File: tracepixel.cpp

package info (click to toggle)
povray 1%3A3.7.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 146,780 kB
  • sloc: cpp: 845,005; ansic: 122,118; sh: 34,206; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,387; cs: 879; awk: 590; perl: 245; xml: 95
file content (1251 lines) | stat: -rw-r--r-- 40,277 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
/*******************************************************************************
 * tracepixel.cpp
 *
 * This module implements the TracePixel class, which mostly pertains to
 * setting up the camera, the initial ray for each pixel rendered, and
 * calling TraceRay() for said pixels. It also contains focal blur code,
 * as this is part of camera and ray setup.
 *
 * ---------------------------------------------------------------------------
 * Persistence of Vision Ray Tracer ('POV-Ray') version 3.7.
 * Copyright 1991-2013 Persistence of Vision Raytracer Pty. Ltd.
 *
 * POV-Ray is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * POV-Ray is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * ---------------------------------------------------------------------------
 * POV-Ray is based on the popular DKB raytracer version 2.12.
 * DKBTrace was originally written by David K. Buck.
 * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
 * ---------------------------------------------------------------------------
 * $File: //depot/public/povray/3.x/source/backend/render/tracepixel.cpp $
 * $Revision: #1 $
 * $Change: 6069 $
 * $DateTime: 2013/11/06 11:59:40 $
 * $Author: chrisc $
 *******************************************************************************/

#include <vector>

#include <boost/thread.hpp>
#include <boost/scoped_array.hpp>

// frame.h must always be the first POV file included (pulls in platform config)
#include "backend/frame.h"
#include "backend/colour/colour.h"
#include "backend/math/vector.h"
#include "backend/math/chi2.h"
#include "backend/math/matrices.h"
#include "backend/render/trace.h"
#include "backend/render/tracepixel.h"
#include "backend/support/jitter.h"
#include "backend/texture/normal.h"
#include "backend/texture/pigment.h"

// this must be the last file included
#include "base/povdebug.h"

namespace pov
{

#ifdef DYNAMIC_HASHTABLE
extern unsigned short *hashTable; // GLOBAL VARIABLE
#else
extern ALIGN16 unsigned short hashTable[]; // GLOBAL VARIABLE
#endif

const int Grid1Size    = 4;
const int HexGrid2Size = 7;
const int HexGrid3Size = 19;
const int HexGrid4Size = 37;

// Grid size (n x n) used while jittering focal blur sub-pixel position.
const int SUB_PIXEL_GRID_SIZE = 16;

static const Vector2d Grid1[Grid1Size] =
{
	Vector2d(-0.25,  0.25),
	Vector2d( 0.25,  0.25),
	Vector2d(-0.25, -0.25),
	Vector2d( 0.25, -0.25)
};

static const DBL HexJitter2 = 0.144338;
static const int HexGrid2Samples[2] = { 7, 0 };
static const Vector2d HexGrid2[HexGrid2Size] =
{
	Vector2d(-0.288675,  0.000000),
	Vector2d( 0.000000,  0.000000),
	Vector2d( 0.288675,  0.000000),
	Vector2d(-0.144338,  0.250000),
	Vector2d(-0.144338, -0.250000),
	Vector2d( 0.144338,  0.250000),
	Vector2d( 0.144338, -0.250000)
};

static const DBL HexJitter3 = 0.096225;
static const int HexGrid3Samples[4] = { 7, 6, 6, 0 };
static const Vector2d HexGrid3[HexGrid3Size] =
{
	Vector2d(-0.192450,  0.333333),
	Vector2d(-0.192450, -0.333333),
	Vector2d( 0.192450,  0.333333),
	Vector2d( 0.192450, -0.333333),
	Vector2d( 0.384900,  0.000000),
	Vector2d(-0.384900,  0.000000),
	Vector2d( 0.000000,  0.000000),

	Vector2d( 0.000000,  0.333333),
	Vector2d( 0.000000, -0.333333),
	Vector2d(-0.288675,  0.166667),
	Vector2d(-0.288675, -0.166667),
	Vector2d( 0.288675,  0.166667),
	Vector2d( 0.288675, -0.166667),

	Vector2d(-0.096225,  0.166667),
	Vector2d(-0.096225, -0.166667),
	Vector2d( 0.096225,  0.166667),
	Vector2d( 0.096225, -0.166667),
	Vector2d(-0.192450,  0.000000),
	Vector2d( 0.192450,  0.000000)
};

static const DBL HexJitter4 = 0.0721688;
static const int HexGrid4Samples[9] = { 7, 6, 6, 4, 4, 4, 4, 2, 0 };
static const Vector2d HexGrid4[HexGrid4Size] =
{
	Vector2d( 0.000000,  0.000000),
	Vector2d(-0.216506,  0.375000),
	Vector2d( 0.216506, -0.375000),
	Vector2d(-0.216506, -0.375000),
	Vector2d( 0.216506,  0.375000),
	Vector2d(-0.433013,  0.000000),
	Vector2d( 0.433013,  0.000000),

	Vector2d(-0.144338,  0.250000),
	Vector2d( 0.144338, -0.250000),
	Vector2d(-0.144338, -0.250000),
	Vector2d( 0.144338,  0.250000),
	Vector2d(-0.288675,  0.000000),
	Vector2d( 0.288675,  0.000000),

	Vector2d(-0.072169,  0.125000),
	Vector2d( 0.072169, -0.125000),
	Vector2d(-0.072169, -0.125000),
	Vector2d( 0.072169,  0.125000),
	Vector2d(-0.144338,  0.000000),
	Vector2d( 0.144338,  0.000000),

	Vector2d(-0.360844,  0.125000),
	Vector2d(-0.360844, -0.125000),
	Vector2d( 0.360844,  0.125000),
	Vector2d( 0.360844, -0.125000),

	Vector2d(-0.288675,  0.250000),
	Vector2d(-0.288675, -0.250000),
	Vector2d( 0.288675,  0.250000),
	Vector2d( 0.288675, -0.250000),

	Vector2d(-0.072169,  0.375000),
	Vector2d(-0.072169, -0.375000),
	Vector2d( 0.072169,  0.375000),
	Vector2d( 0.072169, -0.375000),

	Vector2d(-0.216506,  0.125000),
	Vector2d(-0.216506, -0.125000),
	Vector2d( 0.216506,  0.125000),
	Vector2d( 0.216506, -0.125000),

	Vector2d( 0.000000,  0.250000),
	Vector2d( 0.000000, -0.250000),
};

inline int PseudoRandom(int v)
{
	return int(hashTable[int(v & 0x0fff)]);
}

TracePixel::TracePixel(ViewData *vd, TraceThreadData *td, unsigned int mtl, DBL adcb, unsigned int qf,
                       CooperateFunctor& cf, MediaFunctor& mf, RadiosityFunctor& af, bool pt) :
                       Trace(vd->GetSceneData(), td, qf, cf, mf, af),
                       sceneData(vd->GetSceneData()),
                       threadData(td),
                       focalBlurData(NULL),
                       maxTraceLevel(mtl),
                       adcBailout(adcb),
                       pretrace(pt)
{
	SetupCamera(vd->GetCamera());
}

TracePixel::~TracePixel()
{
	if(focalBlurData != NULL)
		delete focalBlurData;
}

void TracePixel::SetupCamera(const Camera& cam)
{
	bool normalise = false;
	camera = cam;
	useFocalBlur = false;
	precomputeContainingInteriors = true;
	cameraDirection = Vector3d(camera.Direction);
	cameraRight = Vector3d(camera.Right);
	cameraUp =  Vector3d(camera.Up);
	cameraLocation =  Vector3d(camera.Location);
	aspectRatio = 4.0 / 3.0;
	VLength(cameraLengthRight, *cameraRight);
	VLength(cameraLengthUp, *cameraUp);

	switch(camera.Type)
	{
		case CYL_1_CAMERA:
		case CYL_3_CAMERA:
			aspectRatio = cameraLengthUp;
			normalise = true;
			break;
		case CYL_2_CAMERA:
		case CYL_4_CAMERA:
			aspectRatio = cameraLengthRight;
			normalise = true;
			break;
		case ULTRA_WIDE_ANGLE_CAMERA:
			aspectRatio = cameraLengthUp / cameraLengthRight;
			normalise = true;
			break;
		case OMNIMAX_CAMERA:
		case FISHEYE_CAMERA:
			aspectRatio = cameraLengthRight / cameraLengthUp;
			normalise = true;
			break;
		default:
			aspectRatio = cameraLengthRight / cameraLengthUp;
			break;
	}

	if(normalise == true)
	{
		cameraRight.normalize();
		cameraUp.normalize();
		cameraDirection.normalize();
	}

	if(focalBlurData != NULL)
	{
		delete focalBlurData;
		focalBlurData = NULL;
	}

	// TODO: there is little point in calculating the grid separately for each thread.
	// since all threads in a given render must have identical grids, we should calculate
	// it once, and then duplicate the calculated data when starting up the threads.
	// (Possibly we could store it in the view).
	useFocalBlur = ((camera.Aperture != 0.0) && (camera.Blur_Samples > 0));
	if(useFocalBlur == true)
		focalBlurData = new FocalBlurData(camera, threadData);
}

void TracePixel::operator()(DBL x, DBL y, DBL width, DBL height, Colour& colour)
{
	if(useFocalBlur == false)
	{
		colour.clear();
		int numTraced = 0;
		for (size_t rayno = 0; rayno < camera.Rays_Per_Pixel; rayno++)
		{
			Ray ray;

			if (CreateCameraRay(ray, x, y, width, height, rayno) == true)
			{
				Colour col;

				Trace::TraceTicket ticket(maxTraceLevel, adcBailout, sceneData->outputAlpha);
				TraceRay(ray, col, 1.0, ticket, false, camera.Max_Ray_Distance);
				colour += col;
				numTraced++;
			}
		}
		if (numTraced)
			colour /= (DBL) numTraced;
		else
			colour.transm() = 1.0;
	}
	else
		TraceRayWithFocalBlur(colour, x, y, width, height);
}

bool TracePixel::CreateCameraRay(Ray& ray, DBL x, DBL y, DBL width, DBL height, size_t ray_number)
{
	DBL x0 = 0.0, y0 = 0.0;
	DBL cx, sx, cy, sy, ty, rad, phi;
	VECTOR V1;
	TRANSFORM Trans;

	// Move to center of pixel
	x += 0.5;
	y -= 0.5;

	// Set ray flags
	ray.SetFlags(Ray::PrimaryRay, false, false, false, false, pretrace);

	// Create primary ray according to the camera used.
	Assign_Vector(ray.Origin, *cameraLocation);

	switch(camera.Type)
	{
		// Perspective projection (Pinhole camera; POV standard).
		case PERSPECTIVE_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			VLinComb3(ray.Direction, 1.0, *cameraDirection, x0, *cameraRight, y0, *cameraUp);

			// Do focal blurring (by Dan Farmer).
			if(useFocalBlur)
			{
				JitterCameraRay(ray, x, y, ray_number);
				InitRayContainerState(ray, true);
			}
			else
				InitRayContainerState(ray);
			break;

		// Orthographic projection.
		case ORTHOGRAPHIC_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			Assign_Vector(ray.Direction, *cameraDirection);

			VLinComb3(ray.Origin, 1.0, *cameraLocation, x0, *cameraRight, y0, *cameraUp);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray, true);
			break;

		// Fisheye camera.
		case FISHEYE_CAMERA:
			// Convert the x coordinate to be a DBL from -1.0 to 1.0.
			x0 = 2.0 * x / width - 1.0;

			// Convert the y coordinate to be a DBL from -1.0 to 1.0.
			y0 = 2.0 * ((height - 1) - y) / height - 1.0;

			// This code would do what Warp wants
			x0 *= cameraLengthRight;
			y0 *= cameraLengthUp;

			rad = sqrt(x0 * x0 + y0 * y0);

			// If the pixel lies outside the unit circle no ray is traced.

			if(rad > 1.0)
				return false;

			if(rad == 0.0)
				phi = 0.0;
			else if(x0 < 0.0)
				phi = M_PI - asin(y0 / rad);
			else
				phi = asin(y0 / rad);

			// Get spherical coordinates.
			x0 = phi;

			// Set vertical angle to half viewing angle.
			y0 = rad * camera.Angle * M_PI_360;

			// Create primary ray.
			cx = cos(x0);  sx = sin(x0);
			cy = cos(y0);  sy = sin(y0);

			VLinComb3(ray.Direction, cx * sy, *cameraRight, sx * sy, *cameraUp, cy, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Omnimax camera.
		case OMNIMAX_CAMERA:
			// Convert the x coordinate to be a DBL from -1.0 to 1.0.
			x0 = 2.0 * x / width - 1.0;

			// Convert the y coordinate to be a DBL from -1.0 to 1.0.
			y0 = 2.0 * ((height - 1) - y) / height - 1.0;

			// Get polar coordinates.
			if(aspectRatio > 1.0)
			{
				if(aspectRatio > 1.283458)
				{
					x0 *= aspectRatio/1.283458;
					y0 = (y0-1.0)/1.283458 + 1.0;
				}
				else
					y0 = (y0-1.0)/aspectRatio + 1.0;
			}
			else
				y0 /= aspectRatio;

			rad = sqrt(x0 * x0 + y0 * y0);

			// If the pixel lies outside the unit circle no ray is traced.

			if(rad > 1.0)
				return false;

			if(rad == 0.0)
				phi = 0.0;
			else if (x0 < 0.0)
				phi = M_PI - asin(y0 / rad);
			else
				phi = asin(y0 / rad);

			// Get spherical coordinates.
			x0 = phi;

			y0 = 1.411269 * rad - 0.09439 * rad * rad * rad + 0.25674 * rad * rad * rad * rad * rad;

			cx = cos(x0);  sx = sin(x0);
			cy = cos(y0);  sy = sin(y0);

			// We can't see below 45 degrees under the projection axis.
			if (sx * sy < tan(135.0 * M_PI_180) * cy)
				return false;

			VLinComb3(ray.Direction, cx * sy, *cameraRight, sx * sy, *cameraUp, cy, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Panoramic camera from Graphic Gems III.
		case PANORAMIC_CAMERA:
			// Convert the x coordinate to be a DBL from 0.0 to 1.0.
			x0 = x / width;

			// Convert the y coordinate to be a DBL from -1.0 to 1.0.
			y0 = 2.0 * ((height - 1) - y) / height - 1.0;

			// Get cylindrical coordinates.
			x0 = (1.0 - x0) * M_PI;
			y0 = M_PI_2 * y0;

			cx = cos(x0);
			sx = sin(x0);

			if(fabs(M_PI_2 - fabs(y0)) < EPSILON)
			{
				if (y0 > 0.0)
					ty = BOUND_HUGE;
				else
					ty = - BOUND_HUGE;
			}
			else
				ty = tan(y0);

			// Create primary ray.
			VLinComb3(ray.Direction, cx, *cameraRight, ty, *cameraUp, sx, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Ultra wide angle camera written by Dan Farmer.
		case ULTRA_WIDE_ANGLE_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			x0 *= camera.Angle * M_PI_180; // NK 1998 - changed to M_PI_180
			// 1999 July 10 Bugfix - as per suggestion of Gerald K. Dobiasovsky
			// added aspectRatio
			y0 *= camera.Angle * aspectRatio * M_PI_180; // NK 1998 - changed to M_PI_180

			cx = cos(x0);  sx = sin(x0);
			cy = cos(y0);  sy = sin(y0);

			VLinComb3(ray.Direction, sx, *cameraRight, sy, *cameraUp, cx * cy, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Cylinder camera 1. Axis in "up" direction
		case CYL_1_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			x0 *= camera.Angle * M_PI_180;
			y0 *= aspectRatio;

			cx = cos(x0);
			sx = sin(x0);

			VLinComb3(ray.Direction, sx, *cameraRight, y0, *cameraUp, cx, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Cylinder camera 2. Axis in "right" direction
		case CYL_2_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			y0 *= camera.Angle * M_PI_180;
			x0 *= aspectRatio;

			cy = cos(y0);
			sy = sin(y0);

			VLinComb3(ray.Direction, x0, *cameraRight, sy, *cameraUp, cy, *cameraDirection);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		// Cylinder camera 3. Axis in "up" direction, orthogonal in "right"
		case CYL_3_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			x0 *= camera.Angle * M_PI_180;
			y0 *= aspectRatio;

			cx = cos(x0);
			sx = sin(x0);

			VLinComb2(ray.Direction, sx, *cameraRight, cx, *cameraDirection);

			VLinComb2(ray.Origin, 1.0, *cameraLocation, y0, *cameraUp);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray, true);
			break;

		// Cylinder camera 4. Axis in "right" direction, orthogonal in "up"
		case CYL_4_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// Create primary ray.
			y0 *= camera.Angle * M_PI_180;
			x0 *= aspectRatio;

			cy = cos(y0);
			sy = sin(y0);

			VLinComb2(ray.Direction, sy, *cameraUp, cy, *cameraDirection);

			VLinComb2(ray.Origin, 1.0, *cameraLocation, x0, *cameraRight);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray, true);
			break;

		// spherical camera: x is horizontal, y vertical, V_Angle - vertical FOV, H_Angle - horizontal FOV
		case SPHERICAL_CAMERA:
			// Convert the x coordinate to be a DBL from -0.5 to 0.5.
			x0 = x / width - 0.5;

			// Convert the y coordinate to be a DBL from -0.5 to 0.5.
			y0 = ((height - 1) - y) / height - 0.5;

			// get angle in radians
			y0 *= (camera.V_Angle / 360) * TWO_M_PI;
			x0 *= (camera.H_Angle / 360) * TWO_M_PI;

			// find latitude for y in 3D space
			Compute_Axis_Rotation_Transform(&Trans, *cameraRight, -y0);
			MTransPoint (V1, *cameraDirection, &Trans);

			// Now take V1 and find longitude based on x
			Compute_Axis_Rotation_Transform(&Trans, *cameraUp, x0);

			// Create primary ray.
			MTransPoint(ray.Direction, V1, &Trans);

			if(useFocalBlur)
				JitterCameraRay(ray, x, y, ray_number);

			InitRayContainerState(ray);
			break;

		case MESH_CAMERA:
			// in the case of the mesh camera, we don't want any pixel co-ordinates that are outside
			// the logical image boundaries (and particularly no negative ones), so we clip them here.
			x = max(0.0, min(x, width - 1.0));
			y = max(0.0, min(y, height - 1.0));

			// Note: while it does not make sense to use AA with distribution methods 0, 1, or 2, we don't prohibit it.
			// The same goes for jitter and a few other non-mesh-camera specific effects. This is primarily because
			// these methods convert the X and Y positions to indexes, and in doing so first converts them to integers;
			// hence any sub-pixel positioning information gets lost.
			if (camera.Face_Distribution_Method == 0)
			{
				// this is single or multiple rays per pixel, with each additional ray going to the next mesh
				// in the sequence in which they were declared. we already know there is at least as many meshes
				// as needed, so we don't check it here.
				const Mesh *mesh = static_cast<const Mesh *>(camera.Meshes[ray_number]);
				unsigned int numFaces = mesh->Data->Number_Of_Triangles;
				unsigned int faceIndex = ((unsigned int) y * (unsigned int) width + (unsigned int) x);

				// if it's outside the mesh, don't trace the ray.
				if (faceIndex >= numFaces)
					return false;

				// set the ray origin to the centriod of the triangle.
				const Mesh_Triangle_Struct& tr = mesh->Data->Triangles[faceIndex];
				ray.Origin[X] = (mesh->Data->Vertices[tr.P1][X] + mesh->Data->Vertices[tr.P2][X] + mesh->Data->Vertices[tr.P3][X]) / 3;
				ray.Origin[Y] = (mesh->Data->Vertices[tr.P1][Y] + mesh->Data->Vertices[tr.P2][Y] + mesh->Data->Vertices[tr.P3][Y]) / 3;
				ray.Origin[Z] = (mesh->Data->Vertices[tr.P1][Z] + mesh->Data->Vertices[tr.P2][Z] + mesh->Data->Vertices[tr.P3][Z]) / 3;

				// set the ray direction according to the normal of the face
				Assign_Vector(ray.Direction, mesh->Data->Normals[tr.Normal_Ind]);

				// we use the Z co-ordinate of the camera location to indicate how far, along
				// the ray's direction, we should move the ray's origin point. this allows the
				// ray origin to be set slightly above the face, for example.
				VEvaluateRay(ray.Origin, ray.Origin, camera.Location[Z], ray.Direction);

				// we use the Z component of the camera direction to indicate whether or not
				// we should invert the ray direction. if the Z component is less than 0 (or
				// actually -EPSILON), then we shoot the ray in the opposite direction.
				if (camera.Direction[Z] < -EPSILON)
					VScaleEq(ray.Direction, -1);

				// apply any transformations needed
				if (mesh->Trans)
				{
					MTransPoint (ray.Origin, ray.Origin, mesh->Trans);
					MTransNormal (ray.Direction, ray.Direction, mesh->Trans);
				}

				// we're done
				InitRayContainerState(ray);
			}
			else if (camera.Face_Distribution_Method == 1)
			{
				// this is 1:1 distribution across the summed meshes, potentially with multiple rays per pixel
				unsigned int numPixels = width * height;
				unsigned int numFaces = *camera.Mesh_Index.rbegin();
				unsigned int faceIndex = ((unsigned int) y * (unsigned int) width + (unsigned int) x);
				unsigned int lastOffset = 0;
				unsigned int meshNo;

				// for distribution method 1, we take the origin for e.g. pixel 3, ray #3 (ray_number == 2) from
				// the face at (width * height) * 2 + 3. i.e. we add width * height * ray_number to the calculated
				// index. this allows pixels to be calculated using the summed result of multiple faces.
				faceIndex += ray_number * numFaces;

				// if the face index falls outside the number of faces, return false so the pixel will not be traced.
				// note that this is not the same as tracing a black pixel, since TracePixel will take into account
				// the fact the ray was not shot and takes that into account when dividing the summed color.
				if (faceIndex >= numFaces)
					return false;

				// find the mesh that this face falls within
				for (meshNo = 0; meshNo < camera.Mesh_Index.size(); lastOffset = camera.Mesh_Index[meshNo++])
				{
					if (camera.Mesh_Index[meshNo] > faceIndex)
					{
						faceIndex -= lastOffset;
						const Mesh *mesh = static_cast<const Mesh *>(camera.Meshes[meshNo]);
						Mesh_Triangle_Struct& tr = mesh->Data->Triangles[faceIndex];

						// see comments for distribution method 0
						ray.Origin[X] = (mesh->Data->Vertices[tr.P1][X] + mesh->Data->Vertices[tr.P2][X] + mesh->Data->Vertices[tr.P3][X]) / 3;
						ray.Origin[Y] = (mesh->Data->Vertices[tr.P1][Y] + mesh->Data->Vertices[tr.P2][Y] + mesh->Data->Vertices[tr.P3][Y]) / 3;
						ray.Origin[Z] = (mesh->Data->Vertices[tr.P1][Z] + mesh->Data->Vertices[tr.P2][Z] + mesh->Data->Vertices[tr.P3][Z]) / 3;
						Assign_Vector(ray.Direction, mesh->Data->Normals[tr.Normal_Ind]);
						VEvaluateRay(ray.Origin, ray.Origin, camera.Location[Z], ray.Direction);
						if (camera.Direction[Z] < -EPSILON)
							VScaleEq(ray.Direction, -1);
						if (mesh->Trans)
						{
							MTransPoint (ray.Origin, ray.Origin, mesh->Trans);
							MTransNormal (ray.Direction, ray.Direction, mesh->Trans);
						}
						InitRayContainerState(ray);
						break;
					}
				}
				if (meshNo == camera.Mesh_Index.size())
					return false;
			}
			else if (camera.Face_Distribution_Method == 2)
			{
				// this is multiple logical cameras, placed side-by-size horizontally
				// currently, we ignore rays per pixel for this camera sub-type, and furthermore, we don't
				// sum the meshes: mesh #0 is the left-most camera, and mesh #n is the right-most (we don't
				// really care if the render width is not a multiple of the number of meshes).
				unsigned int meshNo = (unsigned int) (x / (width / camera.Meshes.size()));

				const Mesh *mesh = static_cast<const Mesh *>(camera.Meshes[meshNo]);
				unsigned int numFaces = mesh->Data->Number_Of_Triangles;
 				unsigned int faceIndex = ((unsigned int) y * (unsigned int) ((unsigned int) width / camera.Meshes.size()) + (unsigned int) x);

				// if it's outside the mesh, don't trace the ray.
				if (faceIndex >= numFaces)
					return false;

				// see comments for distribution method 0
				Mesh_Triangle_Struct& tr = mesh->Data->Triangles[faceIndex];
				ray.Origin[X] = (mesh->Data->Vertices[tr.P1][X] + mesh->Data->Vertices[tr.P2][X] + mesh->Data->Vertices[tr.P3][X]) / 3;
				ray.Origin[Y] = (mesh->Data->Vertices[tr.P1][Y] + mesh->Data->Vertices[tr.P2][Y] + mesh->Data->Vertices[tr.P3][Y]) / 3;
				ray.Origin[Z] = (mesh->Data->Vertices[tr.P1][Z] + mesh->Data->Vertices[tr.P2][Z] + mesh->Data->Vertices[tr.P3][Z]) / 3;
				Assign_Vector(ray.Direction, mesh->Data->Normals[tr.Normal_Ind]);
				VEvaluateRay(ray.Origin, ray.Origin, camera.Location[Z], ray.Direction);
				if (camera.Direction[Z] < -EPSILON)
					VScaleEq(ray.Direction, -1);
				if (mesh->Trans)
				{
					MTransPoint (ray.Origin, ray.Origin, mesh->Trans);
					MTransNormal (ray.Direction, ray.Direction, mesh->Trans);
				}
				InitRayContainerState(ray);
			}
			else if (camera.Face_Distribution_Method == 3)
			{
				// this is for texture baking: we need to use the UV co-ordinates to position the camera.
				// it can also be used for non-baking purposes of course; e.g. a mesh camera where the
				// number of faces does not equal the number of pixels. in that case, the UV map would
				// presumably have been constructed to scale the pixels evenly across all the faces.

				// convert X and Y into UV co-ordinates
				double u = (x - 0.5) / width;
				double v = 1.0 - (y + 0.5) / height;

				// now we need to find the first face that that those co-ordinates fall within.
				// NB while it is of course possible for multiple faces to match a single UV co-ordinate,
				// we don't need to care about that as in this case we are seeking the color of the pixel
				// in the UV map, rather than the other way around. Hence, the first match is good enough.
				bool found = false;
				const Mesh *mesh = static_cast<const Mesh *>(camera.Meshes[0]);
				unsigned int count = (mesh->Data->Number_Of_Triangles + 31) / 32;

				// a face potentially has the given UV co-ordinate if it is in both the U column and V column
				unsigned int *up = &camera.U_Xref[min((unsigned int) (u * 10), 9U)][0];
				unsigned int *vp = &camera.V_Xref[min((unsigned int) (v * 10), 9U)][0];

				for (unsigned int idx = 0, intersection = *vp & *up; idx < count && found == false; idx++, intersection = *++vp & *++up)
				{
					if (intersection != 0)
					{
						// there is at least one face that falls within the intersection of the two columns
						for (unsigned int bit = 0, mask = 1; bit < 32 && found == false; bit++, mask <<= 1)
						{
							if ((intersection & mask) != 0)
							{
								const Mesh_Triangle_Struct *tr(mesh->Data->Triangles + idx * 32 + bit);
								const double& P1u(mesh->Data->UVCoords[tr->UV1][U]);
								const double& P2u(mesh->Data->UVCoords[tr->UV2][U]);
								const double& P3u(mesh->Data->UVCoords[tr->UV3][U]);
								const double& P1v(mesh->Data->UVCoords[tr->UV1][V]);
								const double& P2v(mesh->Data->UVCoords[tr->UV2][V]);
								const double& P3v(mesh->Data->UVCoords[tr->UV3][V]);

								// derive the barycentric co-ordinates from the UV co-ords
								double scale = (P2u - P1u) * (P3v - P1v) - (P3u - P1u) * (P2v - P1v);
								double B1 = ((P2u - u) * (P3v - v) - (P3u - u) * (P2v - v)) / scale;
								double B2 = ((P3u - u) * (P1v - v) - (P1u - u) * (P3v - v)) / scale;
								double B3 = ((P1u - u) * (P2v - v) - (P2u - u) * (P1v - v)) / scale;

								// if it's not within the triangle, we try the next one
								if (B1 < 0 || B2 < 0 || B3 < 0)
									continue;

								// now all we need to do is convert the barycentric co-ordinates back to a point in 3d space which is on the surface of the face
								ray.Origin[X] = mesh->Data->Vertices[tr->P1][X] * B1 + mesh->Data->Vertices[tr->P2][X] * B2 + mesh->Data->Vertices[tr->P3][X] * B3;
								ray.Origin[Y] = mesh->Data->Vertices[tr->P1][Y] * B1 + mesh->Data->Vertices[tr->P2][Y] * B2 + mesh->Data->Vertices[tr->P3][Y] * B3;
								ray.Origin[Z] = mesh->Data->Vertices[tr->P1][Z] * B1 + mesh->Data->Vertices[tr->P2][Z] * B2 + mesh->Data->Vertices[tr->P3][Z] * B3;

								// we use the one normal for any location on the face, unless smooth is set
								Assign_Vector(ray.Direction, mesh->Data->Normals[tr->Normal_Ind]);
								if (camera.Smooth)
									mesh->Smooth_Mesh_Normal(ray.Direction, tr, ray.Origin);

								found = true;
								break;
							}
						}
					}
				}
				if (!found)
					return false;
				VEvaluateRay(ray.Origin, ray.Origin, camera.Location[Z], ray.Direction);
				if (camera.Direction[Z] < -EPSILON)
					VScaleEq(ray.Direction, -1);
				if (mesh->Trans)
				{
					MTransPoint (ray.Origin, ray.Origin, mesh->Trans);
					MTransNormal (ray.Direction, ray.Direction, mesh->Trans);
				}
				InitRayContainerState(ray);
			}
			break;

		default:
			throw POV_EXCEPTION_STRING("Unknown camera type in CreateCameraRay().");
	}

	if(camera.Tnormal != NULL)
	{
		VNormalize(ray.Direction, ray.Direction);
		Make_Vector(V1, x0, y0, 0.0);
		Perturb_Normal(ray.Direction, camera.Tnormal, V1, NULL, NULL, threadData);
	}

	VNormalize(ray.Direction, ray.Direction);

	return true;
}

void TracePixel::InitRayContainerState(Ray& ray, bool compute)
{
	if((compute == true) || (precomputeContainingInteriors == true)) // TODO - check this logic, in particular that of compute!
	{
		precomputeContainingInteriors = false;
		containingInteriors.clear();

		if(sceneData->boundingMethod == 2)
		{
			HasInteriorPointObjectCondition precond;
			ContainingInteriorsPointObjectCondition postcond(containingInteriors);
			BSPInsideCondFunctor ifn(Vector3d(ray.Origin), sceneData->objects, threadData, precond, postcond);

			mailbox.clear();
			(*sceneData->tree)(Vector3d(ray.Origin), ifn, mailbox);

			// test infinite objects
			for(vector<ObjectPtr>::iterator object = sceneData->objects.begin() + sceneData->numberOfFiniteObjects; object != sceneData->objects.end(); object++)
				if(((*object)->interior != NULL) && Inside_BBox(ray.Origin, (*object)->BBox) && (*object)->Inside(ray.Origin, threadData))
					containingInteriors.push_back((*object)->interior);
		}
		else if((sceneData->boundingMethod == 0) || (sceneData->boundingSlabs == NULL))
		{
			for(vector<ObjectPtr>::iterator object = sceneData->objects.begin(); object != sceneData->objects.end(); object++)
				if(((*object)->interior != NULL) && Inside_BBox(ray.Origin, (*object)->BBox) && (*object)->Inside(ray.Origin, threadData))
					containingInteriors.push_back((*object)->interior);
		}
		else
		{
			InitRayContainerStateTree(ray, sceneData->boundingSlabs);
		}
	}

	ray.AppendInteriors(containingInteriors);
}

/*****************************************************************************
*
* METHOD
*
*   InitRayContainerStateTree
*
* AUTHOR
*
*   Dieter Bayer
*
* DESCRIPTION
*
*   Step down the bounding box hierarchy and test for all node wether
*   the ray's origin is inside or not. If it's inside a node descend
*   further. If a leaf is reached and the ray's origin is inside the
*   leaf object insert the objects data into the ray's containing lists.
*
* CHANGES
*
*   Mar 1996 : Creation.
*
******************************************************************************/

void TracePixel::InitRayContainerStateTree(Ray& ray, BBOX_TREE *node)
{
	/* Check current node. */
	if(!Inside_BBox(ray.Origin, node->BBox))
		return;
	if(node->Entries == 0)
	{
		/* This is a leaf so test contained object. */
		ObjectPtr object = ObjectPtr(node->Node);
		if((object->interior != NULL) && object->Inside(ray.Origin, threadData))
			containingInteriors.push_back(object->interior);
	}
	else
	{
		/* This is a node containing leaves to be checked. */
		for(int i = 0; i < node->Entries; i++)
			InitRayContainerStateTree(ray, node->Node[i]);
	}
}

void TracePixel::TraceRayWithFocalBlur(Colour& colour, DBL x, DBL y, DBL width, DBL height)
{
	int nr;     // Number of current samples.
	int level;  // Index into number of samples list.
	int max_s;  // Number of samples to take before next confidence test.
	int dxi, dyi;
	int i;
	DBL dx, dy, n, randx, randy;
	Colour C, V1, S1, S2;
	int seed = int(x * 313.0 + 11.0) + int(y * 311.0 + 17.0);
	Ray ray;

	colour.clear();
	V1.clear();
	S1.clear();
	S2.clear();

	nr = 0;
	level = 0;

	do
	{
		// Trace number of rays given by the list Current_Number_Of_Samples[].
		max_s = 4;

		if(focalBlurData->Current_Number_Of_Samples != NULL)
		{
			if(focalBlurData->Current_Number_Of_Samples[level] > 0)
			{
				max_s = focalBlurData->Current_Number_Of_Samples[level];
				level++;
			}
		}

		for(i = 0; (i < max_s) && (nr < camera.Blur_Samples); i++)
		{
			// Choose sub-pixel location.
			dxi = PseudoRandom(seed + nr) % SUB_PIXEL_GRID_SIZE;
			dyi = PseudoRandom(seed + nr + 1) % SUB_PIXEL_GRID_SIZE;

			dx = (DBL)(2 * dxi + 1) / (DBL)(2 * SUB_PIXEL_GRID_SIZE) - 0.5;
			dy = (DBL)(2 * dyi + 1) / (DBL)(2 * SUB_PIXEL_GRID_SIZE) - 0.5;

			Jitter2d(dx, dy, randx, randy);

			// Add jitter to sub-pixel location.
			dx += (randx - 0.5) / (DBL)(SUB_PIXEL_GRID_SIZE);
			dy += (randy - 0.5) / (DBL)(SUB_PIXEL_GRID_SIZE);

			// remove interiors accumulated from previous iteration (if any)
			ray.ClearInteriors();

			// Create and trace ray.
			if(CreateCameraRay(ray, x + dx, y + dy, width, height, nr))
			{
				// Increase_Counter(stats[Number_Of_Samples]);

				C.clear();
				Trace::TraceTicket ticket(maxTraceLevel, adcBailout, sceneData->outputAlpha);
				TraceRay(ray, C, 1.0, ticket, false, camera.Max_Ray_Distance);

				colour += C;
			}
			else
				C = Colour(0.0, 0.0, 0.0, 0.0, 1.0);

			// Add color to color sum.

			S1[pRED]    += C[pRED];
			S1[pGREEN]  += C[pGREEN];
			S1[pBLUE]   += C[pBLUE];
			S1[pTRANSM] += C[pTRANSM];

			// Add color to squared color sum.

			S2[pRED]    += Sqr(C[pRED]);
			S2[pGREEN]  += Sqr(C[pGREEN]);
			S2[pBLUE]   += Sqr(C[pBLUE]);
			S2[pTRANSM] += Sqr(C[pTRANSM]);

			nr++;
		}

		// Get variance of samples.

		n = (DBL)nr;

		V1[pRED]    = (S2[pRED]    / n - Sqr(S1[pRED]    / n)) / n;
		V1[pGREEN]  = (S2[pGREEN]  / n - Sqr(S1[pGREEN]  / n)) / n;
		V1[pBLUE]   = (S2[pBLUE]   / n - Sqr(S1[pBLUE]   / n)) / n;
		V1[pTRANSM] = (S2[pTRANSM] / n - Sqr(S1[pTRANSM] / n)) / n;

		// Exit if samples are likely too be good enough.

		if((nr >= camera.Blur_Samples_Min) &&
		   (V1[pRED]  < focalBlurData->Sample_Threshold[nr - 1]) && (V1[pGREEN]  < focalBlurData->Sample_Threshold[nr - 1]) &&
		   (V1[pBLUE] < focalBlurData->Sample_Threshold[nr - 1]) && (V1[pTRANSM] < focalBlurData->Sample_Threshold[nr - 1]))
			break;
	}
	while(nr < camera.Blur_Samples);

	colour /= (DBL)nr;
}

void TracePixel::JitterCameraRay(Ray& ray, DBL x, DBL y, size_t ray_number)
{
	DBL xjit, yjit, xlen, ylen, r;
	VECTOR temp_xperp, temp_yperp, deflection;

	r = camera.Aperture * 0.5;

	Jitter2d(x, y, xjit, yjit);
	xjit *= focalBlurData->Max_Jitter * 2.0;
	yjit *= focalBlurData->Max_Jitter * 2.0;

	xlen = r * (focalBlurData->Sample_Grid[ray_number].x() + xjit);
	ylen = r * (focalBlurData->Sample_Grid[ray_number].y() + yjit);

	// Deflect the position of the eye by the size of the aperture, and in
	// a direction perpendicular to the current direction of view.

	VScale(temp_xperp, focalBlurData->XPerp, xlen);
	VScale(temp_yperp, focalBlurData->YPerp, ylen);

	VSub(deflection, temp_xperp, temp_yperp);

	VAdd(ray.Origin, camera.Location, deflection);

	// Deflect the direction of the ray in the opposite direction we deflected
	// the eye position.  This makes sure that we are looking at the same place
	// when the distance from the eye is equal to "Focal_Distance".

	VScale(ray.Direction, ray.Direction, focalBlurData->Focal_Distance);
	VSub(ray.Direction, ray.Direction, deflection);

	VNormalize(ray.Direction, ray.Direction);
}

TracePixel::FocalBlurData::FocalBlurData(const Camera& camera, TraceThreadData* threadData)
{
	// Create list of thresholds for confidence test.
	Sample_Threshold = new DBL[camera.Blur_Samples];
	if(camera.Blur_Samples > 1)
	{
		DBL T1 = camera.Variance / chdtri((DBL)(camera.Blur_Samples-1), camera.Confidence);
		for(int i = 0; i < camera.Blur_Samples; i++)
			Sample_Threshold[i] = T1 * chdtri((DBL)(i + 1), camera.Confidence);
	}
	else
		Sample_Threshold[0] = 0.0;

	// Create list of sample positions.
	Sample_Grid = new Vector2d[camera.Blur_Samples];

	if (camera.Bokeh)
	{
		Current_Number_Of_Samples = NULL;
		Max_Jitter = 0.5 / sqrt((DBL)camera.Blur_Samples);

		double weightSum = 0.0;
		double weightMax = 0.0;
		size_t tries = 0; // safeguard against infinite loop
		double max_tries = Sqr((double)camera.Blur_Samples);

		SequentialVector2dGeneratorPtr vgen(GetSubRandom2dGenerator(0, -0.5, 0.5, -0.5, 0.5));
		SequentialDoubleGeneratorPtr randgen(GetRandomDoubleGenerator(0.0, 1.0));
		for (int i = 0; i < camera.Blur_Samples; i++)
		{
			Vector2d v;
			Colour c;
			double weight;
			do
			{
				v = (*vgen)();
				Compute_Pigment(c, camera.Bokeh, *Vector3d(v.x() + 0.5, v.y() + 0.5, 0.0), NULL, NULL, threadData);
				weight = c.greyscale();
				weightSum += weight;
				weightMax = max(weightMax, weight);
				weight += tries / max_tries; // safeguard against infinite loops
				tries++;
			}
			while ((*randgen)() > weight);

			Sample_Grid[i] = v;
		}

		double weightAvg = weightSum/tries;

		// TODO - generate a warning if weightMax > 1.0, or weightAvg particularly low
	}
	else
	{

		// Choose sample list and the best standard grid to use.

		// Default is 4x4 standard grid.
		const Vector2d *Standard_Sample_Grid = Grid1;
		int Standard_Sample_Grid_Size = 4;
		Current_Number_Of_Samples = NULL;

		// Check for 37 samples hexgrid.
		if(camera.Blur_Samples >= HexGrid4Size)
		{
			Standard_Sample_Grid = HexGrid4;
			Standard_Sample_Grid_Size = HexGrid4Size;
			Current_Number_Of_Samples = HexGrid4Samples;
		}
		// Check for 19 samples hexgrid.
		else if(camera.Blur_Samples >= HexGrid3Size)
		{
			Standard_Sample_Grid = HexGrid3;
			Standard_Sample_Grid_Size = HexGrid3Size;
			Current_Number_Of_Samples = HexGrid3Samples;
		}
		// Check for 7 samples hexgrid.
		else if(camera.Blur_Samples >= HexGrid2Size)
		{
			Standard_Sample_Grid = HexGrid2;
			Standard_Sample_Grid_Size = HexGrid2Size;
			Current_Number_Of_Samples = HexGrid2Samples;
		}

		// Get max. jitter.
		switch(camera.Blur_Samples)
		{
			case HexGrid2Size:
				Max_Jitter = HexJitter2;
				break;
			case HexGrid3Size:
				Max_Jitter = HexJitter3;
				break;
			case HexGrid4Size:
				Max_Jitter = HexJitter4;
				break;
			default:
				Max_Jitter = 0.5 / sqrt((DBL)camera.Blur_Samples);
				break;
		}

		// Copy standard grid to sample grid.
		for(int i = 0; i < min(Standard_Sample_Grid_Size, camera.Blur_Samples); i++)
			Sample_Grid[i] = Standard_Sample_Grid[i];

		// Choose remaining samples from a uniform grid to get "best" coverage.
		if(camera.Blur_Samples > Standard_Sample_Grid_Size)
		{
			// Get sub-pixel grid size (I want it to be odd).
			double minGridRadius = sqrt(camera.Blur_Samples / M_PI);
			int Grid_Size = 2 * (int)ceil(minGridRadius) + 1;

			// Allocate temporary grid.
			boost::scoped_array<char> Grid_Data (new char [Grid_Size * Grid_Size]);
			char *p = Grid_Data.get();
			memset(p, 0, Grid_Size * Grid_Size);
			vector<char *> Grid(Grid_Size);
			for(int i = 0; i < Grid_Size; i++, p += Grid_Size)
				Grid[i] = p;

			// Mark sub-pixels already covered.
			for(int i = 0; i < Standard_Sample_Grid_Size; i++)
			{
				int xi = (int)((Sample_Grid[i].x() + 0.5) * (DBL)Grid_Size);
				int yi = (int)((Sample_Grid[i].y() + 0.5) * (DBL)Grid_Size);
				Grid[yi][xi]++;
			}

			size_t remain = camera.Blur_Samples * 10;
			SequentialVector2dGeneratorPtr randgen(GetSubRandomOnDiscGenerator(0, 0.5, remain));

			// Distribute remaining samples.
			for(int i = Standard_Sample_Grid_Size; i < camera.Blur_Samples; i++)
			{
				Vector2d v = (*randgen)();
				int xi = min((int)((v.x() + 0.5) * (DBL)Grid_Size), Grid_Size - 1);
				int yi = min((int)((v.y() + 0.5) * (DBL)Grid_Size), Grid_Size - 1);
				remain --;
				while ((Grid[yi][xi] || (v.lengthSqr() > 0.25)) && (remain > camera.Blur_Samples - i))
				{
					v = (*randgen)();
					xi = min((int)((v.x() + 0.5) * (DBL)Grid_Size), Grid_Size - 1);
					yi = min((int)((v.y() + 0.5) * (DBL)Grid_Size), Grid_Size - 1);
					remain --;
				}

				Sample_Grid[i] = v;

				Grid[yi][xi]++;
			}
		}
	}

	// Calculate vectors perpendicular to the current ray
	// We're making a "+" (crosshair) on the film plane.

	// XPerp = vector perpendicular to y/z plane
	VCross(XPerp, camera.Up, camera.Direction);
	VNormalize(XPerp, XPerp);

	// YPerp = vector perpendicular to x/z plane
	VCross(YPerp, camera.Direction, XPerp);
	VNormalize(YPerp, YPerp);

	// Get adjusted distance to focal plane.
	DBL len;
	VLength(len, camera.Direction);
	Focal_Distance = camera.Focal_Distance / len;
}

TracePixel::FocalBlurData::~FocalBlurData()
{
	delete[] Sample_Grid;
	delete[] Sample_Threshold;
}

}