jitter_v * jitter_v);
jitter_u *= scaleFactor;
jitter_v *= scaleFactor;
jitterAxis1 = axis1 * jitter_u;
jitterAxis2 = axis2 * jitter_v;
}
else
{
if(lightsource.Area_Size1 > 1)
{
scaleFactor = jitter_u / (double)(lightsource.Area_Size1 - 1) - 0.5;
jitterAxis1 = axis1 * scaleFactor;
}
else
jitterAxis1 = Vector3d(0.0, 0.0, 0.0);
if(lightsource.Area_Size2 > 1)
{
scaleFactor = jitter_v / (double)(lightsource.Area_Size2 - 1) - 0.5;
jitterAxis2 = axis2 * scaleFactor;
}
else
jitterAxis2 = Vector3d(0.0, 0.0, 0.0);
}
// Recalculate the light source ray but not the colour
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lsr, ipoint, jitterAxis1 + jitterAxis2);
sample_Colour[i] = lightcolour;
TracePointLightShadowRay(lightsource, lightsourcedepth, lsr, sample_Colour[i], ticket);
lightGrid[u * lightsource.Area_Size2 + v] = sample_Colour[i];
}
}
if((u2 - u1 > 1) || (v2 - v1 > 1))
{
if((level < lightsource.Adaptive_Level) ||
(colourDistance(sample_Colour[0], sample_Colour[1]) > 0.1) ||
(colourDistance(sample_Colour[1], sample_Colour[3]) > 0.1) ||
(colourDistance(sample_Colour[3], sample_Colour[2]) > 0.1) ||
(colourDistance(sample_Colour[2], sample_Colour[0]) > 0.1))
{
Vector3d center(lightsource.Center);
for (i = 0; i < 4; i++)
{
switch (i)
{
case 0:
new_u1 = u1;
new_v1 = v1;
new_u2 = (int)floor((u1 + u2)/2.0);
new_v2 = (int)floor((v1 + v2)/2.0);
break;
case 1:
new_u1 = (int)ceil((u1 + u2)/2.0);
new_v1 = v1;
new_u2 = u2;
new_v2 = (int)floor((v1 + v2)/2.0);
break;
case 2:
new_u1 = u1;
new_v1 = (int)ceil((v1 + v2)/2.0);
new_u2 = (int)floor((u1 + u2)/2.0);
new_v2 = v2;
break;
case 3:
new_u1 = (int)ceil((u1 + u2)/2.0);
new_v1 = (int)ceil((v1 + v2)/2.0);
new_u2 = u2;
new_v2 = v2;
break;
default: // Should never happen!
new_u1 = new_u2 = new_v1 = new_v2 = 0;
}
// Recalculate the light source ray but not the colour
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lightsourceray, ipoint, center);
sample_Colour[i] = lightcolour;
TraceAreaLightSubsetShadowRay(lightsource, lightsourcedepth, lightsourceray,
ipoint, sample_Colour[i], new_u1, new_v1, new_u2, new_v2, level + 1, axis1, axis2, ticket);
}
}
}
// Average up the light contributions
lightcolour = (sample_Colour[0] + sample_Colour[1] + sample_Colour[2] + sample_Colour[3]) * 0.25;
}
// see filter_shadow_ray in version 3.6's lighting.cpp
void Trace::ComputeShadowColour(const LightSource &lightsource, Intersection& isect, Ray& lightsourceray, RGBColour& colour, TraceTicket& ticket)
{
WeightedTextureVector wtextures;
Vector3d ipoint;
Vector3d raw_Normal;
Colour fc1, temp_Colour;
Vector2d uv_Coords;
double normaldirection;
// Here's the issue:
// Imagine "LightA" shoots photons at "GlassSphereB", which refracts light and
// hits "PlaneC".
// When computing Diffuse/Phong/etc lighting for PlaneC, if there were no
// photons, POV would compute a filtered shadow ray from PlaneC through
// GlassSphereB to LightA. If photons are used for the combination of objects,
// this filtered shadow ray should be completely black. The filtered shadow
// ray should be forced to black UNLESS any of the following conditions are
// true (which would indicate that photons were not shot from LightA through
// GlassSphereB to PlaneC):
// 1) PlaneC has photon collection set to "off"
// 2) GlassSphereB is not a photon target
// 3) GlassSphereB has photon refraction set to "off"
// 4) LightA has photon refraction set to "off"
// 5) Neither GlassSphereB nor LightA has photon refraction set to "on"
if((sceneData->photonSettings.photonsEnabled == true) &&
(sceneData->surfacePhotonMap.numPhotons > 0) &&
(!threadData->litObjectIgnoresPhotons) &&
(Test_Flag(isect.Object,PH_TARGET_FLAG)) &&
(!Test_Flag(isect.Object,PH_RFR_OFF_FLAG)) &&
(!Test_Flag(&lightsource,PH_RFR_OFF_FLAG)) &&
((Test_Flag(isect.Object,PH_RFR_ON_FLAG) || Test_Flag(&lightsource,PH_RFR_ON_FLAG)))
)
{
// full shadow (except for photon-based illumination)
colour.clear();
return;
}
ipoint = Vector3d(isect.IPoint);
if(!(qualityFlags & Q_SHADOW))
// no shadow
return;
// If the object is opaque there's no need to go any further. [DB 8/94]
if(Test_Flag(isect.Object, OPAQUE_FLAG))
{
// full shadow
colour.clear();
return;
}
// Get the normal to the surface
isect.Object->Normal(*raw_Normal, &isect, threadData);
// I added this to flip the normal if the object is inverted (for CSG).
// However, I subsequently commented it out for speed reasons - it doesn't
// make a difference (no pun intended). The preexisting flip code below
// produces a similar (though more extensive) result. [NK]
//
// Actually, we should keep this code to guarantee that normaldirection
// is set properly. [NK]
if(Test_Flag(isect.Object, INVERTED_FLAG))
raw_Normal = -raw_Normal;
// If the surface normal points away, flip its direction.
normaldirection = dot(raw_Normal, Vector3d(lightsourceray.Direction));
if(normaldirection > 0.0)
raw_Normal = -raw_Normal;
Assign_Vector(isect.INormal, *raw_Normal);
// and save to intersection -hdf-
Assign_Vector(isect.PNormal, *raw_Normal);
if(Test_Flag(isect.Object, UV_FLAG))
{
// get the UV vect of the intersection
isect.Object->UVCoord(*uv_Coords, &isect, threadData);
// save the normal and UV coords into Intersection
Assign_UV_Vect(isect.Iuv, *uv_Coords);
}
// now switch to UV mapping if we need to
if(Test_Flag(isect.Object, UV_FLAG))
{
ipoint[X] = uv_Coords[U];
ipoint[Y] = uv_Coords[V];
ipoint[Z] = 0;
}
// NB the 3.6 code doesn't set the light cache's Tested flags to false after incrementing the level.
if (++lightColorCacheIndex >= lightColorCache.size())
{
lightColorCache.resize(lightColorCacheIndex + 10);
for (LightColorCacheListList::iterator it = lightColorCache.begin() + lightColorCacheIndex; it != lightColorCache.end(); it++)
it->resize(lightColorCache[0].size());
}
bool isMultiTextured = Test_Flag(isect.Object, MULTITEXTURE_FLAG) ||
((isect.Object->Texture == NULL) && Test_Flag(isect.Object, CUTAWAY_TEXTURES_FLAG));
// get textures and weights
if(isMultiTextured == true)
{
isect.Object->Determine_Textures(&isect, normaldirection > 0.0, wtextures, threadData);
}
else if(isect.Object->Texture != NULL)
{
if((normaldirection > 0.0) && (isect.Object->Interior_Texture != NULL))
wtextures.push_back(WeightedTexture(1.0, isect.Object->Interior_Texture)); /* Chris Huff: Interior Texture patch */
else
wtextures.push_back(WeightedTexture(1.0, isect.Object->Texture));
}
else
{
// don't need to do anything as the texture list will be empty.
// TODO: could we perform these tests earlier ? [cjc]
lightColorCacheIndex--;
return;
}
temp_Colour.clear();
for(WeightedTextureVector::iterator i(wtextures.begin()); i != wtextures.end(); i++)
{
TextureVector warps(texturePool);
assert(warps->empty()); // verify that the TextureVector pulled from the pool is in a cleaned-up condition
// If contribution of this texture is neglectable skip ahead.
if((i->weight < ticket.adcBailout) || (i->texture == NULL))
continue;
ComputeOneTextureColour(fc1, i->texture, *warps, ipoint, raw_Normal, lightsourceray, 0.0, isect, true, false, ticket);
temp_Colour += i->weight * fc1;
}
lightColorCacheIndex--;
if(fabs(temp_Colour.filter()) + fabs(temp_Colour.transm()) < ticket.adcBailout)
{
// close enough to full shadow - bail out to avoid media computations
colour.clear();
return;
}
#if MEDIA_AFTER_TEXTURE_INTERPOLATION
// [CLi] moved this here from Trace::ComputeShadowTexture() and Trace::ComputeLightedTexture(), respectively,
// to avoid media to be computed twice when dealing with averaged textures.
// TODO - For photon rays we're still potentially doing double work on media.
// TODO - For shadow rays we're still potentially doing double work on distance-based attenuation.
// Calculate participating media effects.
if((qualityFlags & Q_VOLUME) && (!lightsourceray.GetInteriors().empty()) && (lightsourceray.IsHollowRay() == true))
media.ComputeMedia(lightsourceray.GetInteriors(), lightsourceray, isect, temp_Colour, ticket);
#endif
colour *= temp_Colour.rgbTransm();
// Get atmospheric attenuation.
ComputeShadowMedia(lightsourceray, isect, colour, (lightsource.Media_Interaction) && (lightsource.Media_Attenuation), ticket);
}
void Trace::ComputeDiffuseColour(const FINISH *finish, const Ray& lightsourceray, const Vector3d& layer_normal, RGBColour& colour, const RGBColour& light_colour,
const RGBColour& layer_pigment_colour, double attenuation, bool backside)
{
double cos_angle_of_incidence, intensity;
double diffuse = (backside? finish->DiffuseBack : finish->Diffuse);
if (diffuse <= 0.0)
return;
cos_angle_of_incidence = dot(layer_normal, Vector3d(lightsourceray.Direction));
// Brilliance is likely to be 1.0 (default value)
if(finish->Brilliance != 1.0)
intensity = pow(fabs(cos_angle_of_incidence), (double) finish->Brilliance);
else
intensity = fabs(cos_angle_of_incidence);
intensity *= diffuse * attenuation;
if(finish->Crand > 0.0)
intensity -= POV_rand(crandRandomNumberGenerator) * finish->Crand;
colour += intensity * layer_pigment_colour * light_colour;
}
void Trace::ComputeIridColour(const FINISH *finish, const Vector3d& lightsource, const Vector3d& eye, const Vector3d& layer_normal, const Vector3d& ipoint, RGBColour& colour)
{
double rwl, gwl, bwl;
double cos_angle_of_incidence_light, cos_angle_of_incidence_eye, interference;
double film_thickness;
double noise;
TURB turb;
film_thickness = finish->Irid_Film_Thickness;
if(finish->Irid_Turb != 0)
{
// Uses hardcoded octaves, lambda, omega
turb.Omega=0.5;
turb.Lambda=2.0;
turb.Octaves=5;
// Turbulence() returns a value from 0..1, so noise will be in order of magnitude 1.0 +/- finish->Irid_Turb
noise = Turbulence(*ipoint, &turb, sceneData->noiseGenerator);
noise = 2.0 * noise - 1.0;
noise = 1.0 + noise * finish->Irid_Turb;
film_thickness *= noise;
}
// Approximate dominant wavelengths of primary hues.
// Source: 3D Computer Graphics by John Vince (Addison Wesely)
// These are initialized in parse.c (Parse_Frame)
// and are user-adjustable with the irid_wavelength keyword.
// Red = 700 nm Grn = 520 nm Blu = 480 nm
// Divided by 1000 gives: rwl = 0.70; gwl = 0.52; bwl = 0.48;
//
// However... I originally "guessed" at the values and came up with
// the following, which I'm using as the defaults, since it seems
// to work better: rwl = 0.25; gwl = 0.18; bwl = 0.14;
// Could avoid these assignments if we want to
rwl = sceneData->iridWavelengths.red();
gwl = sceneData->iridWavelengths.green();
bwl = sceneData->iridWavelengths.blue();
// NOTE: Shouldn't we compute Cos_Angle_Of_Incidence just once?
cos_angle_of_incidence_light = std::abs(dot(layer_normal, lightsource));
cos_angle_of_incidence_eye = std::abs(dot(layer_normal, eye));
// Calculate phase offset.
interference = 2.0 * M_PI * film_thickness * (cos_angle_of_incidence_light + cos_angle_of_incidence_eye);
// intensity = cos_angle_of_incidence * finish->Irid; // TODO CLARIFY - [CLi] note that this effectively gets finish->Irid squared; is this intentional?
// Modify color by phase offset for each wavelength.
colour *= RGBColour(1.0 + finish->Irid * cos(interference / rwl),
1.0 + finish->Irid * cos(interference / gwl),
1.0 + finish->Irid * cos(interference / bwl));
}
void Trace::ComputePhongColour(const FINISH *finish, const Ray& lightsourceray, const Vector3d& eye, const Vector3d& layer_normal, RGBColour& colour, const RGBColour& light_colour,
const RGBColour& layer_pigment_colour)
{
double cos_angle_of_incidence, intensity;
Vector3d reflect_direction;
double ndotl, x, f;
RGBColour cs;
cos_angle_of_incidence = -2.0 * dot(eye, layer_normal);
reflect_direction = eye + cos_angle_of_incidence * layer_normal;
cos_angle_of_incidence = dot(reflect_direction, Vector3d(lightsourceray.Direction));
if(cos_angle_of_incidence > 0.0)
{
if((finish->Phong_Size < 60) || (cos_angle_of_incidence > 0.0008)) // rgs
intensity = finish->Phong * pow(cos_angle_of_incidence, (double)finish->Phong_Size);
else
intensity = 0.0; // ad
if(finish->Metallic > 0.0)
{
// Calculate the reflected color by interpolating between
// the light source color and the surface color according
// to the (empirical) Fresnel reflectivity function. [DB 9/94]
ndotl = dot(layer_normal, Vector3d(lightsourceray.Direction));
x = fabs(acos(ndotl)) / M_PI_2;
f = 0.014567225 / Sqr(x - 1.12) - 0.011612903;
f = min(1.0, max(0.0, f));
cs = light_colour * ( RGBColour(1.0) + (finish->Metallic * (1.0 - f)) * (layer_pigment_colour - RGBColour(1.0)) );
colour += intensity * cs;
}
else
colour += intensity * light_colour;
}
}
void Trace::ComputeSpecularColour(const FINISH *finish, const Ray& lightsourceray, const Vector3d& eye, const Vector3d& layer_normal, RGBColour& colour,
const RGBColour& light_colour, const RGBColour& layer_pigment_colour)
{
double cos_angle_of_incidence, intensity, halfway_length;
Vector3d halfway;
double ndotl, x, f;
RGBColour cs;
VHalf(*halfway, *eye, lightsourceray.Direction);
halfway_length = halfway.length();
if(halfway_length > 0.0)
{
cos_angle_of_incidence = dot(halfway, layer_normal) / halfway_length;
if(cos_angle_of_incidence > 0.0)
{
intensity = finish->Specular * pow(cos_angle_of_incidence, (double)finish->Roughness);
if(finish->Metallic > 0.0)
{
// Calculate the reflected color by interpolating between
// the light source color and the surface color according
// to the (empirical) Fresnel reflectivity function. [DB 9/94]
ndotl = dot(layer_normal, Vector3d(lightsourceray.Direction));
x = fabs(acos(ndotl)) / M_PI_2;
f = 0.014567225 / Sqr(x - 1.12) - 0.011612903;
f = min(1.0, max(0.0, f));
cs = light_colour * ( RGBColour(1.0) + (finish->Metallic * (1.0 - f)) * (layer_pigment_colour - RGBColour(1.0)) );
colour += intensity * cs;
}
else
colour += intensity * light_colour;
}
}
}
void Trace::ComputeRelativeIOR(const Ray& ray, const Interior* interior, double& ior)
{
// Get ratio of iors depending on the interiors the ray is traversing.
if (interior == NULL)
{
// TODO VERIFY - is this correct?
ior = 1.0;
}
else
{
if(ray.GetInteriors().empty())
// The ray is entering from the atmosphere.
ior = interior->IOR / sceneData->atmosphereIOR;
else
{
// The ray is currently inside an object.
if(ray.IsInterior(interior) == true)
{
if(ray.GetInteriors().size() == 1)
// The ray is leaving into the atmosphere.
ior = sceneData->atmosphereIOR / interior->IOR;
else
// The ray is leaving into another object.
ior = ray.GetInteriors().back()->IOR / interior->IOR;
}
else
// The ray is entering a new object.
ior = interior->IOR / ray.GetInteriors().back()->IOR;
}
}
}
void Trace::ComputeReflectivity(double& weight, RGBColour& reflectivity, const RGBColour& reflection_max, const RGBColour& reflection_min,
int reflection_type, double reflection_falloff, double cos_angle, const Ray& ray, const Interior* interior)
{
double temp_Weight_Min, temp_Weight_Max;
double reflection_Frac;
double g, f;
double ior;
if(reflection_type == 1)
ComputeRelativeIOR(ray, interior, ior);
switch(reflection_type)
{
case 0: // Standard reflection
{
temp_Weight_Max = max3(reflection_max.red(), reflection_max.green(), reflection_max.blue());
temp_Weight_Min = max3(reflection_min.red(), reflection_min.green(), reflection_min.blue());
weight = weight * max(temp_Weight_Max, temp_Weight_Min);
if(fabs(reflection_falloff - 1.0) > EPSILON)
reflection_Frac = pow(1.0 - cos_angle, reflection_falloff);
else
reflection_Frac = 1.0 - cos_angle;
if(fabs(reflection_Frac) < EPSILON)
reflectivity = reflection_min;
else if (fabs(reflection_Frac - 1.0)<EPSILON)
reflectivity = reflection_max;
else
reflectivity = reflection_Frac * reflection_max + (1.0 - reflection_Frac) * reflection_min;
break;
}
case 1: // Fresnel
{
// NB: This is a special case of the Fresnel formula, presuming that incident light is unpolarized.
//
// The implemented formula is as follows:
//
// 1 ( g - cos Ti )^2 ( cos Ti (g + cos Ti) - 1 )^2
// R = --- * ------------------ * ( 1 + ------------------------------- )
// 2 ( g + cos Ti )^2 ( cos Ti (g - cos Ti) + 1 )^2
//
// where
//
// /---------------------------
// g = -\/ (n1/n2)^2 + (cos Ti)^2 - 1
// Christoph's tweak to work around possible negative argument in sqrt
double sqx = Sqr(ior) + Sqr(cos_angle) - 1.0;
if(sqx > 0.0)
{
g = sqrt(sqx);
f = 0.5 * (Sqr(g - cos_angle) / Sqr(g + cos_angle));
f = f * (1.0 + Sqr(cos_angle * (g + cos_angle) - 1.0) / Sqr(cos_angle * (g - cos_angle) + 1.0));
f = min(1.0, max(0.0, f));
reflectivity = f * reflection_max + (1.0 - f) * reflection_min;
}
else
reflectivity = reflection_max;
weight = weight * max3(reflectivity.red(), reflectivity.green(), reflectivity.blue());
break;
}
default:
throw POV_EXCEPTION_STRING("Illegal reflection_type."); // TODO FIXME - wrong place to report this [trf]
}
}
void Trace::ComputeOneWhiteLightRay(const LightSource &lightsource, double& lightsourcedepth, Ray& lightsourceray, const Vector3d& ipoint, const Vector3d& jitter)
{
Vector3d center = Vector3d(lightsource.Center) + jitter;
double a;
Vector3d v1;
// Get the light ray starting at the intersection point and pointing towards the light source.
Assign_Vector(lightsourceray.Origin, *ipoint);
// NK 1998 parallel beams for cylinder source - added 'if'
if(lightsource.Light_Type == CYLINDER_SOURCE)
{
double distToPointsAt;
Vector3d toLightCtr;
// use new code to get ray direction - use center - points_at for direction
VSub(lightsourceray.Direction, *center, lightsource.Points_At);
// get vector pointing to center of light
toLightCtr = center - ipoint;
// project light_ctr-intersect_point onto light_ctr-point_at
distToPointsAt = Vector3d(lightsourceray.Direction).length();
lightsourcedepth = dot(toLightCtr, Vector3d(lightsourceray.Direction));
// lenght of shadow ray is the length of the projection
lightsourcedepth /= distToPointsAt;
VNormalizeEq(lightsourceray.Direction);
}
else
{
// NK 1998 parallel beams for cylinder source - the stuff in this 'else'
// block used to be all that there was... the first half of the if
// statement (before the 'else') is new
VSub(lightsourceray.Direction, *center, *ipoint);
lightsourcedepth = Vector3d(lightsourceray.Direction).length();
VInverseScaleEq(lightsourceray.Direction, lightsourcedepth);
}
// Attenuate light source color.
// Attenuation = Attenuate_Light(lightsource, lightsourceray, *Light_Source_Depth);
// Recalculate for Parallel light sources
if(lightsource.Parallel)
{
if(lightsource.Area_Light)
{
v1 = (center - Vector3d(lightsource.Points_At)).normalized();
a = dot(v1, Vector3d(lightsourceray.Direction));
lightsourcedepth *= a;
Assign_Vector(lightsourceray.Direction, *v1);
}
else
{
a = dot(Vector3d(lightsource.Direction), Vector3d(lightsourceray.Direction));
lightsourcedepth *= (-a);
Assign_Vector(lightsourceray.Direction, lightsource.Direction);
VScaleEq(lightsourceray.Direction, -1.0);
}
}
}
void Trace::ComputeSky(const Ray& ray, Colour& colour, TraceTicket& ticket)
{
if (sceneData->EffectiveLanguageVersion() < 370)
{
// this gives the same results regarding sky sphere filter as how v3.6 did it
int i;
double att, trans;
RGBColour col;
Colour col_Temp, filterc;
Vector3d p;
if (ticket.alphaBackground)
{
// If rendering with alpha channel, just return full transparency.
// (As we're working with associated alpha internally, the respective color must be black here.)
colour = Colour(0.0, 0.0, 0.0, 0.0, 1.0);
return;
}
colour = sceneData->backgroundColour;
if((sceneData->skysphere == NULL) || (sceneData->skysphere->Pigments == NULL))
return;
col.clear();
filterc = Colour(1.0, 1.0, 1.0, 1.0, 1.0);
trans = 1.0;
// Transform point on unit sphere.
if(sceneData->skysphere->Trans != NULL)
MInvTransPoint(*p, ray.Direction, sceneData->skysphere->Trans);
else
p = Vector3d(ray.Direction);
for(i = sceneData->skysphere->Count - 1; i >= 0; i--)
{
// Compute sky colour from colour map.
// NK 1998 - added NULL as final parameter
Compute_Pigment(col_Temp, sceneData->skysphere->Pigments[i], *p, NULL, NULL, threadData);
att = trans * (1.0 - col_Temp.filter() - col_Temp.transm());
col += RGBColour(col_Temp) * att;
filterc *= col_Temp;
trans = fabs(filterc.filter()) + fabs(filterc.transm());
}
col *= sceneData->skysphere->Emission;
colour.red() = col.red() + colour.red() * (filterc.red() * filterc.filter() + filterc.transm());
colour.green() = col.green() + colour.green() * (filterc.green() * filterc.filter() + filterc.transm());
colour.blue() = col.blue() + colour.blue() * (filterc.blue() * filterc.filter() + filterc.transm());
colour.filter() = colour.filter() * filterc.filter();
colour.transm() = colour.transm() * filterc.transm();
}
else // i.e. sceneData->languageVersion >= 370
{
// this gives the same results regarding sky sphere filter as a layered-texture genuine sphere
int i;
RGBColour filCol(1.0);
double att;
RGBColour col;
Colour col_Temp;
Vector3d p;
col.clear();
if((sceneData->skysphere != NULL) && (sceneData->skysphere->Pigments != NULL))
{
// Transform point on unit sphere.
if(sceneData->skysphere->Trans != NULL)
MInvTransPoint(*p, ray.Direction, sceneData->skysphere->Trans);
else
p = Vector3d(ray.Direction);
for(i = sceneData->skysphere->Count - 1; i >= 0; i--)
{
// Compute sky colour from colour map.
Compute_Pigment(col_Temp, sceneData->skysphere->Pigments[i], *p, NULL, NULL, threadData);
att = col_Temp.opacity();
col += RGBColour(col_Temp) * att * filCol * sceneData->skysphere->Emission;
filCol *= col_Temp.rgbTransm();
}
}
// apply background as if it was another sky sphere with uniform pigment
col_Temp = sceneData->backgroundColour;
if (!ticket.alphaBackground)
{
// if rendering without alpha channel, ignore filter and transmit of background color.
col_Temp.filter() = 0.0;
col_Temp.transm() = 0.0;
}
att = col_Temp.opacity();
col += RGBColour(col_Temp) * att * filCol;
filCol *= col_Temp.rgbTransm();
colour.red() = col.red();
colour.green() = col.green();
colour.blue() = col.blue();
colour.filter() = 0.0;
colour.transm() = min(1.0f, std::fabs(filCol.greyscale()));
}
}
void Trace::ComputeFog(const Ray& ray, const Intersection& isect, Colour& colour)
{
double att, att_inv, width;
Colour col_fog;
RGBColour sum_att; // total attenuation.
RGBColour sum_col; // total color.
// Why are we here.
if(sceneData->fog == NULL)
return;
// Init total attenuation and total color.
sum_att = RGBColour(1.0, 1.0, 1.0);
sum_col = RGBColour(0.0, 0.0, 0.0);
// Loop over all fogs.
for(FOG *fog = sceneData->fog; fog != NULL; fog = fog->Next)
{
// Don't care about fogs with zero distance.
if(fabs(fog->Distance) > EPSILON)
{
width = isect.Depth;
switch(fog->Type)
{
case GROUND_MIST:
att = ComputeGroundFogColour(ray, 0.0, width, fog, col_fog);
break;
default:
att = ComputeConstantFogColour(ray, 0.0, width, fog, col_fog);
break;
}
// Check for minimum transmittance.
if(att < col_fog.transm())
att = col_fog.transm();
// Get attenuation sum due to filtered/unfiltered translucency.
// [CLi] removed computation of sum_att.filer() and sum_att.transm(), as they were discarded anyway
sum_att.red() *= att * ((1.0 - col_fog.filter()) + col_fog.filter() * col_fog.red());
sum_att.green() *= att * ((1.0 - col_fog.filter()) + col_fog.filter() * col_fog.green());
sum_att.blue() *= att * ((1.0 - col_fog.filter()) + col_fog.filter() * col_fog.blue());
if(!ray.IsShadowTestRay())
{
att_inv = 1.0 - att;
sum_col += att_inv * RGBColour(col_fog);
}
}
}
// Add light coming from background.
colour.red() = sum_col.red() + sum_att.red() * colour.red();
colour.green() = sum_col.green() + sum_att.green() * colour.green();
colour.blue() = sum_col.blue() + sum_att.blue() * colour.blue();
colour.transm() *= sum_att.greyscale();
}
double Trace::ComputeConstantFogColour(const Ray &ray, double depth, double width, const FOG *fog, Colour& colour)
{
Vector3d p;
double k;
if(fog->Turb != NULL)
{
depth += width / 2.0;
VEvaluateRay(*p, ray.Origin, depth, ray.Direction);
VEvaluateEq(*p, fog->Turb->Turbulence);
// The further away the less influence turbulence has.
k = exp(-width / fog->Distance);
width *= (1.0 - k * min(1.0, Turbulence(*p, fog->Turb, sceneData->noiseGenerator) * fog->Turb_Depth));
}
colour = fog->colour;
return (exp(-width / fog->Distance));
}
/*****************************************************************************
* Here is an ascii graph of the ground fog density, it has a maximum
* density of 1.0 at Y <= 0, and approaches 0.0 as Y goes up:
*
* ***********************************
* | | | ****
* | | | ***
* | | | ***
* | | | | ****
* | | | | *****
* | | | | *******
* -----+-----------+------------+------------+-----------+-----
* Y=-2 Y=-1 Y=0 Y=1 Y=2
*
* ground fog density is 1 / (Y*Y+1) for Y >= 0 and equals 1.0 for Y <= 0.
* (It behaves like regular fog for Y <= 0.)
*
* The integral of the density is atan(Y) (for Y >= 0).
******************************************************************************/
double Trace::ComputeGroundFogColour(const Ray& ray, double depth, double width, const FOG *fog, Colour& colour)
{
double fog_density, delta;
double start, end;
double y1, y2, k;
Vector3d p, p1, p2;
// Get start point.
VEvaluateRay(*p1, ray.Origin, depth, ray.Direction);
// Get end point.
p2 = p1 + Vector3d(ray.Direction) * width;
// Could preform transfomation here to translate Start and End
// points into ground fog space.
y1 = dot(p1, Vector3d(fog->Up));
y2 = dot(p2, Vector3d(fog->Up));
start = (y1 - fog->Offset) / fog->Alt;
end = (y2 - fog->Offset) / fog->Alt;
// Get integral along y-axis from start to end.
if(start <= 0.0)
{
if(end <= 0.0)
fog_density = 1.0;
else
fog_density = (atan(end) - start) / (end - start);
}
else
{
if(end <= 0.0)
fog_density = (atan(start) - end) / (start - end);
else
{
delta = start - end;
if(fabs(delta) > EPSILON)
fog_density = (atan(start) - atan(end)) / delta;
else
fog_density = 1.0 / (Sqr(start) + 1.0);
}
}
// Apply turbulence.
if (fog->Turb != NULL)
{
p = (p1 + p2) * 0.5;
VEvaluateEq(*p, fog->Turb->Turbulence);
// The further away the less influence turbulence has.
k = exp(-width / fog->Distance);
width *= (1.0 - k * min(1.0, Turbulence(*p, fog->Turb, sceneData->noiseGenerator) * fog->Turb_Depth));
}
colour = fog->colour;
return (exp(-width * fog_density / fog->Distance));
}
void Trace::ComputeShadowMedia(Ray& light_source_ray, Intersection& isect, RGBColour& resultcolour, bool media_attenuation_and_interaction, TraceTicket& ticket)
{
if((resultcolour.red() < EPSILON) && (resultcolour.green() < EPSILON) && (resultcolour.blue() < EPSILON))
return;
// Calculate participating media effects.
if(media_attenuation_and_interaction && (qualityFlags & Q_VOLUME) && ((light_source_ray.IsHollowRay() == true) || (isect.Object != NULL && isect.Object->interior != NULL)))
{
// we're using general-purpose media and fog handling code, which insists on computing a transmissive component (for alpha channel)
Colour tmpCol = Colour(resultcolour);
media.ComputeMedia(sceneData->atmosphere, light_source_ray, isect, tmpCol, ticket);
if((sceneData->fog != NULL) && (light_source_ray.IsHollowRay() == true) && (light_source_ray.IsPhotonRay() == false))
ComputeFog(light_source_ray, isect, tmpCol);
// discard the transmissive component (alpha channel)
resultcolour = RGBColour(tmpCol);
}
// If ray is entering from the atmosphere or the ray is currently *not* inside an object add it,
// but it it is currently inside an object, the ray is leaving the current object and is removed
if((isect.Object != NULL) && ((light_source_ray.GetInteriors().empty()) || (light_source_ray.RemoveInterior(isect.Object->interior) == false)))
light_source_ray.AppendInterior(isect.Object->interior);
}
void Trace::ComputeRainbow(const Ray& ray, const Intersection& isect, Colour& colour)
{
int n;
double dot1, k, ki, index, x, y, l, angle, fade, f;
Vector3d Temp;
Colour Cr, Ct;
// Why are we here.
if(sceneData->rainbow == NULL)
return;
Ct = Colour(0.0, 0.0, 0.0, 1.0, 1.0);
n = 0;
for(RAINBOW *Rainbow = sceneData->rainbow; Rainbow != NULL; Rainbow = Rainbow->Next)
{
if((Rainbow->Pigment != NULL) && (Rainbow->Distance != 0.0) && (Rainbow->Width != 0.0))
{
// Get angle between ray direction and rainbow's up vector.
x = dot(Vector3d(ray.Direction), Vector3d(Rainbow->Right_Vector));
y = dot(Vector3d(ray.Direction), Vector3d(Rainbow->Up_Vector));
l = Sqr(x) + Sqr(y);
if(l > 0.0)
{
l = sqrt(l);
y /= l;
}
angle = fabs(acos(y));
if(angle <= Rainbow->Arc_Angle)
{
// Get dot product between ray direction and antisolar vector.
dot1 = dot(Vector3d(ray.Direction), Vector3d(Rainbow->Antisolar_Vector));
if(dot1 >= 0.0)
{
// Get index ([0;1]) into rainbow's colour map.
index = (acos(dot1) - Rainbow->Angle) / Rainbow->Width;
// Jitter index.
if(Rainbow->Jitter > 0.0)
index += (2.0 * randomNumberGenerator() - 1.0) * Rainbow->Jitter;
if((index >= 0.0) && (index <= 1.0 - EPSILON))
{
// Get colour from rainbow's colour map.
Temp = Vector3d(index, 0.0, 0.0);
Compute_Pigment(Cr, Rainbow->Pigment, *Temp, &isect, &ray, threadData);
// Get fading value for falloff.
if((Rainbow->Falloff_Width > 0.0) && (angle > Rainbow->Falloff_Angle))
{
fade = (angle - Rainbow->Falloff_Angle) / Rainbow->Falloff_Width;
fade = (3.0 - 2.0 * fade) * fade * fade;
}
else
fade = 0.0;
// Get attenuation factor due to distance.
k = exp(-isect.Depth / Rainbow->Distance);
// Colour's transm value is used as minimum attenuation value.
k = max(k, fade * (1.0 - Cr.transm()) + Cr.transm());
// Now interpolate the colours.
ki = 1.0 - k;
// Attenuate filter value.
f = Cr.filter() * ki;
Ct.red() += k * colour.red() * ((1.0 - f) + f * Cr.red()) + ki * Cr.red();
Ct.green() += k * colour.green() * ((1.0 - f) + f * Cr.green()) + ki * Cr.green();
Ct.blue() += k * colour.blue() * ((1.0 - f) + f * Cr.blue()) + ki * Cr.blue();
Ct.filter() *= k * Cr.filter();
Ct.transm() *= k * Cr.transm();
n++;
}
}
}
}
}
if(n > 0)
{
COLC tmp = 1.0 / n;
colour.red() = Ct.red() * tmp;
colour.green() = Ct.green() * tmp;
colour.blue() = Ct.blue() * tmp;
colour.filter() *= Ct.filter();
colour.transm() *= Ct.transm();
}
}
bool Trace::TestShadow(const LightSource &lightsource, double& depth, Ray& light_source_ray, const Vector3d& p, RGBColour& colour, TraceTicket& ticket)
{
ComputeOneLightRay(lightsource, depth, light_source_ray, p, colour);
// There's no need to test for shadows if no light
// is coming from the light source.
//
// Test for PURE zero, because we only want to skip this if we're out
// of the range of a spot light or cylinder light. Very dim lights
// should not be ignored.
if((fabs(colour.red()) < EPSILON) && (fabs(colour.green()) < EPSILON) && (fabs(colour.blue()) < EPSILON))
{
colour.clear();
return true;
}
// Test for shadows.
if((qualityFlags & Q_SHADOW) && ((lightsource.Projected_Through_Object != NULL) || (lightsource.Light_Type != FILL_LIGHT_SOURCE)))
{
TraceShadowRay(lightsource, depth, light_source_ray, p, colour, ticket);
if((fabs(colour.red()) < EPSILON) && (fabs(colour.green()) < EPSILON) && (fabs(colour.blue()) < EPSILON))
{
colour.clear();
return true;
}
}
return false;
}
bool Trace::IsObjectInCSG(const ObjectBase* object, const ObjectBase* parent)
{
bool found = false;
if(object == parent)
return true;
if(parent->Type & IS_COMPOUND_OBJECT)
{
for(vector<ObjectPtr>::const_iterator Sib = (reinterpret_cast<const CSG *>(parent))->children.begin(); Sib != (reinterpret_cast<const CSG *>(parent))->children.end(); Sib++)
{
if(IsObjectInCSG(object, *Sib))
found = true;
}
}
return found;
}
// SSLT code by Sarah Tariq and Lawrence (Lorenzo) Ibarria
double Trace::ComputeFt(double phi, double eta)
{
#if 0
double sin_phi = sin(phi);
double sin_theta = sin_phi / eta;
if ((sin_theta < -1.0) || (sin_theta > 1.0))
return 0; // total reflection, i.e. no transmission at all
double theta = asin(sin_theta);
return 1 - 0.5 * (Sqr(sin(phi-theta)) / Sqr(sin(phi+theta)) + Sqr(tan(phi-theta)) / Sqr(tan(phi+theta)));
#elif 0
/*
double x = fabs(acos(cos(phi))) / M_PI_2;
double Fr = 0.014567225 / Sqr(x - 1.12) - 0.011612903;
return 1.0 - Fr;
*/
#else
double cos_angle = cos(phi);
double g = sqrt(Sqr(eta) + Sqr(cos_angle) - 1);
double F = 0.5 * (Sqr(g - cos_angle) / Sqr(g + cos_angle));
F = F * (1 + Sqr(cos_angle * (g + cos_angle) - 1) / Sqr(cos_angle * (g - cos_angle) + 1));
return 1.0 - min(1.0,max(0.0,F));
#endif
}
void Trace::ComputeSurfaceTangents(const Vector3d& normal, Vector3d& u, Vector3d& v)
{
#if 1
if (fabs(normal[0]) <= fabs(normal[1]) && fabs(normal[0]) <= fabs(normal[2]))
// if x co-ordinate is smallest, creating a tangent in the yz plane is a piece of cake;
// the following code is equivalent to u = cross(normal, Vector3d(1,0,0)).normalized();
u = Vector3d(0, normal[2], -normal[1]).normalized();
else if (fabs(normal[1]) <= fabs(normal[2]))
// if y co-ordinate is smallest, creating a tangent in the xz plane is a piece of cake;
// the following code is equivalent to u = cross(normal, Vector3d(0,1,0)).normalized();
u = Vector3d(-normal[2], 0, normal[0]).normalized();
else
// if z co-ordinate is smallest, creating a tangent in the xy plane is a piece of cake;
// the following code is equivalent to u = cross(normal, Vector3d(0,0,1)).normalized();
u = Vector3d(normal[1], -normal[0], 0).normalized();
#else
if (fabs(normal[0]) <= fabs(normal[1]) && fabs(normal[0]) <= fabs(normal[2]))
// if x co-ordinate is smallest, creating a tangent in the yz plane is a piece of cake
u = cross(normal, Vector3d(1,0,0)).normalized();
else if (fabs(normal[1]) <= fabs(normal[0]) && fabs(normal[1]) <= fabs(normal[2]))
// if y co-ordinate is smallest, creating a tangent in the xz plane is a piece of cake
u = cross(normal, Vector3d(0,1,0)).normalized();
else
// if z co-ordinate is smallest, creating a tangent in the xy plane is a piece of cake
u = cross(normal, Vector3d(0,0,1)).normalized();
#endif
v = cross(normal, u);
}
void Trace::ComputeSSLTNormal(Intersection& Ray_Intersection)
{
Vector3d Raw_Normal;
/* Get the normal to the surface */
Ray_Intersection.Object->Normal(*Raw_Normal, &Ray_Intersection, threadData);
Assign_Vector(Ray_Intersection.INormal, *Raw_Normal);
Assign_Vector(Ray_Intersection.PNormal, *Raw_Normal); // TODO FIXME - we should possibly take normal pertubation into account
}
bool Trace::IsSameSSLTObject(const ObjectBase* obj1, const ObjectBase* obj2)
{
// TODO maybe use something smarter
return (obj1 && obj2 && obj1->interior == obj2->interior);
}
void Trace::ComputeDiffuseSampleBase(Vector3d& basePoint, const Intersection& out, const Vector3d& vOut, double avgFreeDist)
{
Vector3d pOut(out.IPoint);
Vector3d nOut(out.INormal);
// make sure to get the normal right; obviously, the observer must be "outside".
// for algorithm simplicity, we want the normal to point inward
double cos_phi = dot(nOut, vOut);
if (cos_phi > 0)
nOut = -nOut;
// typically, place the base point the average free distance below the surface;
// however, never place it closer to the "back side" than to the front
Intersection backSide;
Ray ray(*pOut, *nOut); // we're shooting from the surface, so SubsurfaceRay would do us no good (as it would potentially "re-discover" the current surface)
backSide.Depth = avgFreeDist * 2; // max distance we're looking at
bool found = FindIntersection(backSide, ray);
if (found)
{
if (IsSameSSLTObject(out.Object, backSide.Object))
basePoint = pOut + nOut * (backSide.Depth / 2);
else
basePoint = pOut + nOut * min(avgFreeDist, backSide.Depth - EPSILON);
}
else
basePoint = pOut + nOut * avgFreeDist;
}
void Trace::ComputeDiffuseSamplePoint(const Vector3d& basePoint, Intersection& in, double& sampleArea, TraceTicket& ticket)
{
// generate a vector in a random direction
// TODO FIXME - a suitably weighted distribution (oriented according to the surface normal) would possibly be better
while (ssltUniformDirectionGenerator.size() <= ticket.subsurfaceRecursionDepth)
ssltUniformDirectionGenerator.push_back(GetSubRandomDirectionGenerator(0, 32767));
Vector3d v = (*(ssltUniformDirectionGenerator[ticket.subsurfaceRecursionDepth]))();
Ray ray(*basePoint, *v, Ray::SubsurfaceRay);
bool found = FindIntersection(in, ray);
if (found)
{
ComputeSSLTNormal(in);
Vector3d vDelta = Vector3d(in.IPoint) - basePoint;
double dist = vDelta.length();
double cos_phi = std::abs(dot(vDelta / dist, Vector3d(in.INormal)));
if (cos_phi < 0)
{
VScaleEq(in.INormal, -1.0);
cos_phi = -cos_phi;
}
if (cos_phi < 0.01)
cos_phi = 0.01; // TODO FIXME - rather arbitrary limit
sampleArea = 4.0 * M_PI * Sqr(dist * sceneData->mmPerUnit) / cos_phi;
}
else
{
sampleArea = 0.0;
}
}
void Trace::ComputeOneSingleScatteringContribution(const LightSource& lightsource, const Intersection& out, double sigma_t_xo, double sigma_s, double s_prime_out,
RGBColour& Lo, double eta, const Vector3d& bend_point, double phi_out, double cos_out_prime, TraceTicket& ticket)
{
// TODO FIXME - part of this code is very alike to ComputeOneDiffuseLight()
// Do Light source to get the correct lightsourceray
// (note that for now we're mainly interested in the direction)
Ray lightsourceray(Ray::SubsurfaceRay);
double lightsourcedepth;
ComputeOneWhiteLightRay(lightsource, lightsourcedepth, lightsourceray, bend_point);
// We're below the surface; determine where a light ray from the source would be intersecting this object's surface
// (and, more importantly, what the surface normal is there; notice that this intersection is an approximation,
// ignoring refraction)
Intersection xi;
if (!FindIntersection(xi, lightsourceray))
return;
if (!IsSameSSLTObject(xi.Object, out.Object))
return; // TODO - what if the other object is transparent?
ComputeSSLTNormal(xi);
// Get a colour and a ray (also recomputes all the lightsourceray stuff).
RGBColour lightcolour;
ComputeOneLightRay(lightsource, lightsourcedepth, lightsourceray, Vector3d(xi.IPoint), lightcolour, true);
// Don't calculate spotlights when outside of the light's cone.
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON))
return;
// See if light on far side of surface from camera.
// [CLi] double_illuminate and diffuse backside illumination don't seem to make much sense with BSSRDF, so we ignore them here.
// [CLi] BSSRDF always does "full area lighting", so we ignore it here.
double cos_in = dot(Vector3d(xi.INormal), Vector3d(lightsourceray.Direction));
// [CLi] we're coming from inside the object, so the surface /must/ be properly oriented towards the camera; if it isn't,
// it must be the normal's fault
if (cos_in < 0)
{
VScaleEq(xi.INormal, -1.0);
cos_in = -cos_in;
}
// [CLi] light coming in almost parallel to the surface is a problem though
if(cos_in < EPSILON)
return;
// If light source was not blocked by any intervening object, then
// calculate it's contribution to the object's overall illumination.
if ((qualityFlags & Q_SHADOW) && ((lightsource.Projected_Through_Object != NULL) || (lightsource.Light_Type != FILL_LIGHT_SOURCE)))
{
// [CLi] Not using lightColorCache because it's unsuited for BSSRDF
TraceShadowRay(lightsource, lightsourcedepth, lightsourceray, Vector3d(xi.IPoint), lightcolour, ticket);
}
// Don't calculate anything more if we're in full shadow
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON))
return;
double sigma_t_xi = sigma_t_xo; // TODO FIXME - theoretically this should be taken from point where light comes in
double cos_in_sqr = Sqr(cos_in);
double sin_in_sqr = 1 - cos_in_sqr;
double eta_sqr = Sqr(eta);
double sin_in_prime_sqr = sin_in_sqr / eta_sqr;
double cos_in_prime_sqr = 1 - sin_in_prime_sqr;
if (cos_in_prime_sqr < 0.0)
return; // total reflection
double cos_in_prime = sqrt(cos_in_prime_sqr);
if (cos_in_prime <= EPSILON)
return; // close enough to total reflection to give us trouble
//RGBColour lightColour = RGBColour(lightsource.colour);
lightcolour *= cos_in; // TODO VERIFY - is this right? Where does this term come from??
// compute si
double si = (bend_point - Vector3d(xi.IPoint)).length() * sceneData->mmPerUnit;
// calculate s_prime_i
double s_prime_i = si * cos_in / cos_in_prime;
// calculate F
double phi_in = acos(cos_in);
double F = ComputeFt(phi_in, eta) * ComputeFt(phi_out, eta);
// calculate sigma_tc
double G = fabs(cos_out_prime / cos_in_prime); // TODO FIXME - theoretically this is only valid for comparatively flat surfaces
double sigma_tc = sigma_t_xo + G * sigma_t_xi;
// calculate the phase function
// NOTE: We're leaving out the 1/pi factor because in POV-Ray, by convention,
// light intensity is normalized to imply this factor already.
double p = 1.0 / 4.0; // asume isotropic scattering (normally this would be 1/(4*M_PI))
// multiply with the e terms
double eTerms = exp(-s_prime_i * sigma_t_xi) * exp(-s_prime_out * sigma_t_xo); // TODO FIXME - theoretically first sigma_t should be taken from from xi.IPoint
double factor = (sigma_s * F * p / sigma_tc) * eTerms;
if (factor >= DBL_MAX)
factor = DBL_MAX;
assert ((factor >= 0.0) && (factor <= DBL_MAX)); // verify factor is a non-negative, finite value (no #INF, no #IND, no #NAN)
lightcolour *= factor;
assert ((lightcolour.red() >= 0) &&
(lightcolour.green() >= 0) &&
(lightcolour.blue() >= 0));
// add up the contribution
Lo += lightcolour;
}
// call this once for each color
// out.INormal is calculated
void Trace::ComputeSingleScatteringContribution(const Intersection& out, double dist, double cos_out, const Vector3d& refractedREye, double sigma_prime_t, double sigma_prime_s, RGBColour& Lo, double eta,
TraceTicket& ticket)
{
double g = 0; // the mean cosine of the scattering angle; for isotropic scattering, g = 0
double sigma_t_xo = sigma_prime_t / (1-g); // TODO FIXME - precompute
double sigma_s = sigma_prime_s / (1-g); // TODO FIXME - precompute
double epsilon;
double s_prime_out;
Lo.clear();
// TODO FIXME - a significant deal of this only needs to be computed once for any intersection point!
// calculate s_prime_out
while (ssltUniformNumberGenerator.size() <= ticket.subsurfaceRecursionDepth)
ssltUniformNumberGenerator.push_back(GetRandomDoubleGenerator(0.0, 1.0, 32767));
epsilon = (*(ssltUniformNumberGenerator[ticket.subsurfaceRecursionDepth]))(); // epsilon is a random floating point value in the range [0,1) {including 0, not including 1}
s_prime_out = fabs(log(epsilon)) / sigma_t_xo;
if (s_prime_out >= dist)
return; // not within the object - this will be covered by a "zero scattering" term
//compute bend_point wihch is s_prime_out distance away on refractedREye
Vector3d bend_point = Vector3d(out.IPoint) + refractedREye * (s_prime_out / sceneData->mmPerUnit);
double cos_out_prime = sqrt(1 - ((Sqr(1.0 / eta)) * (1 - Sqr(cos_out))));
// global light sources, if not turned off for this object
if((out.Object->Flags & NO_GLOBAL_LIGHTS_FLAG) != NO_GLOBAL_LIGHTS_FLAG)
{
for(int i = 0; i < threadData->lightSources.size(); i++)
ComputeOneSingleScatteringContribution(*threadData->lightSources[i], out, sigma_t_xo, sigma_s, s_prime_out, Lo, eta, bend_point, acos(cos_out), cos_out_prime, ticket);
}
// local light sources from a light group, if any
if(!out.Object->LLights.empty())
{
for(int i = 0; i < out.Object->LLights.size(); i++)
ComputeOneSingleScatteringContribution(*out.Object->LLights[i], out, sigma_t_xo, sigma_s, s_prime_out, Lo, eta, bend_point, acos(cos_out), cos_out_prime, ticket);
}
assert ((Lo.red() >= 0) &&
(Lo.green() >= 0) &&
(Lo.blue() >= 0));
// TODO FIXME - radiosity should also be taken into account
}
bool Trace::SSLTComputeRefractedDirection(const Vector3d& v, const Vector3d& n, double eta, Vector3d& refracted)
{
// Phi: angle between normal and -incoming_ray (REye in this case, since it points to Eye)
// Theta: angle between -normal and outgoing_ray
double cosPhi;
Vector3d unitV = v.normalized();
Vector3d unitN = n.normalized();
cosPhi = dot(unitV, unitN);
if (cosPhi > 0)
unitN = -unitN;
else
cosPhi = -cosPhi;
double cosThetaSqr = 1.0 + Sqr(eta) * (Sqr(cosPhi) - 1.0);
if (cosThetaSqr < 0.0)
return false;
double cosTheta = sqrt(cosThetaSqr);
refracted = (unitV * eta + unitN * (eta * cosPhi - cosTheta)).normalized();
return true;
}
void Trace::ComputeDiffuseContribution(const Intersection& out, const Vector3d& vOut, const Vector3d& pIn, const Vector3d& nIn, const Vector3d& vIn, double& sd, double sigma_prime_s, double sigma_a, double eta)
{
// TODO FIXME - a great deal of this can be precomputed
double sigma_prime_t = sigma_prime_s + sigma_a;
double alpha_prime = sigma_prime_s / sigma_prime_t;
double F_dr = FresnelDiffuseReflectance(eta);
double Aconst = ((1 + F_dr) / (1 - F_dr));
double Rd;
double cos_phi_in = clip(dot(vIn, nIn), -1.0, 1.0); // (clip values to not run into trouble due to petty precision issues)
double cos_phi_out = clip(dot(vOut, Vector3d(out.INormal)), -1.0, 1.0);
double phi_in = acos(cos_phi_in);
double phi_out = acos(cos_phi_out);
double F = ComputeFt(phi_in, eta) * ComputeFt(phi_out, eta);
#if 1
// full BSSRDF model
double distSqr = (pIn - Vector3d(out.IPoint)).lengthSqr() * Sqr(sceneData->mmPerUnit);
double Dconst = 1 / (3 * sigma_prime_t);
double sigma_tr = sqrt(3 * sigma_a * sigma_prime_t);
double z_r = 1.0 / sigma_prime_t;
double dSqr_r = Sqr(z_r) + distSqr;
double d_r = sqrt(dSqr_r);
double z_v = z_r * (1.0 + Aconst * 4.0/3.0);
double dSqr_v = Sqr(z_v) + distSqr;
double d_v = sqrt(dSqr_v);
double common_term = alpha_prime / (4.0 * M_PI); // dimensionless
double C1 = z_r * (sigma_tr + 1.0/d_r); // dimensionless
double C2 = z_v * (sigma_tr + 1.0/d_v); // dimensionless
double r_term = C1 * exp(-sigma_tr * d_r) / dSqr_r; // dimension 1/area
double v_term = C2 * exp(-sigma_tr * d_v) / dSqr_v; // dimension 1/area
Rd = common_term * (r_term + v_term);
#else
// uniform illumination BRDF approximation
// TODO - use this for radiosity?
// calculate Rd
double root_term = sqrt(3.0 * (1.0 - alpha_prime));
Rd = (alpha_prime / 2.0) * (1 + exp((-4.0/3.0) * Aconst * root_term)) * exp(-root_term);
#endif
// NOTE: We're leaving out the 1/pi factor because in POV-Ray, by convention,
// light intensity is normalized to imply this factor already.
sd = F * Rd; // (normally this would be F*Rd/M_PI)
assert ((sd >= 0.0) && (sd <= DBL_MAX)); // verify sd is a non-negative, finite value (no #INF, no #IND, no #NAN)
}
void Trace::ComputeDiffuseContribution1(const LightSource& lightsource, const Intersection& out, const Vector3d& vOut, const Intersection& in, RGBColour& Total_Colour,
const DblRGBColour& sigma_prime_s, const DblRGBColour& sigma_a, double eta, double weight, TraceTicket& ticket)
{
// TODO FIXME - part of this code is very alike to ComputeOneDiffuseLight()
// Get a colour and a ray.
Ray lightsourceray;
double lightsourcedepth;
RGBColour lightcolour;
ComputeOneLightRay(lightsource, lightsourcedepth, lightsourceray, Vector3d(in.IPoint), lightcolour, true);
// Don't calculate spotlights when outside of the light's cone.
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON))
return;
Vector3d nIn = Vector3d(in.INormal);
// See if light on far side of surface from camera.
// [CLi] double_illuminate and diffuse backside illumination don't seem to make much sense with BSSRDF, so we ignore them here.
// [CLi] BSSRDF always does "full area lighting", so we ignore it here.
double cos_in = dot(nIn, Vector3d(lightsourceray.Direction));
// [CLi] we're coming from inside the object, so the surface /must/ be properly oriented towards the camera; if it isn't,
// it must be the normal's fault
if (cos_in < 0)
{
nIn = -nIn;
cos_in = -cos_in;
}
// [CLi] light coming in almost parallel to the surface is a problem though
if(cos_in < EPSILON)
return;
// If light source was not blocked by any intervening object, then
// calculate it's contribution to the object's overall illumination.
if ((qualityFlags & Q_SHADOW) && ((lightsource.Projected_Through_Object != NULL) || (lightsource.Light_Type != FILL_LIGHT_SOURCE)))
{
// [CLi] Not using lightColorCache because it's unsuited for BSSRDF
TraceShadowRay(lightsource, lightsourcedepth, lightsourceray, Vector3d(in.IPoint), lightcolour, ticket);
}
// Don't calculate anything more if we're in full shadow
if((fabs(lightcolour.red()) < EPSILON) &&
(fabs(lightcolour.green()) < EPSILON) &&
(fabs(lightcolour.blue()) < EPSILON))
return;
lightcolour *= cos_in;
for (int j = 0; j < 3; j++)
{
double sd;
ComputeDiffuseContribution(out, vOut, Vector3d(in.IPoint), nIn, Vector3d(lightsourceray.Direction), sd, sigma_prime_s[j], sigma_a[j], eta);
sd *= weight;
assert (sd >= 0);
lightcolour[j] *= sd;
assert (lightcolour[j] >= 0);
Total_Colour[j] += lightcolour[j];
}
}
void Trace::ComputeDiffuseAmbientContribution1(const Intersection& out, const Vector3d& vOut, const Intersection& in, RGBColour& Total_Colour,
const DblRGBColour& sigma_prime_s, const DblRGBColour& sigma_a, double eta, double weight, TraceTicket& ticket)
{
#if 0
// generate a random direction vector (using a distribution cosine-weighted along the normal)
Vector3d axisU, axisV;
ComputeSurfaceTangents(Vector3d(in.INormal), axisU, axisV);
while (ssltCosWeightedDirectionGenerator.size() <= ticket.subsurfaceRecursionDepth)
ssltCosWeightedDirectionGenerator.push_back(GetSubRandomCosWeightedDirectionGenerator(2, 32767));
Vector3d direction = (*(ssltCosWeightedDirectionGenerator[ticket.subsurfaceRecursionDepth]))();
double cos_in = direction.y(); // cosine of angle between normal and random vector
Vector3d vIn = Vector3d(in.INormal)*cos_in + axisU*direction.x() + axisV*direction.z();
assert(fabs(dot(Vector3d(in.INormal), axisU)) < EPSILON);
assert(fabs(dot(Vector3d(in.INormal), axisV)) < EPSILON);
assert(fabs(dot(axisU, axisV)) < EPSILON);
// [CLi] light coming in almost parallel to the surface is a problem
if(cos_in < EPSILON)
return;
Ray ambientray = Ray(in.IPoint, *vIn, Ray::OtherRay); // TODO FIXME - [CLi] check whether ray type is suitable
Colour ambientcolour;
TraceRay(ambientray, ambientcolour, weight, ticket, false);
// Don't calculate anything more if there's no light input
if((fabs(ambientcolour.red()) < EPSILON) &&
(fabs(ambientcolour.green()) < EPSILON) &&
(fabs(ambientcolour.blue()) < EPSILON))
return;
for (int j = 0; j < 3; j++)
{
double sd;
// Note: radiosity data is already cosine-weighted, so we're passing the surface normal as incident light direction
ComputeDiffuseContribution(out, vOut, Vector3d(in.IPoint), Vector3d(in.INormal), vIn, sd, sigma_prime_s[j], sigma_a[j], eta);
sd *= 0.5/cos_in; // the distribution is cosine-weighted, but sd was computed assuming neutral weighting, so compensate
sd *= weight;
assert (sd >= 0);
ambientcolour[j] *= sd;
assert (ambientcolour[j] >= 0);
Total_Colour[j] += ambientcolour[j];
}
#else
RGBColour ambientcolour;
// TODO FIXME - should support pertubed normals
radiosity.ComputeAmbient(Vector3d(in.IPoint), Vector3d(in.INormal), Vector3d(in.INormal), ambientcolour, weight, ticket);
for (int j = 0; j < 3; j++)
{
double sd;
// Note: radiosity data is already cosine-weighted, so we're passing the surface normal as incident light direction
ComputeDiffuseContribution(out, vOut, Vector3d(in.IPoint), Vector3d(in.INormal), Vector3d(in.INormal), sd, sigma_prime_s[j], sigma_a[j], eta);
sd *= weight;
assert (sd >= 0);
ambientcolour[j] *= sd;
assert (ambientcolour[j] >= 0);
Total_Colour[j] += ambientcolour[j];
}
#endif
}
void Trace::ComputeSubsurfaceScattering(const FINISH *Finish, const RGBColour& layer_pigment_colour, const Intersection& out, const Ray& Eye, const Vector3d& Layer_Normal, RGBColour& Final_Colour, double Attenuation, TraceTicket& ticket)
{
int NumSamplesDiffuse = sceneData->subsurfaceSamplesDiffuse;
int NumSamplesSingle = sceneData->subsurfaceSamplesSingle;
// TODO FIXME - this is hard-coded for now
if (ticket.subsurfaceRecursionDepth >= 2)
return;
else if (ticket.subsurfaceRecursionDepth == 1)
{
NumSamplesDiffuse = 1;
NumSamplesSingle = 1;
//NumSamplesDiffuse = (int)ceil(sqrt(NumSamplesDiffuse));
//NumSamplesSingle = (int)ceil(sqrt(NumSamplesSingle));
}
ticket.subsurfaceRecursionDepth++;
LightSource Light_Source;
Vector3d vOut = -Vector3d(Eye.Direction);
RGBColour Total_Colour;
double eta;
ComputeRelativeIOR(Eye, out.Object->interior, eta);
#if 0
// user setting specifies mean free path
DblRGBColour alpha_prime = object->interior->subsurface->GetReducedAlbedo(layer_pigment_colour * Finish->Diffuse);
DblRGBColour sigma_tr = DblRGBColour(1.0) / DblRGBColour(Finish->SubsurfaceTranslucency);
DblRGBColour sigma_prime_t = sigma_tr / sqrt(3*(RGBColour(1.0)-alpha_prime));
DblRGBColour sigma_prime_s = alpha_prime * sigma_prime_t;
DblRGBColour sigma_a = sigma_prime_t - sigma_prime_s;
DblRGBColour sigma_tr_sqr = sigma_tr * sigma_tr;
#else
// user setting specifies reduced scattering coefficient
DblRGBColour alpha_prime = out.Object->interior->subsurface->GetReducedAlbedo(layer_pigment_colour * Finish->RawDiffuse);
DblRGBColour sigma_prime_s = DblRGBColour(1.0) / DblRGBColour(Finish->SubsurfaceTranslucency);
DblRGBColour sigma_prime_t = sigma_prime_s / alpha_prime;
DblRGBColour sigma_a = sigma_prime_t - sigma_prime_s;
DblRGBColour sigma_tr_sqr = sigma_a * sigma_prime_t * 3.0;
DblRGBColour sigma_tr = sqrt(sigma_tr_sqr);
#endif
#if 1
// colour dependent diffuse contribution
double sampleArea;
double weight;
double weightSum;
double sigma_a_mean = sigma_a.greyscale();
double sigma_prime_s_mean = sigma_prime_s.greyscale();
double sigma_prime_t_mean = sigma_a_mean + sigma_prime_s_mean;
double sigma_tr_mean_sqr = sigma_a_mean * sigma_prime_t_mean * 3.0;
double sigma_tr_mean = sqrt(sigma_tr_mean_sqr);
int trueNumSamples;
bool radiosity_needed = (sceneData->radiositySettings.radiosityEnabled == true) &&
(sceneData->subsurfaceUseRadiosity == true) &&
(radiosity.CheckRadiosityTraceLevel(ticket) == true) &&
(Test_Flag(out.Object, IGNORE_RADIOSITY_FLAG) == false);
Vector3d sampleBase;
ComputeDiffuseSampleBase(sampleBase, out, vOut, 1.0 / (sigma_prime_t_mean * sceneData->mmPerUnit));
weightSum = 0.0;
trueNumSamples = 0;
for (int i = 0; i < NumSamplesDiffuse; i++)
{
Intersection in;
ComputeDiffuseSamplePoint(sampleBase, in, sampleArea, ticket);
// avoid pathological cases
if (sampleArea != 0)
{
weight = sampleArea;
weightSum += weight;
trueNumSamples ++;
if (IsSameSSLTObject(in.Object, out.Object))
{
// radiosity-alike ambient illumination
if (radiosity_needed)
// shoot just one random ray to account for ambient illumination (we're averaging stuff anyway)
ComputeDiffuseAmbientContribution1(out, vOut, in, Total_Colour, sigma_prime_s, sigma_a, eta, weight, ticket);
// global light sources, if not turned off for this object
if((out.Object->Flags & NO_GLOBAL_LIGHTS_FLAG) != NO_GLOBAL_LIGHTS_FLAG)
{
for(int k = 0; k < threadData->lightSources.size(); k++)
ComputeDiffuseContribution1(*threadData->lightSources[k], out, vOut, in, Total_Colour, sigma_prime_s, sigma_a, eta, weight, ticket);
}
// local light sources from a light group, if any
if(!out.Object->LLights.empty())
{
for(int k = 0; k < out.Object->LLights.size(); k++)
ComputeDiffuseContribution1(*out.Object->LLights[k], out, vOut, in, Total_Colour, sigma_prime_s, sigma_a, eta, weight, ticket);
}
}
else
{
// TODO - what's the proper thing to do?
}
}
}
if (trueNumSamples > 0)
Total_Colour /= trueNumSamples;
#endif
Vector3d refractedEye;
if (SSLTComputeRefractedDirection(Vector3d(Eye.Direction), Vector3d(out.INormal), 1.0/eta, refractedEye))
{
Ray refractedEyeRay(out.IPoint, *refractedEye);
Intersection unscatteredIn;
double dist;
// find the intersection of the refracted ray with the object
// find the distance to this intersection
bool found = FindIntersection(unscatteredIn, refractedEyeRay);
if (found)
dist = (Vector3d(out.IPoint) - Vector3d(unscatteredIn.IPoint)).length() * sceneData->mmPerUnit;
else
dist = HUGE_VAL;
double cos_out = dot(vOut, Vector3d(out.INormal));
#if 1
// colour dependent single scattering contribution
for (int i = 0; i < NumSamplesSingle; i++)
{
for (int j = 0; j < 3; j ++)
{
RGBColour temp;
ComputeSingleScatteringContribution(out, dist, cos_out, refractedEye, sigma_prime_t[j], sigma_prime_s[j], temp, eta, ticket);
Total_Colour[j] += temp[j] / NumSamplesSingle;
}
}
#endif
#if 1
// colour dependent unscattered contribution
// Trace refracted ray.
Colour tempcolor;
// TODO FIXME - account for fresnel attenuation at interfaces
DblRGBColour att = exp(-sigma_prime_t * dist); // TODO should be sigma_t
weight = max3(att.red(), att.green(), att.blue());
if (weight > ticket.adcBailout)
{
if (!found)
{
// TODO - trace the ray to the background?
}
else if (IsSameSSLTObject(unscatteredIn.Object, out.Object))
{
unscatteredIn.Object->Normal(unscatteredIn.INormal, &unscatteredIn, threadData);
if (dot(refractedEye, Vector3d(unscatteredIn.INormal)) > 0)
VScaleEq(unscatteredIn.INormal, -1.0);
Vector3d doubleRefractedEye;
if (SSLTComputeRefractedDirection(refractedEye, Vector3d(unscatteredIn.INormal), eta, doubleRefractedEye))
{
Ray doubleRefractedEyeRay(refractedEyeRay);
doubleRefractedEyeRay.SetFlags(Ray::RefractionRay, refractedEyeRay);
Assign_Vector(doubleRefractedEyeRay.Origin, unscatteredIn.IPoint);
Assign_Vector(doubleRefractedEyeRay.Direction, *(doubleRefractedEye));
TraceRay(doubleRefractedEyeRay, tempcolor, weight, ticket, false);
Total_Colour += RGBColour(DblRGBColour(RGBColour(tempcolor)) * att);
}
}
else
{
// TODO - trace the ray into that object (if it is transparent)
}
}
#endif
}
Final_Colour += Total_Colour;
ticket.subsurfaceRecursionDepth--;
}
} // end of namespace
|