File: shapes.inc

package info (click to toggle)
povray 1%3A3.7.0.8-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 146,872 kB
  • sloc: cpp: 845,005; ansic: 122,118; sh: 34,206; pascal: 6,420; asm: 3,355; ada: 1,681; makefile: 1,387; cs: 879; awk: 590; perl: 245; xml: 95
file content (1041 lines) | stat: -rw-r--r-- 31,469 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
// This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

//    Persistence of Vision Ray Tracer version 3.5 Include File
//    File: shapes.inc
//    Last updated: April-2013
//    Description: This file contains macros for working with objects, as well
//    as macros for creating special objects, such as bevelled text,
//    height fields, and rounded shapes.

#ifndef( Shapes_Inc_Temp )
#declare Shapes_Inc_Temp = version;
#version 3.5;

#ifdef(View_POV_Include_Stack)
   #debug "including shapes.inc\n"
#end

#include "shapes_old.inc"
#include "consts.inc"
#include "transforms.inc"
#include "strings.inc"
#include "math.inc"

// These macros are just interfaces to the trace() function.
// They return values through their parameters:
// If an intersection is found, they return true and set
// OPt to the intersection point, and ONorm to the normal.
// Otherwise they return false, and do not modify OPt or ONorm.
#macro Isect(Pt, Dir, Obj, OPt)
   #local Norm = <0,0,0>;
   #local IPt = trace(Obj, Pt, Dir, Norm);
   #if (vlength(Norm) > 0)
      #declare OPt = IPt;
      #local Return=true;
   #else
      #local Return=false;
   #end
   (Return)
#end
#macro IsectN(Pt, Dir, Obj, OPt, ONorm)
   #local Norm = <0,0,0>;
   #local IPt = trace(Obj, Pt, Dir, Norm);
   #if (vlength(Norm) > 0)
      #declare OPt = IPt;
      #declare ONorm = Norm;
      #local Return=true;
   #else
      #local Return=false;
   #end
   (Return)
#end


// A shortcut for getting both min and max extents of an object
#macro Extents(Obj, Min, Max)
   #declare Min = min_extent(Obj);
   #declare Max = max_extent(Obj);
#end


// shortcuts for using the CenterTrans and AlignTrans
// macros with objects.
#macro Center_Object(Object, Axis)
   object {Object Center_Trans(Object, Axis)}
#end

#macro Align_Object(Object, Axis, Pt)
   object {Object Align_Trans(Object, Axis, Pt)}
#end


// A simple beveled text macro. The parameters are:
// Font: the name of the font file.
// String: the text string the text object is composed of.
// Cuts: the number of times excess material is cut off, to form the bevel.
//       More cuts will give smoother results, but take longer to render.
// BevelAng: the angle of the bevel.
// BevelDepth: the depth of the bevelled portion of the text.
// Depth: the total depth of the text object.
// Offset: the offset value for the text object.  Since the front faces of each
//         letter need to be in the same plane, z values are ignored.
#macro Bevelled_Text(Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge)
   #if(UseMerge)
      merge {
   #else
      union {
   #end
      text {ttf Font, String Depth-BevelDepth, Offset*(x+y)}
      intersection {
         #local J=0;
         #while(J<Cuts)
            #local A = 2*pi*J/(Cuts);
            #local CA = cos(radians(BevelAng));
            #local SA = sin(radians(BevelAng));
            text {ttf Font, String BevelDepth, Offset*(x+y)
               translate -z*(BevelDepth+J*0.0001)
               Shear_Trans(x, y, < cos(A)*SA, sin(A)*SA, CA>/CA)
            }
            #local J=J+1;
         #end
      }
      translate z*BevelDepth
   }
#end


// Constants used for the text macros
#declare Align_Left = 1;
#declare Align_Right = 2;
#declare Align_Center = 3;

/* Text_Space( Font, String, Size, Spacing )
Computes the width of a text string, including "white space". It
returns the advance widths of all n letters. Text_Space gives the
space a text or a glyph occupies in regard to its surroundings.

Font:    The font to use (see the documentation for the text object)
String:  The text for which we want to know the width
Size:    The size to which the text should be scaled
Spacing: The amount of space to add between the letters. */

#macro Text_Space(Font, String, Size, Spacing)
   #local TO = text {ttf Font concat("|",String,"|") 1 Spacing*x scale <Size,Size,1>}
   #local SO = text {ttf Font "||"                   1 Spacing*x scale <Size,Size,1>}
   ((max_extent(TO).x-min_extent(TO).x)-(max_extent(SO).x-min_extent(SO).x))
#end

/* Text_Width( Font, String, Size, Spacing )
Computes the width of a text string. It returns the advance widths
of the first n-1 letters, plus the glyph width of the last letter.
Text_Width gives the "fysical" width of the text and if you use
only one letter the "fysical" width of one glyph.

Font:    The font to use (see the documentation for the text object)
String:  The text for which we want to know the width
Size:    The size to which the text should be scaled
Spacing: The amount of space to add between the letters. */

#macro Text_Width(Font, String, Size, Spacing)
   #local TO = text {ttf Font String 1 Spacing*x scale <Size,Size,1>}
   (max_extent(TO).x-min_extent(TO).x)
#end

// Circle_Text author: Ron Parker
/* Circle_Text( Font, Text, Size, Spacing, Thickness, Radius, Inverted,
                Justification, Angle )
Creates a text object with the bottom (or top) of the character cells aligned
with all or part of a circle.  This macro should be used inside an object{...}
block.

         Font: The font to use (see the documentation for the text object)
         Text: The text string to be created
         Size: The height of the text string, as you would use to scale a
               standard text object
      Spacing: The amount of space to add between the letters.
    Thickness: The thickness of the letters (see the documentation for the
               text object)
       Radius: The radius of the circle along which the letters are aligned
     Inverted: If this parameter is nonzero, the tops of the letters will
               point toward the center of the circle.  Otherwise, the bottoms
               of the letters will do so.
Justification: One of the constants Align_Left, Align_Right, or Align_Center
        Angle: The point on the circle from which rendering will begin.  The
               +x direction is 0 and the +y direction is 90 (i.e. the angle
               increases anti-clockwise. */
 
#macro Circle_Text(F, T, S, Sp, Th, R, I, J, A) //----------------------------------------
object{ Circle_Text_Valigned( F, // Font, i.e.: "arial.ttf", 
                              T, // Text, i.e.: "POVRay",
                              S, // LetterSize,    i.e.:  0.75, 
                              Sp,// LetterSpacing, i.e.: 0.025,
                              Th,// Deepth,        i.e.: 15.00, 
                              R, // Radius,        i.e.: 1.25
                              I, // Inverted,      0 or 1
                              J, // Justification: Align_Left, Align_Right, or Align_Center  
                              A, // Circle angle
                              0  // Valign:  Rotates for vertical objects. 
                                 //   -90 = right side up, 90 = upside-down, 0 = horzontal.
                            ) }  //-------------------------------------------------------- 
#end //-------------------------------------------------------------- end macro Circle_Text

// Cicle_Text macro expanded by rotating the letters: 
#macro Circle_Text_Valigned( F, // Font, i.e.: "arial.ttf", 
                             T, // Text, i.e.: "POVRay",
                             S, // LetterSize,    i.e.:  0.75, 
                             Sp,// LetterSpacing, i.e.: 0.025,
                             Th,// Deepth,        i.e.: 15.00, 
                             R, // Radius,        i.e.: 1.25
                             I, // Inverted,      0 or 1
                             J, // Justification: Align_Left, Align_Right, or Align_Center  
                             A, // Circle angle
                             Valign// Valign:  Rotates the letters. -90 = right side up, 90 = upside-down, 0 = horzontal.
                           ) //----------------------------------------------------------------------------------------------  
   #local FW = Text_Width(F, T, S, Sp);
   #local TO = text {ttf F T 1 0 scale<S, S, 1>}
   #local TH = max_extent(TO).y;
   #local C = array[strlen(T)]
   #if(FW > 2*pi*R)
      #error concat("\n\n**** Text string \"", T, "\" is too long for a circle of the specified radius.\n\n\n")
   #end
   #local AW = -FW*180/pi/R;
   #local SA = A;
   #local EA = A + AW;
   #if(((J = Align_Right) & !I)|((J = Align_Left) & I))
      #local SA = A - AW;
      #local EA = A;
   #else
      #if(J = Align_Center)
         #local SA = A - AW/2;
         #local EA = A + AW/2;
      #end
   #end

   #local CI = 1;
   #while(CI <= strlen(T))
      #local OE = Text_Width(F, substr(T,CI,1), S, Sp);
      #local LW = Text_Width(F, substr(T,1,CI), S, Sp) - OE;
      #local LA = SA + AW*LW/FW + OE/2/FW*AW;
      #if(I)
         #local LA = EA - (LA - SA);
      #end
      #local TO = text {ttf F substr(T, CI, 1) Th 0 scale<S,S,1> rotate x*Valign}
      #if(I)
         #local C[CI-1] =
         object {TO
            rotate 180*z
            translate <OE/2, TH, 0>
            rotate -90*z
            translate R*x
            rotate LA*z
         }
      #else
         #local C[CI-1] =
         object {TO
            translate -OE/2*x
            rotate -90*z
            translate R*x
            rotate LA*z
         }
      #end
      #local CI = CI + 1;
   #end

   // Create the final object, a union of individual text object letters.
   union {
      #local CI=0;
      #while(CI < strlen(T))
         object {C[CI]}
         #local CI = CI + 1;
      #end
   }
// --------------------------------------------------------------------------------------
#end// of macro --------------------------------------------- end of macro Circle_Text_Valigned


#macro Wedge(Angle)
   #local A = clamp(Angle, 0, 360);
   #if(A < 180)
      difference {
         plane {-x, 0}
         plane {-x, 0 rotate y*A}
      }
   #else
      #if(A = 180)
         plane {-x, 0}
      #else
         intersection {
            plane {x, 0}
            plane {-x, 0 rotate y*A}
            inverse
         }
      #end
   #end
#end


#macro Spheroid(Center, Radius)
   sphere { 0, 1 scale Radius translate Center }
#end


#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)
   #local CP = 2/MinorControl;
   #local RP = 2/MajorControl;
   isosurface {
      function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }
      threshold 0
      contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}
      #if(MaxGradient >= 1)
         max_gradient MaxGradient
      #else
         evaluate 1, 10, 0.1
      #end
      accuracy Accuracy
   }
#end


// Supercone author: Juha Nieminen
// A cone object where each end is an ellipse, you specify two radii
// for each end.
// SuperCone function: (x^2/a^2+y^2/b^2-1)*(1-z) + (x^2/c^2+y^2/d^2-1)*z = 0
//
// camera { location <6,5,-10> look_at 0 angle 35 }
// light_source { <100,100,-20>,1 }
// plane { y,-1.5 pigment { checker rgb 1, rgb .5 } }
// object { SuperCone(<0,-1.5,0>,1,2, <0,1.5,0>,1,.5)
//     pigment { rgb x } finish { specular .5 }
// }
#macro Supercone(PtA, A, B, PtB, C, D)
   intersection {
      quartic {
         <0, 0,  0,  0,  0,  0,  0,  B*B-2*B*D+D*D, 2*(B*D-B*B), B*B,
         0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0, A*A-2*A*C+C*C, 2*(A*C-A*A), A*A, 0,  0,  0,  0,
         -(A*A-2*A*C+C*C)*(B*B-2*B*D+D*D),
         -(2*((B*D-B*B)*(A*A-2*A*C+C*C)+(A*C-A*A)*(B*B-2*B*D+D*D))),
         -(B*B*(A*A-2*A*C+C*C)+4*(A*C-A*A)*(B*D-B*B)+A*A*(B*B-2*B*D+D*D)),
         -(2*(B*B*(A*C-A*A)+A*A*(B*D-B*B))), -A*A*B*B>
         sturm
      }
      cylinder {0, z, max(max(abs(A), abs(B)), max(abs(C), abs(D)))}

      bounded_by {cone {0, max(abs(A), abs(B)), z, max(abs(C), abs(D))}}

      #local Dirv = PtB - PtA;
      scale <1,1,vlength(Dirv)>
      #local Dirv = vnormalize(Dirv);
      #if(vlength(Dirv-<0,0,-1>)=0) scale <1,1,-1>
      #else Reorient_Trans(z, Dirv)
      #end
      translate PtA
   }
#end


// Connect two spheres with a cylinder.
// Derived from Connect() macro by John VanSickle
#macro Connect_Spheres(PtA, RadiusA, PtB, RadiusB)
   #local Axis = PtB - PtA;
   #local RadDif = RadiusA - RadiusB;
   #local Len = VDist(PtA, PtB);
   #local D2 = sqrt(f_sqr(Len) - f_sqr(RadDif));

   cone {
      PtA + Axis/Len*RadDif*RadiusA/Len, RadiusA*D2/Len,
      PtB + Axis/Len*RadDif*RadiusB/Len, RadiusB*D2/Len
   }
#end


#macro Wire_Box_Union(A, B, WireRadius)
   Wire_Box(A, B, WireRadius, no)
#end
#macro Wire_Box_Merge(A, B, WireRadius)
   Wire_Box(A, B, WireRadius, yes)
#end
#macro Wire_Box(A, B, WireRadius, UseMerge)
   #local AA = <min(A.x, B.x), min(A.y, B.y), min(A.z, B.z)>;
   #local BB = <max(A.x, B.x), max(A.y, B.y), max(A.z, B.z)>;

   #local Delta=abs(BB.x-AA.x)/2;
   #if (Delta<WireRadius)
      #warning "\nWire_Box() macro called with x-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x+Delta, AA.y, AA.z>;
      #local BB = <BB.x-Delta, BB.y, BB.z>;
   #else
      #local AA = <AA.x+WireRadius, AA.y, AA.z>;
      #local BB = <BB.x-WireRadius, BB.y, BB.z>;
   #end

   #local Delta=abs(BB.y-AA.y)/2;
   #if (Delta<WireRadius)
      #warning "\nWire_Box() macro called with y-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x, AA.y+Delta, AA.z>;
      #local BB = <BB.x, BB.y-Delta, BB.z>;
   #else
      #local AA = <AA.x, AA.y+WireRadius, AA.z>;
      #local BB = <BB.x, BB.y-WireRadius, BB.z>;
   #end

   #local Delta=abs(BB.z-AA.z)/2;
   #if (Delta<WireRadius)
      #warning "\nWire_Box() macro called with z-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x, AA.y, AA.z+Delta>;
      #local BB = <BB.x, BB.y, BB.z-Delta>;
   #else
      #local AA = <AA.x, AA.y, AA.z+WireRadius>;
      #local BB = <BB.x, BB.y, BB.z-WireRadius>;
   #end

   #local LBF = AA;
   #local RBF = < BB.x, AA.y, AA.z>;
   #local RBB = < BB.x, AA.y, BB.z>;
   #local LBB = < AA.x, AA.y, BB.z>;
   #local LTF = < AA.x, BB.y, AA.z>;
   #local RTF = < BB.x, BB.y, AA.z>;
   #local RTB = BB;
   #local LTB = < AA.x, BB.y, BB.z>;

   #if(UseMerge)
      merge {
   #else
      union {
   #end
      sphere {LBF, WireRadius}

      #if (AA.x != BB.x)
         sphere {RBF, WireRadius}
      #end
      #if ((AA.x != BB.x) & (AA.z != BB.z))
         sphere {RBB, WireRadius}
      #end
      #if (AA.z != BB.z)
         sphere {LBB, WireRadius}
      #end

      #if (AA.y != BB.y)
         sphere {LTF, WireRadius}
      #end
      #if ((AA.x != BB.x) & (AA.y != BB.y))
         sphere {RTF, WireRadius}
      #end
      #if ((AA.x != BB.x) & (AA.y != BB.y) & (AA.z != BB.z))
         sphere {RTB, WireRadius}
      #end
      #if ((AA.y != BB.y) & (AA.z != BB.z))
         sphere {LTB, WireRadius}
      #end

      #if (AA.x != BB.x)
         cylinder {LBF, RBF, WireRadius}
         cylinder {LBB, RBB, WireRadius}
         cylinder {LTB, RTB, WireRadius}
         cylinder {LTF, RTF, WireRadius}
      #end

      #if (AA.y != BB.y)
         cylinder {LBF, LTF, WireRadius}
         cylinder {RBF, RTF, WireRadius}
         cylinder {RBB, RTB, WireRadius}
         cylinder {LBB, LTB, WireRadius}
      #end

      #if (AA.z != BB.z)
         cylinder {LTB, LTF, WireRadius}
         cylinder {LBB, LBF, WireRadius}
         cylinder {RTB, RTF, WireRadius}
         cylinder {RBB, RBF, WireRadius}
      #end
   }
#end

#macro Round_Box_Union(A, B, EdgeRadius)
   Round_Box(A, B, EdgeRadius, no)
#end
#macro Round_Box_Merge(A, B, EdgeRadius)
   Round_Box(A, B, EdgeRadius, yes)
#end
#macro Round_Box(A, B, EdgeRadius, UseMerge)
   #local AA = <min(A.x, B.x), min(A.y, B.y), min(A.z, B.z)>;
   #local BB = <max(A.x, B.x), max(A.y, B.y), max(A.z, B.z)>;

   #local Delta=abs(BB.x-AA.x)/2;
   #if (Delta<EdgeRadius)
      #warning "\nRound_Box() macro called with x-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x+Delta, AA.y, AA.z>;
      #local BB = <BB.x-Delta, BB.y, BB.z>;
   #else
      #local AA = <AA.x+EdgeRadius, AA.y, AA.z>;
      #local BB = <BB.x-EdgeRadius, BB.y, BB.z>;
   #end

   #local Delta=abs(BB.y-AA.y)/2;
   #if (Delta<EdgeRadius)
      #warning "\nRound_Box() macro called with y-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x, AA.y+Delta, AA.z>;
      #local BB = <BB.x, BB.y-Delta, BB.z>;
   #else
      #local AA = <AA.x, AA.y+EdgeRadius, AA.z>;
      #local BB = <BB.x, BB.y-EdgeRadius, BB.z>;
   #end

   #local Delta=abs(BB.z-AA.z)/2;
   #if (Delta<EdgeRadius)
      #warning "\nRound_Box() macro called with z-size < Radius,\nresults may not be as expected\n"

      #local AA = <AA.x, AA.y, AA.z+Delta>;
      #local BB = <BB.x, BB.y, BB.z-Delta>;
   #else
      #local AA = <AA.x, AA.y, AA.z+EdgeRadius>;
      #local BB = <BB.x, BB.y, BB.z-EdgeRadius>;
   #end

   #local LBF = AA;
   #local RBF = < BB.x, AA.y, AA.z>;
   #local RBB = < BB.x, AA.y, BB.z>;
   #local LBB = < AA.x, AA.y, BB.z>;
   #local LTF = < AA.x, BB.y, AA.z>;
   #local RTF = < BB.x, BB.y, AA.z>;
   #local RTB = BB;
   #local LTB = < AA.x, BB.y, BB.z>;

   #if(UseMerge)
      merge {
   #else
      union {
   #end
      sphere {LBF, EdgeRadius}

      #if (AA.x != BB.x)
         sphere {RBF, EdgeRadius}
      #end
      #if ((AA.x != BB.x) & (AA.z != BB.z))
         sphere {RBB, EdgeRadius}
      #end
      #if (AA.z != BB.z)
         sphere {LBB, EdgeRadius}
      #end

      #if (AA.y != BB.y)
         sphere {LTF, EdgeRadius}
      #end
      #if ((AA.x != BB.x) & (AA.y != BB.y))
         sphere {RTF, EdgeRadius}
      #end
      #if ((AA.x != BB.x) & (AA.y != BB.y) & (AA.z != BB.z))
         sphere {RTB, EdgeRadius}
      #end
      #if ((AA.y != BB.y) & (AA.z != BB.z))
         sphere {LTB, EdgeRadius}
      #end

      #if (AA.x != BB.x)
         cylinder {LBF, RBF, EdgeRadius}
         cylinder {LBB, RBB, EdgeRadius}
         cylinder {LTB, RTB, EdgeRadius}
         cylinder {LTF, RTF, EdgeRadius}
      #end

      #if (AA.y != BB.y)
         cylinder {LBF, LTF, EdgeRadius}
         cylinder {RBF, RTF, EdgeRadius}
         cylinder {RBB, RTB, EdgeRadius}
         cylinder {LBB, LTB, EdgeRadius}
      #end

      #if (AA.z != BB.z)
         cylinder {LTB, LTF, EdgeRadius}
         cylinder {LBB, LBF, EdgeRadius}
         cylinder {RTB, RTF, EdgeRadius}
         cylinder {RBB, RBF, EdgeRadius}
      #end

      box {AA-EdgeRadius*x, BB+EdgeRadius*x}
      box {AA-EdgeRadius*y, BB+EdgeRadius*y}
      box {AA-EdgeRadius*z, BB+EdgeRadius*z}
   }
#end

#macro Round_Cylinder_Union(A, B, Radius, EdgeRadius)
   Round_Cylinder(A, B, Radius, EdgeRadius, no)
#end
#macro Round_Cylinder_Merge(A, B, Radius, EdgeRadius)
   Round_Cylinder(A, B, Radius, EdgeRadius, yes)
#end
#macro Round_Cylinder(A, B, Radius, EdgeRadius, UseMerge)

   #if(UseMerge)
      merge {
   #else
      union {
   #end

      #if(Radius<EdgeRadius)
         #warning "\nRound_Cylinder() macro called with Radius < EdgeRadius,\nresults may not be as expected\n"

         #local AA = A + vnormalize(B - A)*Radius;
         #local BB = B + vnormalize(A - B)*Radius;

         cylinder {AA, BB, Radius}
         sphere {0, Radius translate AA }
         sphere {0, Radius translate BB }

      #else

         #local AA = A + vnormalize(B - A)*EdgeRadius;
         #local BB = B + vnormalize(A - B)*EdgeRadius;

         cylinder {A, B, Radius - EdgeRadius}
         cylinder {AA, BB, Radius}
         torus {Radius - EdgeRadius, EdgeRadius translate y*EdgeRadius
            Point_At_Trans(B - A)
            translate A
         }
         torus {Radius - EdgeRadius, EdgeRadius translate y*(vlength(A - B) - EdgeRadius)
            Point_At_Trans(B - A)
            translate A
         }

      #end
   }
#end


// Rounded cone with torus edges
// This shape will fit entirely within a cone given the same parameters.
#macro Round_Cone_Union(PtA, RadiusA, PtB, RadiusB, EdgeRadius)
   Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, no)
#end
#macro Round_Cone_Merge(PtA, RadiusA, PtB, RadiusB, EdgeRadius)
   Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, yes)
#end
#macro Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge)
   #if(min(RadiusA, RadiusB) < EdgeRadius)
     #warning "\nRound_Cone() macro called with Radius < EdgeRadius,\nresults may not be as expected\n"
   #end

   #if(RadiusA > RadiusB)
      #local RA = RadiusB;
      #local RB = RadiusA;
      #local PA = PtB;
      #local PB = PtA;
   #else
      #local RA = RadiusA;
      #local RB = RadiusB;
      #local PA = PtA;
      #local PB = PtB;
   #end

   #local Axis = vnormalize(PB - PA);
   #local Len = VDist(PA, PB);
   #local SA = atan2(RB - RA, Len);

   #if(UseMerge)
      merge {
   #else
      union {
   #end
      #local R1 = RA - EdgeRadius*tan(pi/4 - SA/2);
      #local R2 = RB - EdgeRadius/tan(pi/4 - SA/2);

      torus {R1, EdgeRadius
         Point_At_Trans(Axis) translate PA + Axis*EdgeRadius
      }
      torus {R2, EdgeRadius
         Point_At_Trans(Axis) translate PB - Axis*EdgeRadius
      }

      #local D1 = EdgeRadius - EdgeRadius*sin(SA);
      #local D2 = EdgeRadius + EdgeRadius*sin(SA);

      cone {
         PA + Axis*D1, R1 + EdgeRadius*cos(SA),
         PB - Axis*D2, R2 + EdgeRadius*cos(SA)
      }

      cone {PA, R1, PB, R2}
   }
#end


// Cones with spherical caps
// Sphere-capped cone object with spheres centered on end points.
// Derived from Connect() macro by John VanSickle
#macro Round_Cone2_Union(PtA, RadiusA, PtB, RadiusB)
   Round_Cone2(PtA, RadiusA, PtB, RadiusB, no)
#end
#macro Round_Cone2_Merge(PtA, RadiusA, PtB, RadiusB)
   Round_Cone2(PtA, RadiusA, PtB, RadiusB, yes)
#end
#macro Round_Cone2(PtA, RadiusA, PtB, RadiusB, UseMerge)
   #local Axis = PtB - PtA;
   #local RadDif = RadiusA - RadiusB;
   #local Len = VDist(PtA, PtB);

   #local D2 = f_sqr(Len) - f_sqr(RadDif);
   #if(D2<0)
     #error "Round_Cone2() macro called with parameters that can't be handled correctly"
   #end
   #local D2 = sqrt(D2);

   #if(UseMerge)
      merge {
   #else
      union {
   #end
      sphere {PtA, RadiusA}
      sphere {PtB, RadiusB}

      cone {
         PtA + Axis/Len*RadDif*RadiusA/Len, RadiusA*D2/Len,
         PtB + Axis/Len*RadDif*RadiusB/Len, RadiusB*D2/Len
      }
   }
#end

// Sphere-capped cone object with spheres moved and resized
// to fit ends of cone.
// The cone portion is identical to what you would get using
// a cone object with the same parameters, but the spheres are
// not centered on the endpoints of the cone, but are moved
// to give a smooth transition with the surface
#macro Round_Cone3_Union(PtA, RadiusA, PtB, RadiusB)
   Round_Cone3(PtA, RadiusA, PtB, RadiusB, no)
#end
#macro Round_Cone3_Merge(PtA, RadiusA, PtB, RadiusB)
   Round_Cone3(PtA, RadiusA, PtB, RadiusB, yes)
#end
#macro Round_Cone3(PtA, RadiusA, PtB, RadiusB, UseMerge)
   #local Axis = vnormalize(PtB - PtA);
   #local Len = VDist(PtA, PtB);
   #local SA = atan2(RadiusB - RadiusA, Len);

   #if(UseMerge)
      merge {
   #else
      union {
   #end
      cone {PtA, RadiusA, PtB, RadiusB}
      sphere {PtA + Axis*tan(SA)*RadiusA, RadiusA/cos(SA)}
      sphere {PtB + Axis*tan(SA)*RadiusB, RadiusB/cos(SA)}
   }
#end

// Two-triangle quad
//  A---B
//  |\  |
//  | \ |
//  |  \|
//  D---C
#macro Quad(A, B, C, D)
   triangle {A, B, C}
   triangle {A, C, D}
#end
#macro Smooth_Quad(A, NA, B, NB, C, NC, D, ND)
   smooth_triangle {A, NA, B, NB, C, NC}
   smooth_triangle {A, NA, C, NC, D, ND}
#end


// HF Macros author: Rune S. Johansen
// Optimizations by: Wlodzimierz ABX Skiba
// There are several HF macros in shapes.inc, which generate meshes in various shapes.
// See more information in the help file.

#macro HF_Square (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,MnExt,MxExt)
   #local WriteFile = (strlen(FileName) > 0);
   #local xRes = (< 1, 1>*Res).x;
   #local zRes = (< 1, 1>*Res).y;
   #local UVheight  = (UseUVheight=1);
   #local UVtex = (UseUVtexture=1);
   #local Smooth = (Smooth=1);

   #local Ext = MxExt-MnExt;

   // CALCULTION OF POINT GRID
   // Note that the grid extents one element further in all directions
   // if a smooth heightfield is calculated. This is to ensure correct
   // normal calculation later on.
   #local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
   #local J = 1-Smooth;
   #while (J<xRes+1+Smooth)
      #local K = 1-Smooth;
      #while (K<zRes+1+Smooth)

         #local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;

         #local P  = (UV*Ext*<1,0,1> + MnExt);

         #if (UVheight)
            #local H = Function(UV.x, UV.z, 0);
         #else
            #local H = Function(P.x, P.y, P.z);
         #end

         #declare PArr[J][K] = P + H*Ext*y;

         #declare K = K+1;
      #end
      #declare J = J+1;
   #end

   HFCreate_()
#end

#macro HF_Sphere (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,Center,Radius,Depth)
   #local WriteFile = (strlen(FileName) > 0);
   #local xRes = (< 1, 1>*Res).x;
   #local zRes = (< 1, 1>*Res).y;
   #local UVheight  = (UseUVheight=1);
   #local UVtex = (UseUVtexture=1);
   #local Smooth = (Smooth=1);

   // CALCULTION OF POINT GRID
   // Note that the grid extents one element further in all directions
   // if a smooth heightfield is calculated. This is to ensure correct
   // normal calculation later on.
   #local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
   #local J = 1-Smooth;
   #while (J<xRes+1+Smooth)
      #local K = 1-Smooth;
      #while (K<zRes+1+Smooth)

         #local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;

         #local Dir = vrotate( vrotate(x,(-89.9999+179.9998*UV.z)*z), -360*UV.x*y );
         #local P  = Center + Dir * Radius;

         #if (UVheight)
            #local H = Function(UV.x, UV.z, 0);
         #else
            #local H = Function(P.x, P.y, P.z);
         #end

         #declare PArr[J][K] = P + H*Dir*Depth;

         #declare K = K+1;
      #end
      #declare J = J+1;
   #end

   HFCreate_()
#end

#macro HF_Cylinder (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,EndA,EndB,Radius,Depth)
   #local WriteFile = (strlen(FileName) > 0);
   #local xRes = (< 1, 1>*Res).x;
   #local zRes = (< 1, 1>*Res).y;
   #local UVheight  = (UseUVheight=1);
   #local UVtex = (UseUVtexture=1);
   #local Smooth = (Smooth=1);

   #local Axis = EndB-EndA;
   #local Base = VPerp_To_Vector(Axis);

   // CALCULTION OF POINT GRID
   // Note that the grid extents one element further in all directions
   // if a smooth heightfield is calculated. This is to ensure correct
   // normal calculation later on.
   #local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
   #local J = 1-Smooth;
   #while (J<xRes+1+Smooth)
      #local K = 1-Smooth;
      #while (K<zRes+1+Smooth)

         #local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;

         #local Dir = vaxis_rotate(Base,Axis,-360*UV.x-90);
         #local P  = EndA+Axis*UV.z+Dir*Radius;

         #if (UVheight)
            #local H = Function(UV.x, UV.z, 0);
         #else
            #local H = Function(P.x, P.y, P.z);
         #end

         #declare PArr[J][K] = P + H*Dir*Depth;

         #declare K = K+1;
      #end
      #declare J = J+1;
   #end

   HFCreate_()
#end

#macro HF_Torus (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,Major,Minor,Depth)
   #local WriteFile = (strlen(FileName) > 0);
   #local xRes = (< 1, 1>*Res).x;
   #local zRes = (< 1, 1>*Res).y;
   #local UVheight  = (UseUVheight=1);
   #local UVtex = (UseUVtexture=1);
   #local Smooth = (Smooth=1);

   // CALCULTION OF POINT GRID
   // Note that the grid extents one element further in all directions
   // if a smooth heightfield is calculated. This is to ensure correct
   // normal calculation later on.
   #local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
   #local J = 1-Smooth;
   #while (J<xRes+1+Smooth)
      #local K = 1-Smooth;
      #while (K<zRes+1+Smooth)

         #local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;

         #local Dir = vrotate(vrotate(-x,360*UV.z*z),-360*UV.x*y);
         #local P  = vrotate(Major*x,-360*UV.x*y)+Dir*Minor;

         #if (UVheight)
            #local H = Function(UV.x, UV.z, 0);
         #else
            #local H = Function(P.x, P.y, P.z);
         #end

         #declare PArr[J][K] = P + H*Dir*Depth;

         #declare K = K+1;
      #end
      #declare J = J+1;
   #end

   HFCreate_()
#end

// Internal macro - not intended to be called by user.
#macro HFCreate_ ()

   #if(WriteFile)
      #fopen _HFMACRO_OUTPUT_FILE FileName write
      #write(_HFMACRO_OUTPUT_FILE,"mesh2 {\nvertex_vectors {\n",xRes*zRes,
   #else
      mesh2 {vertex_vectors{xRes*zRes,
   #end

   #local J = 1;
   #while (J<=xRes)
      #local K = 1;
      #while (K<=zRes)
        #if(WriteFile)
          ",\n",PArr[J][K],
        #else
          PArr[J][K],
        #end
         #declare K = K+1;
      #end
      #declare J = J+1;
   #end

   #if(WriteFile)
      "\n}\n")
   #else
      }
   #end

   #if (Smooth)
      #if(WriteFile)
         #write(_HFMACRO_OUTPUT_FILE,"normal_vectors {\n",xRes*zRes,
      #else
         normal_vectors{xRes*zRes,
      #end

      // CALCULATION OF NORMAL VECTOR
      // We don't vnormalize the vectors from the current center point
      // to its neightbor points because we want a weighted average
      // where bigger areas contribute more. This also means that the
      // center point can be left out completely of the calculations:
      #local J = 1;
      #while (J<=xRes)
         #local K = 1;
         #while (K<=zRes)
           #if(WriteFile)
             ",\n",vnormalize(vcross(PArr[J][K+1]-PArr[J][K-1], PArr[J+1][K]-PArr[J-1][K])),
           #else
             vnormalize(vcross(PArr[J][K+1]-PArr[J][K-1], PArr[J+1][K]-PArr[J-1][K])),
           #end
            #declare K = K+1;
         #end
         #declare J = J+1;
      #end
      #if(WriteFile)
         "\n}\n")
      #else
         }
      #end
   #end

   #if (UVtex)
      #if(WriteFile)
         #write(_HFMACRO_OUTPUT_FILE,"uv_vectors {\n",xRes*zRes,
      #else
         uv_vectors{xRes*zRes,
      #end
      #local J = 1;
      #while (J<=xRes)
         #local K = 1;
         #while (K<=zRes)
           #if(WriteFile)
             ",\n",<(J-1)/(xRes-1),(K-1)/(zRes-1)>,
           #else
             <(J-1)/(xRes-1),(K-1)/(zRes-1)>,
           #end
            #declare K = K+1;
         #end
         #declare J = J+1;
      #end
      #if(WriteFile)
         "\n}\n")
      #else
         }
      #end
   #end

   #if(WriteFile)
      #write(_HFMACRO_OUTPUT_FILE,"face_indices {\n",(xRes-1)*(zRes-1)*2,
   #else
      face_indices{(xRes-1)*(zRes-1)*2,
   #end
   #local F1 = <0,zRes,zRes+1>;
   #local F2 = <0,zRes+1,1>;
   #local J = 0;
   #while (J<xRes-1)
      #local A = J*zRes;
      #while (mod(A+1,zRes))
        #if(WriteFile)
          ",\n",F1+A,",\n",F2+A,
        #else
          F1+A, F2+A,
        #end
         #local A = A+1;
      #end
      #local J = J+1;
   #end
   #if (UVtex)
      #if(WriteFile)
         "\n}\nuv_mapping\n}")
         #fclose _HFMACRO_OUTPUT_FILE
      #else
         } uv_mapping}
      #end
   #else
      #if(WriteFile)
         "\n}\n}")
         #fclose _HFMACRO_OUTPUT_FILE
      #else
         }}
      #end
   #end

#end

#version Shapes_Inc_Temp;
#end//shapes.inc