1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<!-- This file copyright Persistence of Vision Raytracer Pty. Ltd. 2009-2011 -->
<html lang="en">
<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
<title>Reference Section 8</title>
<link rel="StyleSheet" href="povray.css" type="text/css">
<link rel="shortcut icon" href="favicon.ico">
<!-- NOTE: In order to help users find information about POV-Ray using web -->
<!-- search engines, we ask that you *not* let them index documentation -->
<!-- mirrors because effectively, when searching, users will get hundreds of -->
<!-- results containing the same information! For this reason, these meta tags -->
<!-- below disable archiving of this page by search engines. -->
<meta name="robots" content="noarchive">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="expires" content="0">
</head>
<body>
<div class="Page">
<!-- NavPanel Begin -->
<div class="NavPanel">
<table class="NavTable">
<tr>
<td class="FixedPanelHeading"><a title="3.8" href="#r3_8">Scene File Extras</a></td>
</tr>
<tr>
<td><div class="divh2"><strong><a title="3.8.1" href="#r3_8_1">Include Files</a></strong></div></td>
</tr>
<tr>
<td><div class="divh3"><a title="3.8.1.1" href="#r3_8_1_1">Main Files</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.1" href="#r3_8_1_1_1">Arrays.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.2" href="#r3_8_1_1_2">Chars.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.3" href="#r3_8_1_1_3">Colors.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.3.1" href="#r3_8_1_1_3_1">Predefined colors</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.3.2" href="#r3_8_1_1_3_2">Color macros</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.4" href="#r3_8_1_1_4">Colors ral.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.5" href="#r3_8_1_1_5">Consts.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.1" href="#r3_8_1_1_5_1">Vector constants</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.2" href="#r3_8_1_1_5_2">Map type constants</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.3" href="#r3_8_1_1_5_3">Interpolation type constants</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.4" href="#r3_8_1_1_5_4">Fog type constants</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.5" href="#r3_8_1_1_5_5">Focal blur hexgrid constants</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.6" href="#r3_8_1_1_5_6">IORs</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.7" href="#r3_8_1_1_5_7">Dispersion amounts</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.5.8" href="#r3_8_1_1_5_8">Scattering media type constants</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.6" href="#r3_8_1_1_6">Debug.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.7" href="#r3_8_1_1_7">Finish.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.8" href="#r3_8_1_1_8">Functions.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.1" href="#r3_8_1_1_8_1">Common Parameters</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.2" href="#r3_8_1_1_8_2">Cross Section Type</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.3" href="#r3_8_1_1_8_3">Field Strength</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.4" href="#r3_8_1_1_8_4">Field Limit</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.5" href="#r3_8_1_1_8_5">SOR Switch</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.6" href="#r3_8_1_1_8_6">SOR Offset</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.7" href="#r3_8_1_1_8_7">SOR Angle</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.8" href="#r3_8_1_1_8_8">Invert Isosurface</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.9" href="#r3_8_1_1_8_9">Internal Functions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.10" href="#r3_8_1_1_8_10">Pre defined functions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.8.11" href="#r3_8_1_1_8_11">Pattern functions</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.9" href="#r3_8_1_1_9">Glass.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.9.1" href="#r3_8_1_1_9_1">Glass colors (with transparency)</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.9.2" href="#r3_8_1_1_9_2">Glass colors (without transparency, for fade_color)</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.9.3" href="#r3_8_1_1_9_3">Glass finishes</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.9.4" href="#r3_8_1_1_9_4">Glass interiors</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.9.5" href="#r3_8_1_1_9_5">Glass interior macros</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.10" href="#r3_8_1_1_10">Golds.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.11" href="#r3_8_1_1_11">Logo.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.12" href="#r3_8_1_1_12">Makegrass.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.13" href="#r3_8_1_1_13">Math.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.13.1" href="#r3_8_1_1_13_1">Float functions and macros</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.13.2" href="#r3_8_1_1_13_2">Vector functions and macros</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.13.3" href="#r3_8_1_1_13_3">Vector Analysis</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.14" href="#r3_8_1_1_14">Meshmaker.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.15" href="#r3_8_1_1_15">Metals.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.16" href="#r3_8_1_1_16">Rad_def.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.17" href="#r3_8_1_1_17">Rand.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.17.1" href="#r3_8_1_1_17_1">Flat Distributions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.17.2" href="#r3_8_1_1_17_2">Other Distributions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.17.3" href="#r3_8_1_1_17_3">Continuous Symmetric Distributions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.17.4" href="#r3_8_1_1_17_4">Continuous Skewed Distributions</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.17.5" href="#r3_8_1_1_17_5">Discrete Distributions </a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.18" href="#r3_8_1_1_18">Screen.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.19" href="#r3_8_1_1_19">Shapes.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.19.1" href="#r3_8_1_1_19_1">The HF Macros</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.20" href="#r3_8_1_1_20">Shapes2.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.21" href="#r3_8_1_1_21">Shapes3.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.22" href="#r3_8_1_1_22">Shapesq.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.23" href="#r3_8_1_1_23">Skies.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.24" href="#r3_8_1_1_24">Stars.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.25" href="#r3_8_1_1_25">Stones.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.26" href="#r3_8_1_1_26">Stdinc.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.27" href="#r3_8_1_1_27">Strings.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.28" href="#r3_8_1_1_28">Sunpos.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.29" href="#r3_8_1_1_29">Textures.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.1" href="#r3_8_1_1_29_1">Stones</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.2" href="#r3_8_1_1_29_2">Skies</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.3" href="#r3_8_1_1_29_3">Woods</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.4" href="#r3_8_1_1_29_4">Glass</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.5" href="#r3_8_1_1_29_5">Metals</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.6" href="#r3_8_1_1_29_6">Special textures</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.1.29.7" href="#r3_8_1_1_29_7">Texture and pattern macros</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.30" href="#r3_8_1_1_30">Transforms.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.31" href="#r3_8_1_1_31">Woods.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.1.32" href="#r3_8_1_1_32">Woodmaps.inc</a></div></td>
</tr>
<tr>
<td><div class="divh3"><a title="3.8.1.2" href="#r3_8_1_2">Old Files</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.1" href="#r3_8_1_2_1">Glass_old.inc</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.2.1.1" href="#r3_8_1_2_1_1">Glass finishes</a></div></td>
</tr>
<tr>
<td><div class="divh5"><a title="3.8.1.2.1.2" href="#r3_8_1_2_1_2">Glass textures</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.2" href="#r3_8_1_2_2">Shapes_old.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.3" href="#r3_8_1_2_3">Stage1.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.4" href="#r3_8_1_2_4">Stdcam.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.5" href="#r3_8_1_2_5">Stones1.inc</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.2.6" href="#r3_8_1_2_6">Stones2.inc</a></div></td>
</tr>
<tr>
<td><div class="divh3"><a title="3.8.1.3" href="#r3_8_1_3">Other Files</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.3.1" href="#r3_8_1_3_1">Font Files</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.3.2" href="#r3_8_1_3_2">Color Map Files</a></div></td>
</tr>
<tr>
<td><div class="divh4"><a title="3.8.1.3.3" href="#r3_8_1_3_3">Image Files</a></div></td>
</tr>
<tr>
<td><div class="divh1"> </div></td>
</tr>
<tr>
<td><div class="divh1"> </div></td>
</tr>
</table>
</div>
<!-- NavPanel End -->
<div class="Content">
<table class="HeaderFooter" width="100%">
<tr>
<td colspan=5 align="left" class="HeaderFooter">
POV-Ray for Unix <strong class="HeaderFooter">version 3.8</strong>
</td>
</tr>
<tr >
<td colspan=5>
<hr align="right" width="70%">
</td>
</tr>
<tr>
<td width="30%"></td>
<td class="NavBar"><a href="index.html" title="The Front Door">Home</a></td>
<td class="NavBar"><a href="u1_0.html" title="Unix Table of Contents">POV-Ray for Unix</a></td>
<td class="NavBar"><a href="t2_0.html" title="Tutorial Table of Contents">POV-Ray Tutorial</a></td>
<td class="NavBar"><a href="r3_0.html" title="Reference Table of Contents">POV-Ray Reference</a></td>
</tr>
</table>
<a name="r3_8"></a>
<div class="content-level-h2" contains="Scene File Extras" id="r3_8">
<h2>3.8 Scene File Extras</h2>
<p>Quick Links:</p>
<ul>
<li><a href="r3_8.html#r3_8_1_1">Main Files</a></li>
<li><a href="r3_8.html#r3_8_1_2">Old Files</a></li>
<li><a href="r3_8.html#r3_8_1_3">Other Files</a></li>
</ul></div>
<a name="r3_8_1"></a>
<div class="content-level-h3" contains="Include Files" id="r3_8_1">
<h3>3.8.1 Include Files</h3>
<p>This section covers the <em>include files</em> that come with every distribution of POV-Ray. File location varies, so see your platform specific documentation for more information.</p></div>
<a name="r3_8_1_1"></a>
<div class="content-level-h4" contains="Main Files" id="r3_8_1_1">
<h4>3.8.1.1 Main Files</h4>
<p>The <em>main</em> include files in alphabetical order:</p></div>
<a name="r3_8_1_1_1"></a>
<div class="content-level-h5" contains="Arrays.inc" id="r3_8_1_1_1">
<h5>3.8.1.1.1 Arrays.inc</h5>
<p>This file contains macros for manipulating arrays.</p>
<p><code>ARRAYS_WriteDF3(Array, FileName, BitDepth)</code>: Write an array to a df3 file.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array that contains the data.</li>
<li><code>FileName</code> = The name of the file to be written.</li>
<li><code>BitDepth</code> = The size of the binary word.</li>
</ul>
<p class="Note"><strong>Note:</strong> See the <a href="r3_3.html#r3_3_2_3_4">#write</a> directive for more information.</p>
<p><code>Rand_Array_Item(Array, Stream)</code>: Randomly Picks an item from a 1D array.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array from which to choose the item.</li>
<li><code>Stream</code> = A random number stream.</li>
</ul>
<p><code>Resize_Array(Array, NewSize)</code>: Resize a 1D array, retaining its contents.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array to be resized.</li>
<li><code>NewSize</code> = The desired new size of the array.</li>
</ul>
<p><code>Reverse_Array(Array)</code>: Reverses the order of items in a 1D array.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array to be reversed.</li>
</ul>
<p><code>Sort_Compare(Array, IdxA, IdxB)</code>: This macro is used by the <code>Sort_Array()</code>
and <code>Sort_Partial_Array()</code> macros. The given macro works for 1D arrays of floats, but
you can redefine it in your scene file for more complex situations, arrays of vectors or
multidimensional arrays for example. Just make sure your macro returns true if the item at IdxA <
the item at IdxB, and otherwise returns false.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array containing the data being sorted.</li>
<li><code>IdxA, IdxB</code> = The array offsets of the data elements being compared.</li>
</ul>
<p><code>Sort_Swap_Data(Array, IdxA, IdxB)</code>: This macro is used by the <code>Sort_Array()</code>
and <code>Sort_Partial_Array()</code> macros. The given macro works for 1D arrays only,
but you can redefine it in your scene file to handle multidimensional arrays if needed.
The only requirement is that your macro swaps the data at IdxA with that at IdxB.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array containing the data being sorted.</li>
<li><code>IdxA, IdxB</code> = The array offsets of the data elements being swapped.</li>
</ul>
<p><code>Sort_Array(Array)</code>: This macro sorts a 1D array of floats, though you can
redefine the <code>Sort_Compare()</code> and <code>Sort_Swap_Data()</code> macros to
handle multidimensional arrays and other data types.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array to be sorted.</li>
</ul>
<p><code>Sort_Partial_Array(Array, FirstInd, LastInd)</code>: This macro is like
<code>Sort_Array()</code>, but sorts a specific range of an array instead of the whole array.</p>
<p>Parameters:</p>
<ul>
<li><code>Array</code> = The array to be sorted.</li>
<li><code>FirstInd, LastInd</code> = The start and end indices of the range being sorted.</li>
</ul></div>
<a name="r3_8_1_1_2"></a>
<div class="content-level-h5" contains="Chars.inc" id="r3_8_1_1_2">
<h5>3.8.1.1.2 Chars.inc</h5>
<p>
This file includes 26 upper-case letter and other characters defined as objects.
The size of all characters is 4 * 5 * 1. The center of the bottom side of a character
face is set to the origin, so you may need to translate a character appropriately
before rotating it about the x or z axes.
</p>
<p>
Letters:<br>
<code>
char_A, char_B, char_C,<br>
char_D, char_E, char_F,<br>
char_G, char_H, char_I,<br>
char_J, char_K, char_L,<br>
char_M, char_N, char_O,<br>
char_P, char_Q, char_R,<br>
char_S, char_T, char_U,<br>
char_V, char_W, char_X,<br>
char_Y, char_Z<br>
</code>
</p>
<p>
Numerals:<br>
<code>
char_0, char_1,<br>
char_2, char_3,<br>
char_4, char_5,<br>
char_6, char_7,<br>
char_8, char_9<br>
</code>
</p>
<p>
Symbols:<br>
<code>
char_Dash, char_Plus, char_ExclPt,<br>
char_Amps, char_Num, char_Dol,<br>
char_Perc, char_Astr, char_Hat, <br>
char_LPar, char_RPar, char_AtSign,<br>
char_LSqu, char_RSqu<br>
</code>
</p>
<p>
Usage:</p>
<pre>
#include "chars.inc"
.
.
object {char_A ...}
</pre></div>
<a name="r3_8_1_1_3"></a>
<div class="content-level-h5" contains="Colors.inc" id="r3_8_1_1_3">
<h5>3.8.1.1.3 Colors.inc</h5>
<p>This file is mainly a list of predefined colors, but also has a few color
manipulation macros.</p>
</div>
<a name="r3_8_1_1_3_1"></a>
<div class="content-level-h6" contains="Predefined colors" id="r3_8_1_1_3_1">
<h6>3.8.1.1.3.1 Predefined colors</h6>
<p>This file contains 125 predefined colors that you can use in your scenes. Simply <code>#include</code> them in your scene file to use them:</p>
<pre>
#include "colors.inc"
</pre>
<p>These basic colors:</p>
<ul>
<li>Red</li>
<li>Green</li>
<li>Blue</li>
<li>Yellow</li>
<li>Cyan</li>
<li>Magenta</li>
<li>Clear</li>
<li>White</li>
<li>Black</li>
</ul>
<p>A series of <em>percentage</em> grays that are useful for fine-tuning lighting color values and for other areas where subtle variations of grays are needed, and a palette of over 100 additional color definitions are available. See the distribution file <code>~include/colors.inc</code> for more details.</p>
</div>
<a name="r3_8_1_1_3_2"></a>
<div class="content-level-h6" contains="Color macros" id="r3_8_1_1_3_2">
<h6>3.8.1.1.3.2 Color macros</h6>
<p>In POV-Ray all colors are handled in RGB color space with a component for
the amount of red, green and blue light. However, not everybody thinks this
is the most intuitive way to specify colors. For your convenience there are
macros included in colors.inc that converts between a few different types of
color spaces.</p>
<p>The supported color spaces:</p>
<ul>
<li><code>RGB</code> = < Red, Green, Blue, Filter, Transmit ></li>
<li><code>HSL</code> = < Hue, Saturation, Lightness, Filter, Transmit ></li>
<li><code>HSV</code> = < Hue, Saturation, Value, Filter, Transmit ></li>
<li><code>XYZ</code> = < X, Y, Z, Filter, Transmit > (CIEXYZ; <font class="New">New</font> in 3.8)</li>
<li><code>Lab</code> = < Lightness L*, Chroma a*, Chroma b* > (more accurately L*a*b*, CIELAB; <font class="New">New</font> in 3.8)</li>
</ul>
<p class="Note"><strong>Note:</strong> The Hue parameter is given in degrees.</p>
<p><code>CHSL2RGB(Color)</code>: Converts a color given in <code>HSL</code> space to one in <code>RGB</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>HSL</code> color to be converted.</li>
</ul>
<p><code>CRGB2HSL(Color)</code>: Converts a color given in <code>RGB</code> space to one in <code>HSL</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>RGB</code> color to be converted.</li>
</ul>
<p><code>CHSV2RGB(Color)</code>: Converts a color given in <code>HSV</code> space to one in <code>RGB</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>HSV</code> color to be converted.</li>
</ul>
<p><code>CRGB2HSV(Color)</code>: Converts a color given in <code>RGB</code> space to one in <code>HSV</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>RGB</code> color to be converted.</li>
</ul>
<p><code>CXYZ2RGB(Color)</code>: Converts a color given in <code>XYZ</code> space to one in <code>RGB</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>XYZ</code> color to be converted.</li>
</ul>
<p><code>CRGB2XYZ(Color)</code>: Converts a color given in <code>RGB</code> space to one in <code>XYZ</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>RGB</code> color to be converted.</li>
</ul>
<p><code>CLab2RGB(Color,WhiteXYZ)</code>: Converts a color given in <code>Lab</code> space to one in <code>RGB</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>Lab</code> color to be converted.</li>
<li><code>WhiteXYZ</code> = <code>XYZ</code> color of the chosen L*a*b* variant's reference white point.</li>
</ul>
<p><code>CRGB2Lab(Color,WhiteXYZ)</code>: Converts a color given in <code>RGB</code> space to one in <code>Lab</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>RGB</code> color to be converted.</li>
<li><code>WhiteXYZ</code> = <code>XYZ</code> color of the chosen L*a*b* variant's reference white point.</li>
</ul>
<p><code>CLab2RGB_D65(Color)</code>: Converts a color given in <code>Lab</code> space (using D65 as reference white point) to one in <code>RGB</code> space.</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>Lab</code> color to be converted.</li>
</ul>
<p><code>CRGB2Lab_D65(Color)</code>: Converts a color given in <code>RGB</code> space to one in <code>Lab</code> space (using D65 as reference white point).</p>
<p>Parameters:</p>
<ul>
<li><code>Color</code> = <code>RGB</code> color to be converted.</li>
</ul></div>
<a name="r3_8_1_1_4"></a>
<div class="content-level-h5" contains="Colors ral.inc" id="r3_8_1_1_4">
<h5>3.8.1.1.4 Colors ral.inc</h5>
<p>This file contains approximately 200 predefined colors from the German RAL institute's <em>RAL Classic</em> collection of standardized paint pigments that you can use in your scenes. Simply <code>#include</code> them in your scene file to use them:</p>
<pre>
#include "colors_ral.inc"
</pre>
<p>The colors are named <code>RAL_nnnn</code>, where <code>nnnn</code> is the 4-digit numerical RAL Classic color code.</p></div>
<a name="r3_8_1_1_5"></a>
<div class="content-level-h5" contains="Consts.inc" id="r3_8_1_1_5">
<h5>3.8.1.1.5 Consts.inc</h5>
<p>This file defines a number of constants, including things such as mapping types and ior definitions.</p>
</div>
<a name="r3_8_1_1_5_1"></a>
<div class="content-level-h6" contains="Vector constants" id="r3_8_1_1_5_1">
<h6>3.8.1.1.5.1 Vector constants</h6>
<dl>
<dt><code>o</code> = < 0, 0, 0> (origin)</dt>
<dt><code>xy</code> = < 1, 1, 0></dt>
<dt><code>yz</code> = < 0, 1, 1></dt>
<dt><code>xz</code> = < 1, 0, 1></dt>
</dl>
</div>
<a name="r3_8_1_1_5_2"></a>
<div class="content-level-h6" contains="Map type constants" id="r3_8_1_1_5_2">
<h6>3.8.1.1.5.2 Map type constants</h6>
<dl>
<dt><code>Plane_Map</code> = 0</dt>
<dt><code>Sphere_Map</code> = 1</dt>
<dt><code>Cylinder_Map</code> = 2</dt>
<dt><code>Torus_Map</code> = 5</dt>
</dl>
</div>
<a name="r3_8_1_1_5_3"></a>
<div class="content-level-h6" contains="Interpolation type constants" id="r3_8_1_1_5_3">
<h6>3.8.1.1.5.3 Interpolation type constants</h6>
<dl>
<dt><code>Bi</code> = 2</dt>
<dt><code>Norm</code> = 4</dt>
</dl>
</div>
<a name="r3_8_1_1_5_4"></a>
<div class="content-level-h6" contains="Fog type constants" id="r3_8_1_1_5_4">
<h6>3.8.1.1.5.4 Fog type constants</h6>
<dl>
<dt><code>Uniform_Fog</code> = 1</dt>
<dt><code>Ground_Fog</code> = 2</dt>
</dl>
</div>
<a name="r3_8_1_1_5_5"></a>
<div class="content-level-h6" contains="Focal blur hexgrid constants" id="r3_8_1_1_5_5">
<h6>3.8.1.1.5.5 Focal blur hexgrid constants</h6>
<dl>
<dt><code>Hex_Blur1</code> = 7</dt>
<dt><code>Hex_Blur2</code> = 19</dt>
<dt><code>Hex_Blur3</code> = 37</dt>
</dl>
</div>
<a name="r3_8_1_1_5_6"></a>
<div class="content-level-h6" contains="IORs" id="r3_8_1_1_5_6">
<h6>3.8.1.1.5.6 IORs</h6>
<dl>
<dt><code>Air_Ior</code> = 1.000292</dt>
<dt><code>Amethyst_Ior</code> = 1.550</dt>
<dt><code>Apatite_Ior</code> = 1.635</dt>
<dt><code>Aquamarine_Ior</code> = 1.575</dt>
<dt><code>Beryl_Ior</code> = 1.575</dt>
<dt><code>Citrine_Ior</code> = 1.550</dt>
<dt><code>Crown_Glass_Ior</code> = 1.51</dt>
<dt><code>Corundum_Ior</code> = 1.765</dt>
<dt><code>Diamond_Ior</code> = 2.47</dt>
<dt><code>Emerald_Ior</code> = 1.575 </dt>
<dt><code>Flint_Glass_Ior</code> = 1.71</dt>
<dt><code>Flint_Glass_Heavy_Ior</code> = 1.8</dt>
<dt><code>Flint_Glass_Medium_Ior</code> = 1.63</dt>
<dt><code>Flint_Glass_Light_Ior</code> = 1.6</dt>
<dt><code>Fluorite_Ior</code> = 1.434</dt>
<dt><code>Gypsum_Ior</code> = 1.525</dt>
<dt><code>Ice_Ior</code> = 1.31</dt>
<dt><code>Plexiglas_Ior</code> = 1.5</dt>
<dt><code>Quartz_Ior</code> = 1.550</dt>
<dt><code>Quartz_Glass_Ior </code>= 1.458</dt>
<dt><code>Ruby_Ior</code> = 1.765</dt>
<dt><code>Salt_Ior</code> = 1.544</dt>
<dt><code>Sapphire_Ior</code> = 1.765</dt>
<dt><code>Topaz_Ior</code> = 1.620</dt>
<dt><code>Tourmaline_Ior</code> = 1.650</dt>
<dt><code>Water_Ior</code> = 1.33</dt>
</dl>
</div>
<a name="r3_8_1_1_5_7"></a>
<div class="content-level-h6" contains="Dispersion amounts" id="r3_8_1_1_5_7">
<h6>3.8.1.1.5.7 Dispersion amounts</h6>
<dl>
<dt><code>Quartz_Glass_Dispersion</code> = 1.012</dt>
<dt><code>Water_Dispersion</code> = 1.007</dt>
<dt><code>Diamond_Dispersion</code> = 1.035</dt>
<dt><code>Sapphire_Dispersion</code> = 1.015</dt>
</dl>
</div>
<a name="r3_8_1_1_5_8"></a>
<div class="content-level-h6" contains="Scattering media type constants" id="r3_8_1_1_5_8">
<h6>3.8.1.1.5.8 Scattering media type constants</h6>
<dl>
<dt><code>ISOTROPIC_SCATTERING</code> = 1;</dt>
<dt><code>MIE_HAZY_SCATTERING</code> = 2;</dt>
<dt><code>MIE_MURKY_SCATTERING</code> = 3;</dt>
<dt><code>RAYLEIGH_SCATTERING</code> = 4;</dt>
<dt><code>HENYEY_GREENSTEIN_SCATTERING</code> = 5;</dt>
</dl></div>
<a name="r3_8_1_1_6"></a>
<div class="content-level-h5" contains="Debug.inc" id="r3_8_1_1_6">
<h5>3.8.1.1.6 Debug.inc</h5>
<p>This file contains a set of macros designed to make debugging easier. It also functions like the old debug.inc, with the exception that you have to call the <code>Debug_Inc_Stack()</code> macro to get the include stack output.</p>
<p><code>Debug_Inc_Stack()</code>: Activates include file tracking, each included file will send a debug message when it is included.</p>
<p>Parameters:</p>
<ul>
<li>None.</li>
</ul>
<p><code>Set_Debug(Bool)</code>: Activate or deactivate the debugging macros.</p>
<p>Parameters:</p>
<ul>
<li><code>Bool</code> = A boolean (true/false) value.</li>
</ul>
<p><code>Debug_Message(Str)</code>: If debugging, sends the message to the debug stream.</p>
<p>Parameters:</p>
<ul>
<li><code>Str</code> = The desired message.</li>
</ul>
<p><code>Debug(Condition, Message)</code>: Sends a message to the <code>#debug</code> stream depending on a given condition.</p>
<p>Parameters:</p>
<ul>
<li><code>Condition</code> = Any boolean expression.</li>
<li><code>Message</code> = The message to be sent if Condition evaluates as <em>true</em>.</li>
</ul>
<p><code>Warning(Condition, Message)</code>: Sends a message to the <code>#warning</code> stream depending on a given condition.</p>
<p>Parameters:</p>
<ul>
<li><code>Condition</code> = Any boolean expression.</li>
<li><code>Message</code> = The message to be sent if Condition evaluates as <em>true</em>.</li>
</ul>
<p><code>Error(Condition, Message)</code>: Sends a message to the <code>#error</code> stream depending on a given condition.</p>
<p>Parameters:</p>
<ul>
<li><code>Condition</code> = Any boolean expression.</li>
<li><code>Message</code> = The message to be sent if Condition evaluates as <em>true</em>.</li>
</ul></div>
<a name="r3_8_1_1_7"></a>
<div class="content-level-h5" contains="Finish.inc" id="r3_8_1_1_7">
<h5>3.8.1.1.7 Finish.inc</h5>
<p>This file contains some predefined finishes.</p>
<dl>
<dt><code>Dull</code></dt>
<dd>Dull, with a large, soft specular highlight.</dd>
<dt><code>Shiny</code></dt>
<dd>Shiny, with a small, tight specular highlight.</dd>
<dt><code>Glossy</code></dt>
<dd>Very shiny with very tight specular highlights and a fair amount of reflection.</dd>
<dt><code>Phong_Dull</code></dt>
<dd>Dull, with a large, soft phong highlight.</dd>
<dt><code>Phong_Shiny</code></dt>
<dd>Shiny, with a small, tight phong highlight.</dd>
<dt><code>Phong_Glossy</code></dt>
<dd>Very shiny with very tight phong highlights and a fair amount of reflection.</dd>
<dt><code>Luminous</code></dt>
<dd>A glowing surface, unaffected by light_sources.</dd>
<dt><code>Mirror</code></dt>
<dd>A perfectly reflective surface, no highlights or shading.</dd>
</dl></div>
<a name="r3_8_1_1_8"></a>
<div class="content-level-h5" contains="Functions.inc" id="r3_8_1_1_8">
<h5>3.8.1.1.8 Functions.inc</h5>
<p>
This include file contains interfaces to internal functions as well as several predefined functions. The ID's used to access the internal
functions through calls to <em>internal(XX)</em>, are not guaranteed to stay the same between POV-Ray versions, so users are encouraged to
use the functions declared here.
</p>
<p>
The number of required parameters and what they control are also given in the include file, this chapter gives more information. For starter
values of the parameters, see the <code>~scenes/incdemo/i_internal.pov</code> demo file.
</p>
<p>Syntax to be used:</p>
<pre>
#include "functions.inc"
isosurface {
function { f_torus_gumdrop(x,y,z, P0) }
...
}
pigment {
function { f_cross_ellipsoids(x,y,z, P0, P1, P2, P3) }
COLOR_MAP ...
}
</pre>
<p>Some special parameters are found in several of these functions. These are described in the next section and later referred to as
<em>Cross section type</em>, <em>Field Strength</em>, <em>Field Limit</em>, <em>SOR</em> parameters.</p>
</div>
<a name="r3_8_1_1_8_1"></a>
<div class="content-level-h6" contains="Common Parameters" id="r3_8_1_1_8_1">
<h6>3.8.1.1.8.1 Common Parameters</h6>
</div>
<a name="r3_8_1_1_8_2"></a>
<div class="content-level-h6" contains="Cross Section Type" id="r3_8_1_1_8_2">
<h6>3.8.1.1.8.2 Cross Section Type</h6>
<p>In the helixes and spiral functions, the 9th parameter is the cross section type.</p>
<p>Some shapes are:</p>
<ul>
<li><code>0</code>: square</li>
<li><code>0.0 to 1.0</code>: rounded squares</li>
<li><code>1</code>: circle</li>
<li><code>1.0 to 2.0</code>: rounded diamonds</li>
<li><code>2</code>: diamond</li>
<li><code>2.0 to 3.0</code>: partially concave diamonds</li>
<li><code>3</code>: concave diamond</li>
</ul>
</div>
<a name="r3_8_1_1_8_3"></a>
<div class="content-level-h6" contains="Field Strength" id="r3_8_1_1_8_3">
<h6>3.8.1.1.8.3 Field Strength</h6>
<p>The numerical value at a point in space generated by the function is multiplied by the Field Strength. The set of points where the
function evaluates to zero are unaffected by any positive value of this parameter, so if you are just using the function on its own with
threshold = 0, the generated surface is still the same.</p>
<p>In some cases, the field strength has a considerable effect on the speed and accuracy of rendering the surface. In general, increasing
the field strength speeds up the rendering, but if you set the value too high the surface starts to break up and may disappear
completely.</p>
<p>Setting the field strength to a negative value produces the inverse of the surface, like making the function negative.</p>
</div>
<a name="r3_8_1_1_8_4"></a>
<div class="content-level-h6" contains="Field Limit" id="r3_8_1_1_8_4">
<h6>3.8.1.1.8.4 Field Limit</h6>
<p>This will not make any difference to the generated surface if you are using threshold that is within the field limit (and will kill the
surface completely if the threshold is greater than the field limit). However, it may make a huge difference to the rendering times.</p>
<p>If you use the function to generate a pigment, then all points that are a long way from the surface will have the same color, the color
that corresponds to the numerical value of the field limit.</p>
</div>
<a name="r3_8_1_1_8_5"></a>
<div class="content-level-h6" contains="SOR Switch" id="r3_8_1_1_8_5">
<h6>3.8.1.1.8.5 SOR Switch</h6>
<p>If greater than zero, the curve is swept out as a surface of revolution (SOR). If the value is zero or negative, the curve is extruded
linearly in the Z direction.</p>
</div>
<a name="r3_8_1_1_8_6"></a>
<div class="content-level-h6" contains="SOR Offset" id="r3_8_1_1_8_6">
<h6>3.8.1.1.8.6 SOR Offset</h6>
<p>If the SOR switch is on, then the curve is shifted this distance in the X direction before being swept out.</p>
</div>
<a name="r3_8_1_1_8_7"></a>
<div class="content-level-h6" contains="SOR Angle" id="r3_8_1_1_8_7">
<h6>3.8.1.1.8.7 SOR Angle</h6>
<p>If the SOR switch is on, then the curve is rotated this number of degrees about the Z axis before being swept out.</p>
</div>
<a name="r3_8_1_1_8_8"></a>
<div class="content-level-h6" contains="Invert Isosurface" id="r3_8_1_1_8_8">
<h6>3.8.1.1.8.8 Invert Isosurface</h6>
<p>Sometimes, when you render a surface, you may find that you get only the shape of the container. This could be caused by the fact that
some of the build in functions are defined inside out.</p>
<p>We can invert the isosurface by negating the whole function: <code>-(function) - threshold</code></p>
</div>
<a name="r3_8_1_1_8_9"></a>
<div class="content-level-h6" contains="Internal Functions" id="r3_8_1_1_8_9">
<h6>3.8.1.1.8.9 Internal Functions</h6>
<p>Here is a list of the internal functions in the order they appear in the <em>functions.inc</em> include file</p>
<p><code>f_algbr_cyl1(x,y,z, P0, P1, P2, P3, P4)</code>: An algebraic cylinder is what you get if you take any 2d curve and plot it in 3d.
The 2d curve is simply extruded along the third axis, in this case the z axis. With the SOR Switch switched on, the figure-of-eight curve
will be rotated around the Y axis instead of being extruded along the Z axis.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a></li>
<li><code>P1</code> : <a href="r3_8.html#r3_8_1_1_8_4">Field Limit</a></li>
<li><code>P2</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_algbr_cyl2(x,y,z, P0, P1, P2, P3, P4)</code>: An algebraic cylinder is what you
get if you take any 2d curve and plot it in 3d.
The 2d curve is simply extruded along the third axis, in this case the z axis.With the SOR Switch switched on, the cross section curve will
be rotated around the Y axis instead of being extruded along the Z axis.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : <a href="r3_8.html#r3_8_1_1_8_4">Field Limit</a></li>
<li><code>P2</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_algbr_cyl3(x,y,z, P0, P1, P2, P3, P4)</code>: An algebraic cylinder is what you get
if you take any 2d curve and plot it in 3d. The 2d curve
is simply extruded along the third axis, in this case the Z axis. With the SOR Switch switched on, the cross section curve will be rotated
around the Y axis instead of being extruded along the Z axis.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : <a href="r3_8.html#r3_8_1_1_8_4">Field Limit</a></li>
<li><code>P2</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_algbr_cyl4(x,y,z, P0, P1, P2, P3, P4)</code>: An algebraic cylinder is what you get
if you take any 2d curve and plot it in 3d. The 2d curve
is simply extruded along the third axis, in this case the z axis. With the SOR Switch switched on, the cross section curve will be rotated
around the Y axis instead of being extruded along the Z axis.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : <a href="r3_8.html#r3_8_1_1_8_4">Field Limit</a></li>
<li><code>P2</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_bicorn(x,y,z, P0, P1)</code>: The surface is a surface of revolution.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Scale. The mathematics of this surface suggest that the shape should be different
for different values of this parameter. In practice the difference in shape is hard to spot.
Setting the scale to 3 gives a surface with a radius of about 1 unit</li>
</ul>
<p><code>f_bifolia(x,y,z, P0, P1)</code>: The bifolia surface looks something like the top part of
a a paraboloid bounded below by another paraboloid.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Scale. The surface is always the same shape. Changing this parameter has the
same effect as adding a scale modifier. Setting the scale to 1 gives a surface with a radius
of about 1 unit</li>
</ul>
<p><code>f_blob(x,y,z, P0, P1, P2, P3, P4)</code>: This function generates blobs that are
similar to a CSG blob with two spherical components. This function only seems to work
with negative threshold settings.</p>
<ul>
<li><code>P0</code> : X distance between the two components</li>
<li><code>P1</code> : Blob strength of component 1</li>
<li><code>P2</code> : Inverse blob radius of component 1</li>
<li><code>P3</code> : Blob strength of component 2</li>
<li><code>P4</code> : Inverse blob radius of component 2</li>
</ul>
<p><code>f_blob2(x,y,z, P0, P1, P2, P3)</code>: The surface is similar to a CSG blob
with two spherical components.</p>
<ul>
<li><code>P0</code> : Separation. One blob component is at the origin, and the other is this distance away on the X axis</li>
<li><code>P1</code> : Inverse size. Increase this to decrease the size of the surface</li>
<li><code>P2</code> : Blob strength</li>
<li><code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as setting this parameter to zero and the threshold to -1</li>
</ul>
<p><code>f_boy_surface(x,y,z, P0, P1)</code>: For this surface, it helps if the field strength
is set low, otherwise the surface has a tendency to break up or disappear entirely. This has
the side effect of making the rendering times extremely long.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Scale. The surface is always the same shape. Changing this parameter has the
same effect as adding a scale modifier</li>
</ul>
<p><code>f_comma(x,y,z, P0)</code>: The <em>comma</em> surface is very much like a comma-shape.</p>
<ul>
<li><code>P0</code> : Scale</li></ul>
<p><code>f_cross_ellipsoids(x,y,z, P0, P1, P2, P3)</code>: The <em>cross ellipsoids</em> surface is
like the union of three crossed ellipsoids, one oriented along each axis.</p>
<ul>
<li><code>P0</code> : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the
ellipsoids are prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere)</li>
<li><code>P1</code> : Inverse size. Increase this to decrease the size of the surface</li>
<li><code>P2</code> : Diameter. Increase this to increase the size of the ellipsoids</li>
<li><code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same
effect as setting this parameter to zero and the threshold to -1</li>
</ul>
<p><code>f_crossed_trough(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_cubic_saddle(x,y,z, P0)</code>: For this surface, it helps if the field strength is set quite low, otherwise the surface has a
tendency to break up or disappear entirely.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_cushion(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_devils_curve(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : Field Strength (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_devils_curve_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The <code>f_devils_curve_2d</code> curve can be
extruded along the z axis, or using the SOR parameters it can be made into a surface of revolution.
The X and Y factors control the size of the central feature.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : X factor</li>
<li><code>P2</code> : Y factor</li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_dupin_cyclid(x,y,z, P0, P1, P2, P3, P4, P5)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Major radius of torus</li>
<li><code>P2</code> : Minor radius of torus</li>
<li><code>P3</code> : X displacement of torus</li>
<li><code>P4</code> : Y displacement of torus</li>
<li><code>P5</code> : Radius of inversion</li>
</ul>
<p><code>f_ellipsoid(x,y,z, P0, P1, P2)</code>: <code>f_ellipsoid</code> generates spheres and ellipsoids. Needs <code>threshold 1</code>.
Setting these scaling parameters to 1/n gives exactly the same effect as performing a scale operation to increase the scaling by <em>n</em>
in the corresponding direction.</p>
<ul>
<li><code>P0</code> : X scale (inverse)</li>
<li><code>P1</code> : Y scale (inverse)</li>
<li><code>P2</code> : Z scale (inverse)</li>
</ul>
<p><code>f_enneper(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_flange_cover(x,y,z, P0, P1, P2, P3)</code>:</p>
<ul>
<li><code>P0</code> : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere</li>
<li><code>P1</code> : Inverse size. Increase this to decrease the size of the surface. (The other parameters
also drastically affect the size, but this parameter has no other effects)</li>
<li><code>P2</code> : Flange. Increase this to increase the flanges that appear between the spikes. Set it to 1 for no flanges</li>
<li><code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly the
same effect as setting this parameter to zero and the threshold to -1</li>
</ul>
<p><code>f_folium_surface(x,y,z, P0, P1, P2)</code>: A <em>folium surface</em> looks something like a paraboloid glued to a plane.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Neck width factor - the larger you set this, the narrower the neck where the
paraboloid meets the plane</li>
<li><code>P2</code> : Divergence - the higher you set this value, the wider the paraboloid gets</li>
</ul>
<p><code>f_folium_surface_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The <code>f_folium_surface_2d</code> curve can be
rotated around the X axis to generate the same 3d surface as the <code>f_folium_surface</code>, or it can be extruded
in the Z direction (by switching the SOR switch off) </p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Neck width factor - same as the 3d surface if you are revolving it around the Y axis</li>
<li><code>P2</code> : Divergence - same as the 3d surface if you are revolving it around the Y axis</li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_glob(x,y,z, P0)</code>: One part of this surface would actually go off to
infinity if it were not restricted by the contained_by shape.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_heart(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_helical_torus(x,y,z, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9)</code>: With some sets of parameters, it looks like a torus with a
helical winding around it. The
winding optionally has grooves around the outside.</p>
<ul>
<li><code>P0</code> : Major radius</li>
<li><code>P1</code> : Number of winding loops</li>
<li><code>P2</code> : Twistiness of winding. When zero, each winding loop is separate. When set to one,
each loop twists into the next one. When set to two, each loop twists into the one after next</li>
<li><code>P3</code> : Fatness of winding?</li>
<li><code>P4</code> : Threshold. Setting this parameter to 1 and the threshold to zero has s similar effect
as setting this parameter to zero and the threshold to 1</li>
<li><code>P5</code> : Negative minor radius? Reducing this parameter increases the minor radius of the
central torus. Increasing it can make the torus disappear and be replaced by a vertical column.
The value at which the surface switches from one form to the other depends on several other parameters</li>
<li><code>P6</code> : Another fatness of winding control?</li>
<li><code>P7</code> : Groove period. Increase this for more grooves</li>
<li><code>P8</code> : Groove amplitude. Increase this for deeper grooves</li>
<li><code>P9</code> : Groove phase. Set this to zero for symmetrical grooves</li>
</ul>
<p><code>f_helix1(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>:</p>
<ul>
<li><code>P0</code> : Number of helixes - e.g. 2 for a double helix</li>
<li><code>P1</code> : Period - is related to the number of turns per unit length</li>
<li><code>P2</code> : Minor radius (major radius > minor radius)</li>
<li><code>P3</code> : Major radius</li>
<li><code>P4</code> : Shape parameter. If this is greater than 1 then the tube becomes fatter in the y direction</li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_2">Cross section type</a></li>
<li><code>P6</code> : Cross section rotation angle (degrees)</li>
</ul>
<p><code>f_helix2(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>: Needs a negated function</p>
<ul>
<li><code>P0</code> : Not used</li>
<li><code>P1</code> : Period - is related to the number of turns per unit length</li>
<li><code>P2</code> : Minor radius (minor radius > major radius)</li>
<li><code>P3</code> : Major radius</li>
<li><code>P4</code> : Not used</li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_2">Cross section type</a></li>
<li><code>P6</code> : Cross section rotation angle (degrees)</li>
</ul>
<p><code>f_hex_x(x,y,z, P0)</code>: This creates a grid of hexagonal cylinders stretching along
the z-axis. The fatness is controlled
by the threshold value. When this value equals 0.8660254 or cos(30) the sides will touch, because
this is the distance between centers. Negating the function will inverse the surface and create a
honey-comb structure. This function is also useful as pigment function.</p>
<ul>
<li><code>P0</code> : No effect (but the syntax requires at least one parameter)</li>
</ul>
<p><code>f_hex_y(x,y,z, P0)</code>: This is function forms a lattice of infinite boxes
stretching along the z-axis. The fatness is
controlled by the threshold value. These boxes are rotated 60 degrees around centers, which
are 0.8660254 or cos(30) away from each other. This function is also useful as pigment function.</p>
<ul>
<li><code>P0</code> : No effect (but the syntax requires at least one parameter)</li>
</ul>
<p><code>f_hetero_mf(x,y,z, P0, P1, P2, P3, P4, P5)</code>: <code>f_hetero_mf (x,0,z)</code> makes multifractal height fields and patterns
of <em>1/f</em> noise. <em>Multifractal</em> refers to their characteristic of having a fractal dimension which varies with
altitude. Built from summing noise of a number of frequencies, the hetero_mf parameters determine how many, and which frequencies are to be
summed. An advantage to using these instead of a height_field {} from an image (a number of height field programs output multifractal types
of images) is that the hetero_mf function domain extends arbitrarily far in the x and z directions so huge landscapes can be made without
losing resolution or having to tile a height field. Other functions of interest are <code>f_ridged_mf</code> and <code>f_ridge</code>.</p>
<ul>
<li><code>P0</code> : H is the negative of the exponent of the basic noise frequencies used in building these functions (each frequency
<em>f's</em> amplitude is weighted by the factor <em>f - H</em> ). In landscapes, and many natural forms, the amplitude of high frequency
contributions are usually less than the lower frequencies. When H is 1, the fractalization is relatively smooth (<em>1/f noise</em>). As H
nears 0, the high frequencies contribute equally with low frequencies as in <em>white noise</em>.</li>
<li><code>P1</code> : <em>Lacunarity</em> is the multiplier used to get from one <em>octave</em> to the next. This parameter affects the
size of the frequency gaps in the pattern. Make this greater than 1.0</li>
<li><code>P2</code> : Octaves is the number of different frequencies added to the fractal. Each <em>Octave</em> frequency is the previous
one multiplied by <em>Lacunarity</em>, so that using a large number of octaves can get into very high frequencies very quickly.</li>
<li><code>P3</code> : Offset is the <em>base altitude</em> (sea level) used for the heterogeneous scaling</li>
<li><code>P4</code> : T scales the <em>heterogeneity</em> of the fractal. T=0 gives <em>straight 1/f</em> (no heterogeneous
scaling). T=1 suppresses higher frequencies at lower altitudes</li>
<li><code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.</li>
</ul>
<p><code>f_hunt_surface(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_hyperbolic_torus(x,y,z, P0, P1, P2)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Major radius: separation between the centers of the tubes at the closest point</li>
<li><code>P2</code> : Minor radius: thickness of the tubes at the closest point</li>
</ul>
<p><code>f_isect_ellipsoids(x,y,z, P0, P1, P2, P3)</code>: The <em>isect ellipsoids</em> surface is like the
intersection of three crossed ellipsoids, one oriented along each axis.</p>
<ul>
<li><code>P0</code> : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the
ellipsoids are prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere)</li>
<li><code>P1</code> : Inverse size. Increase this to decrease the size of the surface</li>
<li><code>P2</code> : Diameter. Increase this to increase the size of the ellipsoids</li>
<li><code>P3</code> : Threshold. Setting this parameter to 1 and the threshold to zero has exactly
the same effect as setting this parameter to zero and the threshold to -1</li>
</ul>
<p><code>f_kampyle_of_eudoxus(x,y,z, P0, P1, P2)</code>: The <em>kampyle of eudoxus</em> is like two infinite planes with a dimple at the
center.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Dimple: When zero, the two dimples punch right through and meet at the center.
Non-zero values give less dimpling</li>
<li><code>P2</code> : Closeness: Higher values make the two planes become closer</li>
</ul>
<p><code>f_kampyle_of_eudoxus_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The 2d curve that generates the above surface can be extruded in the
Z direction or rotated about various axes by using the SOR parameters.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Dimple: When zero, the two dimples punch right through and meet at the center.
Non-zero values give less dimpling</li>
<li><code>P2</code> : Closeness: Higher values make the two planes become closer</li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_klein_bottle(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_kummer_surface_v1(x,y,z, P0)</code>: The Kummer surface consists of a collection of radiating rods.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_kummer_surface_v2(x,y,z, P0, P1, P2, P3)</code>: Version 2 of the kummer surface only looks like radiating rods when the
parameters are set to particular negative values. For positive values it tends to look rather like a superellipsoid.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Rod width (negative): Setting this parameter to larger negative values increases the diameter of the rods</li>
<li><code>P2</code> : Divergence (negative): Setting this number to -1 causes the rods to become
approximately cylindrical. Larger negative values cause the rods to become fatter further
from the origin. Smaller negative numbers cause the rods to become narrower away from
the origin, and have a finite length</li>
<li><code>P3</code> : Influences the length of half of the rods.Changing the sign affects the other half of the rods. 0 has no effect</li>
</ul>
<p><code>f_lemniscate_of_gerono(x,y,z, P0)</code>: The <em>Lemniscate of Gerono</em> surface is an hourglass shape, or two teardrops with
their ends connected.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_lemniscate_of_gerono_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The 2d version of the Lemniscate can be extruded in the Z
direction, or used as a surface of revolution to generate the equivalent of the 3d version, or revolved in different ways.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Size: increasing this makes the 2d curve larger and less rounded</li>
<li><code>P2</code> : Width: increasing this makes the 2d curve fatter</li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_mesh1(x,y,z, P0, P1, P2, P3, P4)</code>: The overall thickness of the threads is controlled by the isosurface threshold, not
by a parameter. If you render a mesh1 with zero threshold, the threads have zero thickness and are therefore invisible. Parameters P2 and P4
control the shape of the thread relative to this threshold parameter.</p>
<ul>
<li><code>P0</code> : Distance between neighboring threads in the x direction</li>
<li><code>P1</code> : Distance between neighboring threads in the z direction</li>
<li><code>P2</code> : Relative thickness in the x and z directions</li>
<li><code>P3</code> : Amplitude of the weaving effect. Set to zero for a flat grid</li>
<li><code>P4</code> : Relative thickness in the y direction</li>
</ul>
<p><code>f_mitre(x,y,z, P0)</code>: The <em>Mitre</em> surface looks a bit like an ellipsoid which has been nipped at each end with a pair
of sharp nosed pliers.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_nodal_cubic(x,y,z, P0)</code>: The <em>Nodal Cubic</em> is something like what you would get if you were to extrude the Stophid2D
curve along the X axis and then lean it over.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_noise3d(x,y,z)</code>:</p>
<p><code>f_noise_generator(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : Noise generator number</li>
</ul>
<p><code>f_odd(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_ovals_of_cassini(x,y,z, P0, P1, P2, P3)</code>: The Ovals of Cassini are a generalization of the torus shape.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Major radius - like the major radius of a torus</li>
<li><code>P2</code> : Filling. Set this to zero, and you get a torus. Set this to a higher value and the hole in the middle starts to heal
up. Set it even higher and you get an ellipsoid with a dimple</li>
<li><code>P3</code> : Thickness. The higher you set this value, the plumper is the result</li>
</ul>
<p><code>f_paraboloid(x,y,z, P0)</code>: This paraboloid is the surface of revolution that you get if you rotate a parabola about the Y
axis.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_parabolic_torus(x,y,z, P0, P1, P2)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Major radius</li>
<li><code>P2</code> : Minor radius</li>
</ul>
<p><code>f_ph(x,y,z)</code>: When used alone, the <em>PH</em> function gives a surface that consists of all points that are at a particular
latitude, i.e. a cone. If you use a threshold of zero (the default) this gives a cone of width zero, which is invisible. Also look at
<code>f_th</code> and <code>f_r</code>
</p>
<p><code>f_pillow(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a></li>
</ul>
<p><code>f_piriform(x,y,z, P0)</code>: The piriform surface looks rather like half a lemniscate.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a></li>
</ul>
<p><code>f_piriform_2d(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>: The 2d version of the <em>Piriform</em> can be extruded in the Z
direction, or used as a surface of revolution to generate the equivalent of the 3d version.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Size factor 1: increasing this makes the curve larger</li>
<li><code>P2</code> : Size factor 2: making this less negative makes the curve larger but also thinner</li>
<li><code>P3</code> : Fatness: increasing this makes the curve fatter</li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P6</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_poly4(x,y,z, P0, P1, P2, P3, P4)</code>: This <code>f_poly4</code> can be used to generate the surface of revolution of any
polynomial up to degree 4. To put it another way: If we call the parameters A, B, C, D, E; then this function generates the surface of
revolution formed by revolving <code>x = A + By + Cy2 + Dy3 + Ey4</code> around the Y axis.</p>
<ul>
<li><code>P0</code> : Constant</li>
<li><code>P1</code> : Y coefficient</li>
<li><code>P2</code> : Y2 coefficient</li>
<li><code>P3</code> : Y3 coefficient</li>
<li><code>P4</code> : Y4 coefficient</li>
</ul>
<p><code>f_polytubes(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The <em>Polytubes</em> surface consists of a number of tubes. Each tube follows
a 2d curve which is specified by a polynomial of degree 4 or less. If we look at the parameters, then this function generates <em>P0</em>
tubes which all follow the equation <code>x = P1 + P2y + P3y2 + P4y3 + P5y4</code> arranged around the Y axis. This function needs a
positive threshold (fatness of the tubes).</p>
<ul>
<li><code>P0</code> : Number of tubes</li>
<li><code>P1</code> : Constant</li>
<li><code>P2</code> : Y coefficient</li>
<li><code>P3</code> : Y2 coefficient</li>
<li><code>P4</code> : Y3 coefficient</li>
<li><code>P5</code> : Y4 coefficient</li>
</ul>
<p><code>f_quantum(x,y,z, P0)</code>: It resembles the shape of the electron density cloud for one of the d orbitals.</p>
<ul>
<li><code>P0</code> : Not used, but required</li>
</ul>
<p><code>f_quartic_paraboloid(x,y,z, P0)</code>: The <em>Quartic Paraboloid</em> is similar to a paraboloid, but has a squarer shape.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_quartic_saddle(x,y,z, P0)</code>: The <em>Quartic saddle</em> is similar to a saddle, but has a squarer shape.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a></li>
</ul>
<p><code>f_quartic_cylinder(x,y,z, P0, P1, P2)</code>: The <em>Quartic cylinder</em> looks a bit like a cylinder that is swallowed an
egg.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Diameter of the <em>egg</em></li>
<li><code>P2</code> : Controls the width of the tube and the vertical scale of the <em>egg</em></li>
</ul>
<p><code>f_r(x,y,z)</code>: When used alone, the <em>R</em> function gives a surface that consists of all the points that are a specific
distance (threshold value) from the origin, i.e. a sphere. Also look at <code>f_ph</code> and <code>f_th</code></p>
<p><code>f_ridge(x,y,z, P0, P1, P2, P3, P4, P5)</code>: This function is mainly intended for modifying other surfaces as you might use a
height field or to use as pigment function. Other functions of interest are <code>f_hetero_mf</code> and <code>f_ridged_mf</code>.</p>
<ul>
<li><code>P0</code> : Lambda</li>
<li><code>P1</code> : Octaves</li>
<li><code>P2</code> : Omega</li>
<li><code>P3</code> : Offset</li>
<li><code>P4</code> : Ridge</li>
<li><code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.</li>
</ul>
<p><code>f_ridged_mf(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The <em>Ridged Multifractal</em> surface can be used to create multifractal
height fields and patterns. <em>Multifractal</em> refers to their characteristic of having a fractal dimension which varies with altitude.
They are built from summing noise of a number of frequencies. The f_ridged_mf parameters determine how many, and which frequencies are to be
summed, and how the different frequencies are weighted in the sum.</p>
<p>An advantage to using these instead of a <code>height_field{}</code> from an image is that the ridged_mf function domain extends
arbitrarily far in the x and z directions so huge landscapes can be made without losing resolution or having to tile a height field. Other
functions of interest are <code>f_hetero_mf</code> and <code>f_ridge</code>.</p>
<ul>
<li><code>P0</code> : H is the negative of the exponent of the basic noise frequencies used in building these
functions (each frequency f's amplitude is weighted by the factor fE- H ). When H is 1, the
fractalization is relatively smooth. As H nears 0, the high frequencies contribute equally with
low frequencies</li>
<li><code>P1</code> : Lacunarity is the multiplier used to get from one <em>octave</em> to the next in the <em>fractalization</em>. This
parameter affects the size of the frequency gaps in the pattern. (Use values greater than 1.0)</li>
<li><code>P2</code> : Octaves is the number of different frequencies added to the fractal. Each octave
frequency is the previous one multiplied by <em>Lacunarity</em>. So, using a large number of octaves can
get into very high frequencies very quickly</li>
<li><code>P3</code> : Offset gives a fractal whose fractal dimension changes from altitude to altitude. The high
frequencies at low altitudes are more damped than at higher altitudes, so that lower altitudes are
smoother than higher areas</li>
<li><code>P4</code> : Gain weights the successive contributions to the accumulated fractal result to make
creases stick up as ridges</li>
<li><code>P5</code> : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.</li>
</ul>
<p><code>f_rounded_box(x,y,z, P0, P1, P2, P3)</code>: The Rounded Box is defined in a cube from <-1, -1, -1> to <1, 1, 1>. By
changing the <em>Scale</em> parameters, the size can be adjusted, without affecting the Radius of curvature.</p>
<ul>
<li><code>P0</code> : Radius of curvature. Zero gives square corners, 0.1 gives corners that match <code>sphere {0, 0.1}</code></li>
<li><code>P1</code> : Scale x</li>
<li><code>P2</code> : Scale y</li>
<li><code>P3</code> : Scale z</li>
</ul>
<p><code>f_sphere(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code>: radius of the sphere</li>
</ul>
<p><code>f_spikes(x,y,z, P0, P1, P2, P3, P4)</code>:</p>
<ul>
<li><code>P0</code> : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere</li>
<li><code>P1</code> : Hollowness. Increasing this causes the sides to bend in more</li>
<li><code>P2</code> : Size. Increasing this increases the size of the object</li>
<li><code>P3</code> : Roundness. This parameter has a subtle effect on the roundness of the spikes</li>
<li><code>P4</code> : Fatness. Increasing this makes the spikes fatter</li>
</ul>
<p><code>f_spikes_2d(x,y,z, P0, P1, P2, P3)</code>:</p>
<ul>
<li><code>P0</code> : Height of central spike</li>
<li><code>P1</code> : Frequency of spikes in the X direction</li>
<li><code>P2</code> : Frequency of spikes in the Z direction</li>
<li><code>P3</code> : Rate at which the spikes reduce as you move away from the center</li>
</ul>
<p><code>f_spiral(x,y,z, P0, P1, P2, P3, P4, P5)</code>:</p>
<ul>
<li><code>P0</code> : Distance between windings</li>
<li><code>P1</code> : Thickness</li>
<li><code>P2</code> : Outer radius of the spiral. The surface behaves as if it is contained_by a sphere of this diameter</li>
<li><code>P3</code> : Not used</li>
<li><code>P4</code> : Not used</li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_2">Cross section type</a></li>
</ul>
<p><code>f_steiners_roman(x,y,z, P0)</code>: The <em>Steiners Roman</em> is composed of four identical triangular pads which together make
up a sort of rounded tetrahedron. There are creases along the X, Y and Z axes where the pads meet.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_strophoid(x,y,z, P0, P1, P2, P3)</code>: The <em>Strophoid</em> is like an infinite plane with a bulb sticking out of it.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the plane</li>
<li><code>P2</code> : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When
positive, there is a crossover point. When negative the bulb simply bulges out of the plane like a pimple</li>
<li><code>P3</code> : Flatness. Higher values make the top end of the bulb fatter</li>
</ul>
<p><code>f_strophoid_2d(x,y,z, P0, P1, P2, P3, P4, P5, P6)</code>: The 2d strophoid curve can be extruded in the Z direction or rotated
about various axes by using the SOR parameters.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a></li>
<li><code>P1</code> : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the plane</li>
<li><code>P2</code> : Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there is a crossover
point. When negative the bulb simply bulges out of the plane like a pimple</li>
<li><code>P3</code> : Fatness. Higher values make the top end of the bulb fatter</li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P6</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
<p><code>f_superellipsoid(x,y,z, P0, P1)</code>: Needs a negative field strength or a negated function.</p>
<ul>
<li><code>P0</code> : east-west exponentx</li>
<li><code>P1</code> : north-south exponent</li>
</ul>
<p><code>f_th(x,y,z)</code>: <code>f_th()</code> is a function that is only useful when combined with other surfaces. It produces a value
which is equal to the <em>theta</em> angle, in radians, at any point. The theta angle is like the longitude coordinate on the Earth. It
stays the same as you move north or south, but varies from east to west. Also look at <code>f_ph</code> and <code>f_r</code>
</p>
<p><code>f_torus(x,y,z, P0, P1)</code>:</p>
<ul>
<li><code>P0</code> : Major radius</li>
<li><code>P1</code> : Minor radius</li>
</ul>
<p><code>f_torus2(x,y,z, P0, P1, P2)</code>: This is different from the f_torus function which just has the major and minor radii as
parameters.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a
negated function)</li>
<li><code>P1</code> : Major radius</li>
<li><code>P2</code> : Minor radius</li>
</ul>
<p><code>f_torus_gumdrop(x,y,z, P0)</code>: The <em>Torus Gumdrop</em> surface is something like a torus with a couple of gumdrops hanging
off the end.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_umbrella(x,y,z, P0)</code>:</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
</ul>
<p><code>f_witch_of_agnesi(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The <em>Witch of Agnesi</em> surface looks something like a witches
hat.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Controls the width of the spike. The height of the spike is always about 1 unit</li>
</ul>
<p><code>f_witch_of_agnesi_2d(x,y,z, P0, P1, P2, P3, P4, P5)</code>: The 2d version of the <em>Witch of Agnesi</em> curve can be extruded in
the Z direction or rotated about various axes by use of the SOR parameters.</p>
<ul>
<li><code>P0</code> : <a href="r3_8.html#r3_8_1_1_8_3">Field Strength</a> (Needs a negative field strength or a negated function)</li>
<li><code>P1</code> : Controls the size of the spike</li>
<li><code>P2</code> : Controls the height of the spike</li>
<li><code>P3</code> : <a href="r3_8.html#r3_8_1_1_8_5">SOR Switch</a></li>
<li><code>P4</code> : <a href="r3_8.html#r3_8_1_1_8_6">SOR Offset</a></li>
<li><code>P5</code> : <a href="r3_8.html#r3_8_1_1_8_7">SOR Angle</a></li>
</ul>
</div>
<a name="r3_8_1_1_8_10"></a>
<div class="content-level-h6" contains="Pre defined functions" id="r3_8_1_1_8_10">
<h6>3.8.1.1.8.10 Pre defined functions</h6>
<p><code>eval_pigment(Pigm, Vect)</code>: This macro evaluates the color of a pigment at a specific point. Some pigments require more
information than simply a point, slope pattern based pigments for example, and will not work with this macro. However, most pigments will
work fine.</p>
<p>Parameters:</p>
<ul>
<li><code>Vect</code> = The point at which to evaluate the pigment.</li>
<li><code>Pigm</code> = The pigment to evaluate.</li>
</ul>
<p><code>f_snoise3d(x, y, z)</code>: Just like f_noise3d(), but returns values in the range [-1, 1].</p>
<p><code>f_sine_wave(val, amplitude, frequency)</code>: Turns a ramping waveform into a sine waveform.</p>
<p><code>f_scallop_wave(val, amplitude, frequency)</code>: Turns a ramping waveform into a <em>scallop wave</em> waveform.
</p>
</div>
<a name="r3_8_1_1_8_11"></a>
<div class="content-level-h6" contains="Pattern functions" id="r3_8_1_1_8_11">
<h6>3.8.1.1.8.11 Pattern functions</h6>
<p>Predefined pattern functions, useful for building custom function patterns or performing <em>displacement mapping</em> on isosurfaces.
Many of them are not really useful for these purposes, they are simply included for completeness.</p>
<p>Some are not implemented at all because they require special parameters that must be specified in the definition, or information that is
not available to pattern functions. For this reason, you probably would want to define your own versions of these functions.
</p>
<p>All of these functions take three parameters, the XYZ coordinates of the point to evaluate the pattern at.</p>
<dl>
<dt><code>f_agate(x, y, z)</code></dt>
<dt><code>f_boxed(x, y, z)</code></dt>
<dt><code>f_bozo(x, y, z)</code></dt>
<dt><code>f_brick(x, y, z)</code></dt>
<dt><code>f_bumps(x, y, z)</code></dt>
<dt><code>f_checker(x, y, z)</code></dt>
<dt><code>f_crackle(x, y, z)</code></dt>
<dd> This pattern has many more options, this function uses the defaults.</dd>
<dt><code>f_cylindrical(x, y, z)</code></dt>
<dt><code>f_dents(x, y, z)</code></dt>
<dt><code>f_gradientX(x, y, z)</code></dt>
<dt><code>f_gradientY(x, y, z)</code></dt>
<dt><code>f_gradientZ(x, y, z)</code></dt>
<dt><code>f_granite(x, y, z)</code></dt>
<dt><code>f_hexagon(x, y, z)</code></dt>
<dt><code>f_leopard(x, y, z)</code></dt>
<dt><code>f_mandel(x, y, z)</code></dt>
<dd> Only the basic mandel pattern is implemented, its variants
and the other fractal patterns are not implemented.</dd>
<dt><code>f_marble(x, y, z)</code></dt>
<dt><code>f_onion(x, y, z)</code></dt>
<dt><code>f_planar(x, y, z)</code></dt>
<dt><code>f_radial(x, y, z)</code></dt>
<dt><code>f_ripples(x, y, z)</code></dt>
<dt><code>f_spherical(x, y, z)</code></dt>
<dt><code>f_spiral1(x, y, z)</code></dt>
<dt><code>f_spiral2(x, y, z)</code></dt>
<dt><code>f_spotted(x, y, z)</code></dt>
<dt><code>f_waves(x, y, z)</code></dt>
<dt><code>f_wood(x, y, z)</code></dt>
<dt><code>f_wrinkles(x, y, z)</code></dt>
</dl></div>
<a name="r3_8_1_1_9"></a>
<div class="content-level-h5" contains="Glass.inc" id="r3_8_1_1_9">
<h5>3.8.1.1.9 Glass.inc</h5>
<p>This file contains glass materials using new features introduced in POV 3.1 and 3.5. The old glass.inc
file is still included for backwards compatibility (it is named glass_old.inc, and is included
by glass.inc, so you do not need to change any scenes), but these materials will give more
realistic results.</p>
</div>
<a name="r3_8_1_1_9_1"></a>
<div class="content-level-h6" contains="Glass colors (with transparency)" id="r3_8_1_1_9_1">
<h6>3.8.1.1.9.1 Glass colors (with transparency)</h6>
<table summary="glass.inc glass colors with transparency" cellspacing="5" cellpadding="5" width="100%">
<tr valign="top">
<td width="33%">
<code>
Col_Glass_Beerbottle<br>
Col_Glass_Bluish<br>
Col_Glass_Clear<br>
Col_Glass_Dark_Green<br>
</code>
</td>
<td width="33%">
<code>
Col_Glass_General<br>
Col_Glass_Green<br>
Col_Glass_Old<br>
Col_Glass_Orange<br>
</code>
</td>
<td width="33%">
<code>
Col_Glass_Ruby<br>
Col_Glass_Vicksbottle<br>
Col_Glass_Winebottle<br>
Col_Glass_Yellow<br>
</code>
</td>
</tr>
</table>
</div>
<a name="r3_8_1_1_9_2"></a>
<div class="content-level-h6" contains="Glass colors (without transparency, for fade_color)" id="r3_8_1_1_9_2">
<h6>3.8.1.1.9.2 Glass colors (without transparency, for fade_color)</h6>
<table summary="glass.inc glass colors without transparency for fade_color" cellspacing="5" cellpadding="5" width="100%">
<tr valign="top">
<td width="33%">
<code>
Col_Amber_01<br>
Col_Amber_02<br>
Col_Amber_03<br>
Col_Amber_04<br>
Col_Amber_05<br>
</code>
</td>
<td width="33%">
<code>
Col_Amber_06<br>
Col_Amber_07<br>
Col_Amber_08<br>
Col_Amber_09<br>
Col_Amethyst_01<br>
</code>
</td>
<td width="33%">
<code>
Col_Amethyst_02<br>
Col_Amethyst_03<br>
Col_Amethyst_04<br>
Col_Amethyst_05<br>
Col_Amethyst_06<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Apatite_01<br>
Col_Apatite_02<br>
Col_Apatite_03<br>
Col_Apatite_04<br>
Col_Apatite_05<br>
</code>
</td>
<td>
<code>
Col_Aquamarine_01<br>
Col_Aquamarine_02<br>
Col_Aquamarine_03<br>
Col_Aquamarine_04<br>
Col_Aquamarine_05<br>
</code>
</td>
<td>
<code>
Col_Aquamarine_06<br>
Col_Azurite_01<br>
Col_Azurite_02<br>
Col_Azurite_03<br>
Col_Azurite_04<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Beerbottle<br>
Col_Blue_01<br>
Col_Blue_02<br>
Col_Blue_03<br>
Col_Blue_04<br>
</code>
</td>
<td>
<code>
Col_Citrine_01<br>
Col_Dark_Green<br>
Col_Emerald_01<br>
Col_Emerald_02<br>
Col_Emerald_03<br>
</code>
</td>
<td>
<code>
Col_Emerald_04<br>
Col_Emerald_05<br>
Col_Emerald_06<br>
Col_Emerald_07<br>
Col_Fluorite_01<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Fluorite_02<br>
Col_Fluorite_03<br>
Col_Fluorite_04<br>
Col_Fluorite_05<br>
Col_Fluorite_06<br>
</code>
</td>
<td>
<code>
Col_Fluorite_07<br>
Col_Fluorite_08<br>
Col_Fluorite_09<br>
Col_Green<br>
Col_Green_01<br>
</code>
</td>
<td>
<code>
Col_Green_02<br>
Col_Green_03<br>
Col_Green_04<br>
Col_Gypsum_01<br>
Col_Gypsum_02<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Gypsum_03<br>
Col_Gypsum_04<br>
Col_Gypsum_05<br>
Col_Gypsum_06<br>
Col_Orange<br>
</code>
</td>
<td>
<code>
Col_Red_01<br>
Col_Red_02<br>
Col_Red_03<br>
Col_Red_04<br>
Col_Ruby<br>
</code>
</td>
<td>
<code>
Col_Ruby_01<br>
Col_Ruby_02<br>
Col_Ruby_03<br>
Col_Ruby_04<br>
Col_Ruby_05<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Sapphire_01<br>
Col_Sapphire_02<br>
Col_Sapphire_03<br>
Col_Topaz_01<br>
Col_Topaz_02<br>
</code>
</td>
<td>
<code>
Col_Topaz_03<br>
Col_Tourmaline_01<br>
Col_Tourmaline_02<br>
Col_Tourmaline_03<br>
Col_Tourmaline_04<br>
</code>
</td>
<td>
<code>
Col_Tourmaline_05<br>
Col_Tourmaline_06<br>
Col_Vicksbottle<br>
Col_Winebottle<br>
Col_Yellow<br>
</code>
</td>
</tr>
<tr valign="top">
<td>
<code>
Col_Yellow_01<br>
Col_Yellow_02<br>
Col_Yellow_03<br>
Col_Yellow_04<br>
</code>
</td>
<td>
</td>
<td>
</td>
</tr>
</table>
</div>
<a name="r3_8_1_1_9_3"></a>
<div class="content-level-h6" contains="Glass finishes" id="r3_8_1_1_9_3">
<h6>3.8.1.1.9.3 Glass finishes</h6>
<code>F_Glass5, ..., F_Glass10</code>
</div>
<a name="r3_8_1_1_9_4"></a>
<div class="content-level-h6" contains="Glass interiors" id="r3_8_1_1_9_4">
<h6>3.8.1.1.9.4 Glass interiors</h6>
<dl>
<dt><code>I_Glass1, ..., I_Glass4</code></dt>
<dd><code>I_Glass_Fade_Sqr1</code> (identical to <code>I_Glass1</code>)</dd>
<dd><code>I_Glass_Fade_Exp1</code> (identical to <code>I_Glass2</code>)</dd>
<dd><code>I_Glass_Fade_Exp2</code> (identical to <code>I_Glass3</code>)</dd>
<dd><code>I_Glass_Fade_Exp3</code> (identical to <code>I_Glass4</code>)</dd>
<dd>Glass interiors with various fade_power settings.</dd>
<dt><code>I_Glass_Dispersion1, I_Glass_Dispersion2</code></dt>
<dd>Glass interiors with dispersion. <code>I_Glass_Dispersion1</code> has
an approximately natural glass dispersion. <code>I_Glass_Dispersion2</code> is exaggerated.</dd>
<dt><code>I_Glass_Caustics1, I_Glass_Caustics2</code></dt>
<dd>Glass interiors with caustics. </dd>
</dl>
</div>
<a name="r3_8_1_1_9_5"></a>
<div class="content-level-h6" contains="Glass interior macros" id="r3_8_1_1_9_5">
<h6>3.8.1.1.9.5 Glass interior macros</h6>
<p><code>I_Glass_Exp(Distance)</code> and <code>I_Glass_Sqr(Distance)</code>: These macros return an interior with either exponential or fade_power 2 falloff, and a fade_distance of Distance.</p></div>
<a name="r3_8_1_1_10"></a>
<div class="content-level-h5" contains="Golds.inc" id="r3_8_1_1_10">
<h5>3.8.1.1.10 Golds.inc</h5>
<p>This file has its own versions of <code>F_MetalA</code> through <code>F_MetalB</code>. The gold textures themselves are <code>T_Gold_1A</code> through <code>T_Gold_5E</code>.</p></div>
<a name="r3_8_1_1_11"></a>
<div class="content-level-h5" contains="Logo.inc" id="r3_8_1_1_11">
<h5>3.8.1.1.11 Logo.inc</h5>
<p>The official POV-Ray logo designed by Chris Colefax, in two versions</p>
<dl>
<dt><code>Povray_Logo</code></dt>
<dd> The POV-Ray logo object</dd>
<dt><code>Povray_Logo_Prism</code></dt>
<dd> The POV-Ray logo as a prism</dd>
<dt><code>Povray_Logo_Bevel</code></dt>
<dd>The POV-Ray logo as a beveled prism</dd>
</dl></div>
<a name="r3_8_1_1_12"></a>
<div class="content-level-h5" contains="Makegrass.inc" id="r3_8_1_1_12">
<h5>3.8.1.1.12 Makegrass.inc</h5>
<p>makegrass.inc - grass and prairie building macros.</p>
<dl>
<dt><code>MakeBlade()</code></dt>
<dd>creates an individual blade of grass as mesh.</dd>
<dt><code>MakeGrassPatch()</code></dt>
<dd>creates a patch of grass (mesh)<br>
optional with saving the mesh in a text file.</dd>
<dt><code>MakePrairie()</code></dt>
<dd>creates a prairie of grass patches.</dd>
</dl></div>
<a name="r3_8_1_1_13"></a>
<div class="content-level-h5" contains="Math.inc" id="r3_8_1_1_13">
<h5>3.8.1.1.13 Math.inc</h5>
<p>This file contains many general math functions and macros.</p>
</div>
<a name="r3_8_1_1_13_1"></a>
<div class="content-level-h6" contains="Float functions and macros" id="r3_8_1_1_13_1">
<h6>3.8.1.1.13.1 Float functions and macros</h6>
<p><code>even(N)</code>: A function to test whether N is even, returns 1 when true, 0 when false.</p>
<p>Parameters:</p>
<ul>
<li><code>N</code> = Input value</li>
</ul>
<p><code>odd(N)</code>: A function to test whether N is odd, returns 1 when true, 0 when false.</p>
<p>Parameters:</p>
<ul>
<li><code>N</code> = Input value</li>
</ul>
<p><code>Interpolate(GC, GS, GE, TS, TE, Method)</code>: Interpolation macro, interpolates between the float values <code>TS</code> and <code>TE</code>. The method of interpolation is cosine, linear or exponential. The position where to evaluate the interpolation is determined by the position of <code>GC</code> in the range <code>GS</code> - <code>GE</code>. See the example below.</p>
<p>Parameters:</p>
<ul>
<li><code>GC</code> = global current, float value within the range GS - GE</li>
<li><code>GS</code> = global start</li>
<li><code>GE</code> = global end</li>
<li><code>TS</code> = target start</li>
<li><code>TE</code> = target end</li>
<li><code>Method</code> = interpolation method, float value:
<ul>
<li><code>Method</code> < 0 : exponential, using the value of Method as exponent.</li>
<li><code>Method</code> = 0 : cosine interpolation.</li>
<li><code>Method</code> > 0 : exponential, using the value of Method as exponent.
<ul>
<li><code>Method</code> = 1 : linear interpolation,</li>
</ul></li>
</ul></li>
</ul>
<p>
Example:
</p>
<pre>
#declare A = Interpolate(0.5, 0, 1, 0, 10, 1);
#debug str(A,0,2)
// result A = 5.00
#declare A = Interpolate(0.0,-2, 2, 0, 10, 1);
#debug str(A,0,2)
// result A = 5.00
#declare A = Interpolate(0.5, 0, 1, 0, 10, 2);
#debug str(A,0,2)
// result A = 2.50
</pre>
<p><code>Mean(A)</code>: A macro to compute the average of an array of values.</p>
<p>Parameters:</p>
<ul>
<li><code>A</code> = An array of float or vector values.</li>
</ul>
<p><code>Std_Dev(A, M)</code>: A macro to compute the standard deviation.</p>
<p>Parameters:</p>
<ul>
<li><code>A</code> = An array of float values.</li>
<li><code>M</code> = Mean of the floats in the array.</li>
</ul>
<p><code>GetStats(A)</code>: This macro declares a global array named <code>StatisticsArray</code> containing: N, Mean, Min, Max, and Standard Deviation</p>
<p>Parameters:</p>
<ul>
<li><code>A</code> = An array of float values.</li>
</ul>
<p><code>Histogram(ValArr, Intervals)</code>: This macro declares a global, 2D array named <code>HistogramArray</code>. The first value in the array is the center of the interval/bin, the second the number of values in that interval.</p>
<p>Parameters:</p>
<ul>
<li><code>ValArr</code> = An array with values.</li>
<li><code>Intervals</code> = The desired number of intervals/bins.</li>
</ul>
<p><code>sind(v), cosd(v), tand(v), asind(v), acosd(v), atand(v), atan2d(a, b)</code>: These functions are versions of the
trigonometric functions using degrees, instead of radians, as the angle unit.</p>
<p>Parameters:</p>
<ul>
<li>The same as for the analogous built-in trig function.</li>
</ul>
<p><code>max3(a, b, c)</code>: A function to find the largest of three numbers.</p>
<p>Parameters:</p>
<ul>
<li><code>a, b, c</code> = Input values.</li>
</ul>
<p><code>min3(a, b, c)</code>: A function to find the smallest of three numbers.</p>
<p>Parameters:</p>
<ul>
<li><code>a, b, c</code> = Input values.</li>
</ul>
<p><code>f_sqr(v)</code>: A function to square a number.</p>
<p>Parameters:</p>
<ul>
<li><code>v</code> = Input value.</li>
</ul>
<p><code>sgn(v)</code>: A function to show the sign of the number. Returns -1 or 1 depending on the sign of v.</p>
<p>Parameters:</p>
<ul>
<li><code>v</code> = Input value.</li>
</ul>
<p><code>clip(V, Min, Max)</code>: A function that limits a value to a specific range, if it goes outside that range it is <em>clipped</em>. Input values larger than <code>Max</code> will return <code>Max</code>, those less than <code>Min</code> will return <code>Min</code>.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input value.</li>
<li><code>Min</code> = Minimum of output range.</li>
<li><code>Max</code> = Maximum of output range.</li>
</ul>
<p><code>clamp(V, Min, Max)</code>: A function that limits a value to a specific range, if it goes outside that range it is <em>clamped</em> to this range, wrapping around. As the input increases or decreases outside the given range, the output will
repeatedly sweep through that range, making a <em>sawtooth</em> waveform.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input value.</li>
<li><code>Min</code> = Minimum of output range.</li>
<li><code>Max</code> = Maximum of output range.</li>
</ul>
<p><code>adj_range(V, Min, Max)</code>: A function that adjusts input values in the range [0, 1] to a given range. An input value of 0 will return <code>Min</code>, 1 will return <code>Max</code>, and values outside the [0, 1] range will be linearly extrapolated (the graph will continue in a straight line).</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input value.</li>
<li><code>Min</code> = Minimum of output range.</li>
<li><code>Max</code> = Maximum of output range.</li>
</ul>
<p><code>adj_range2(V, InMin, InMax, OutMin, OutMax)</code>: Like <code>adj_range()</code>, but adjusts input values in the range <code>[InMin, InMax]</code> to the range <code>[OutMin, OutMax]</code>.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input value.</li>
<li><code>InMin</code> = Minimum of input range.</li>
<li><code>InMax</code> = Maximum of input range.</li>
<li><code>OutMin</code> = Minimum of output range.</li>
<li><code>OutMax</code> = Maximum of output range.</li>
</ul>
</div>
<a name="r3_8_1_1_13_2"></a>
<div class="content-level-h6" contains="Vector functions and macros" id="r3_8_1_1_13_2">
<h6>3.8.1.1.13.2 Vector functions and macros</h6>
<p>These are all macros in the current version because functions can not take vector parameters, but this may change in the future.</p>
<p><code>VSqr(V)</code>: Square each individual component of a vector, equivalent to <code>V*V</code>.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Vector to be squared.</li>
</ul>
<p><code>VPow(V, P), VPow5D(V, P)</code>: Raise each individual component of a vector to a given power.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
<li><code>P</code> = Power.</li>
</ul>
<p><code>VEq(V1, V2)</code>: Tests for equal vectors, returns true if all three components of <code>V1</code>equal the respective components of <code>V2</code>.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = The vectors to be compared.</li>
</ul>
<p><code>VEq5D(V1, V2)</code>: A 5D version of <code>VEq()</code>. Tests for equal vectors, returns true if all 5 components of <code>V1 </code>equal the respective components of <code>V2</code>.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = The vectors to be compared.</li>
</ul>
<p><code>VZero(V)</code>: Tests for a < 0, 0, 0> vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VZero5D(V)</code>: Tests for a < 0, 0, 0, 0, 0> vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VLength5D(V)</code>: Computes the length of a 5D vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VNormalize5D(V)</code>: Normalizes a 5D vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VDot5D(V1, V2)</code>: Computes the dot product of two 5D vectors. See vdot() for more information on dot products.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VCos_Angle(V1, V2)</code>: Compute the cosine of the angle between two vectors.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = Input vectors.</li>
</ul>
<p><code>VAngle(V1, V2), VAngleD(V1, V2)</code>: Compute the angle between two vectors. <code>VAngle()</code> returns the angle in radians, <code>VAngleD()</code> in degrees.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = Input vectors.</li>
</ul>
<p><code>VRotation(V1, V2, Axis)</code> and <code>VRotationD(V1, V2, Axis)</code>: Compute the rotation angle from V1 to V2 around Axis. Axis should be perpendicular to both V1 and V2. The output will be in the range between -pi and pi radians or between -180 degrees and 180 degrees if you are using the degree version. However, if Axis is set to <0,0,0> the output will always be positive or zero, the same result you will get with the VAngle() macros.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = Input vectors.</li>
</ul>
<p><code>VDist(V1, V2)</code>: Compute the distance between two points.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = Input vectors.</li>
</ul>
<p><code>VPerp_To_Vector(V)</code>: Find a vector perpendicular to the given vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VPerp_To_Plane(V1, V2)</code>: Find a vector perpendicular to both given vectors. In other words, perpendicular to the plane defined by the two input vectors.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, V2</code> = Input vectors.</li>
</ul>
<p><code>VPerp_Adjust(V1, Axis)</code>: Find a vector perpendicular to Axis and in the plane of V1 and Axis. In other words, the new vector is a version of V1 adjusted to be perpendicular to Axis.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, Axis</code> = Input vectors.</li>
</ul>
<p><code>VProject_Plane(V1, Axis)</code>: Project vector V1 onto the plane defined by Axis.</p>
<p>Parameters:</p>
<ul>
<li><code>V1</code> = Input vectors.</li>
<li><code>Axis</code> = Normal of the plane.</li>
</ul>
<p><code>VProject_Axis(V1, Axis)</code>: Project vector V1 onto the axis defined by Axis.</p>
<p>Parameters:</p>
<ul>
<li><code>V1, Axis</code> = Input vectors.</li>
</ul>
<p><code>VMin(V), VMax(V)</code>: Find the smallest or largest component of a vector.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Input vector.</li>
</ul>
<p><code>VWith_Len(V, Len)</code>: Create a vector parallel to a given vector but with a given length.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = Direction vector.</li>
<li><code>Len</code> = Length of desired vector.</li>
</ul>
</div>
<a name="r3_8_1_1_13_3"></a>
<div class="content-level-h6" contains="Vector Analysis" id="r3_8_1_1_13_3">
<h6>3.8.1.1.13.3 Vector Analysis</h6>
<p><code>SetGradientAccuracy(Value)</code>: All the macros below make use of a constant named <em>__Gradient_Fn_Accuracy_</em> for numerical approximation of the derivatives. This constant can be changed with the macro, the default value is 0.001.</p>
<p><code>fn_Gradient(Fn)</code>: A macro calculating the gradient of a function as a function.</p>
<p>Parameters:</p>
<ul>
<li><code>Fn</code> = function to calculate the gradient from.</li>
</ul>
<p>
Output: the length of the gradient as a function.
</p>
<p><code>fn_Gradient_Directional(Fn, Dir)</code>: A macro calculating the gradient of a function in one direction as a function.</p>
<p>Parameters:</p>
<ul>
<li><code>Fn</code> = function to calculate the gradient from.</li>
<li><code>Dir</code> = direction to calculate the gradient.</li>
</ul>
<p>
Output: the gradient in that direction as a function.
</p>
<p><code>fn_Divergence(Fnx, Fny, Fnz)</code>: A macro calculating the divergence of a (vector) function as a function.</p>
<p>Parameters:</p>
<ul>
<li><code>Fnx, Fny, Fnz</code>= x, y and z components of a vector function.</li>
</ul>
<p>
Output: the divergence as a function.
</p>
<p><code>vGradient(Fn, p0)</code>: A macro calculating the gradient of a function as a vector expression.</p>
<p>Parameters:</p>
<ul>
<li><code>Fn</code> = function to calculate the gradient from.</li>
<li><code>p0</code> = point where to calculate the gradient.</li>
</ul>
<p>
Output: the gradient as a vector expression.
</p>
<p><code>vCurl(Fnx, Fny, Fnz, p0)</code>: A macro calculating the curl of a (vector) function as a vector expression.</p>
<p>Parameters:</p>
<ul>
<li><code>Fnx, Fny, Fnz</code> = x, y and z components of a vector function.</li>
<li><code>p0</code> = point where to calculate the gradient.</li>
</ul>
<p>
Output: the curl as a vector expression
</p>
<p><code>Divergence(Fnx, Fny, Fnz, p0)</code>: A macro calculating the divergence of a (vector) function as a float expression.</p>
<p>Parameters:</p>
<ul>
<li><code>Fnx, Fny, Fnz</code> = x, y and z components of a vector function.</li>
<li><code>p0</code> = point where to calculate the gradient.</li>
</ul>
<p>
Output: the divergence as a float expression.
</p>
<p><code>Gradient_Length(Fn, p0)</code>: A macro calculating the length of the gradient of a function as a float expression.</p>
<p>Parameters:</p>
<ul>
<li><code>Fn</code> = function to calculate the gradient from.</li>
<li><code>p0</code> = point where to calculate the gradient.</li>
</ul>
<p>
Output: the length of the gradient as a float expression.
</p>
<p><code>Gradient_Directional(Fn, p0, Dir)</code>: A macro calculating the gradient of a function in one direction as a float expression.</p>
<p>Parameters:</p>
<ul>
<li><code>Fn</code> = function to calculate the gradient from.
<li><code>p0</code> = point where to calculate the gradient.
<li><code>Dir</code> = direction to calculate the gradient.
</ul>
<p>
Output: the gradient in that direction as a float expression
</p></div>
<a name="r3_8_1_1_14"></a>
<div class="content-level-h5" contains="Meshmaker.inc" id="r3_8_1_1_14">
<h5>3.8.1.1.14 Meshmaker.inc</h5>
<p>meshmaker.inc - various mesh2 objects by splines.</p>
<dl>
<dt><code>MSM(SplineArray, SplRes, Interp_type, InterpRes, FileName)</code></dt>
<dd>Generates a mesh2 from an array of splines and optionally writes the mesh2 object as a file of the given <code>FileName</code>.<br>
The uv_coordinates come from the square <0,0> - <1,1>.<br>
The spline is evaluated from t=0 to t=1. <br>
For the normal calculation, it is required that all splines (also linear_spline) have one extra
point before t=0 and after t=1.</dd>
<dt><code>BuildWriteMesh2(VecArr, NormArr, UVArr, U, V, FileName)</code></dt>
<dd>Generates and optionally writes a mesh2 object based on 3 input arrays,
the number of quads in U and V direction and a filename.<br>
<code>VecArr</code> : The array that contains the vertices of the triangles in the mesh.<br>
<code>NormArr</code> : The array with the normal vectors that go with the vertices.<br>
<code>UVArr</code> : The array containing the uv_vectors.<br>
<code>U</code> : The amount of subdivisions of the surface in the u-direction.<br>
<code>V</code> : The amount of subdivisions in the v-direction.<br>
Based on the U and V values the face_indices of the triangles in the mesh are calculated.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.
If is an empty string (""), no file will be written.<br>
If the file extension is 'obj' a Wavefront objectfile will be written.<br>
If the extension is 'pcm' a compressed mesh file is written.<br>
If a file name is given, the macro will first check if it already exists.<br>
If that is so, it will try to parse the existing file unless it's a '*.obj', '*.pcm' or '*.arr' file as POV-Ray
can not read them directly. In this case a new mesh will be generated,
but the existing files will _not_ be over-written.</dd>
<dt><code>BuildSpline(Arr, SplType)</code></dt>
<dd>A helper macro for MSM()<br>
Generates from a array <code>Arr</code> a spline of the given spline type <code>SplType</code>.</dd>
<dt><code>CheckFileName(FileName)</code></dt>
<dd>A helper macro for MSM()<br>
If Return has a value of 0 the mesh will not be build,
but it will be parsed from file.</dd>
<dt><code>LInterpolate(Val, Min, Max)</code></dt>
<dd>A helper macro for MSM()<br>
Linear interpolation of a vector or float between <code>Min</code> and <code>Max</code>.<br>
<code>Min</code> : minimal float value or vector.<br>
<code>Max</code> : Maximal float value or vector.<br>
<code>Val</code> : A float in the range 0 - 1.</dd>
<dt><code>RangeMM() = function(Val,Rmin,Rmax,Min,Max)</code></dt>
<dd>A helper function for MSM()<br>
Adjusts input values in the range [<code>RMin, RMax</code>] to fit in the range [Min, Max].
<code>Val</code>: A float value in the range [Rmin, Rmax].</dd>
<dt><code>Parametric(__F1__, __F2__, __F3__, UVmin, UVmax, Iter_U, Iter_V, FileName)</code></dt>
<dd>Generates a mesh2 object from the parametric uv functions <code>__F1__, __F2__, __F3__</code>
in the ranges between <code>UVmin</code> and <code>UVmax</code> with the iteration steps
<code>Iter_U</code> and <code>Iter_V</code> and optionally saves the mesh2 object as a file with the name <code>FileName</code>.</dd>
<dt><code>Paramcalc(UVmin, UVmax, Iter_U, Iter_V, FileName)</code></dt>
<dd>The kernel of the macro Parametric(). See <code>Parametric()</code>.</dd>
<dt><code> Prism1(Spl, ResSpl, PSpl, PRes, FileName)</code></dt>
<dd>Generates a mesh2 object by extruding the spline <code>Spl</code> along the y-axis with the resolution spline <code>ResSpl</code>.
In every step the spline is scaled by the 'relative' distance from the
y-axis of the second spline (PSpl).<br>
The uv_coordinates come from the square <0,0> - <1,1>.<br>
<code>Spl</code> : The spline to be extruded.<br>
The spline is evaluated from t=0 to t=1. For the normal calculation,<br>
it is required that all splines (also linear_spline) have one extra<br>
point before t=0 and after t=1.
<code>ResSpl</code> : The amount of triangles to be used along the spline.
<code>PSpl</code> : The spline that determines by what amount the extrusion<br>
is scaled in each step. The scaling is based on the relative distance from the y-axis.<br>
That is, at t=0 the scale is always 1, so that the start of the shape is<br>
identical to the spline <code>Spl</code>.<br>
PSpl also sets the height of the resulting shape (its y-value at t=1).<br>
The spline is evaluated from t=0 to t=1. For the normal calculation,<br>
it is required that all splines (also linear_spline) have one extra <br>
point before t=0 and after t=1. <br>
<code>FileName</code> : The name of the file to which the mesh will be written.<br>
If is an empty string (""), no file will be written. If a file name is given, the macro <br>
will first check if it already exists. If that is so, it will expect a <br>
mesh2 with the name "Surface" and try to parse the existing file.<br>
<dt><code>Lathe(Spl, ResSpl, Rot, ResRot, FileName)</code></dt>
<dd>This macro generates a mesh2 object by rotating a two-dimensional curve about the y-axis.<br>
The uv_coordinates come from the square <0,0> - <1,1>.<br>
<code>Spl</code> : The spline to be rotated.
The spline is evaluated from t=0 to t=1. For the normal calculation,
it is required that all splines (also linear_spline) have one extra
point before t=0 and after t=1.
<code>ResSpl</code> : The amount of triangles to be used along the spline.
<code>Rot</code> : The angle the spline has to be rotated.<br>
<code>ResRot</code> : The amount of triangles to be used in the circumference.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.<br>
If is an empty string (""), no file will be written.<br>
If the file extension is 'obj' a Wavefront objectfile will be written.<br>
If the extension is 'pcm' a compressed mesh file is written.<br>
If a file name is given, the macro will first check if it already exists.<br>
If that is so, it will try to parse the existing file unless it's a '*.obj', <br>
'*.pcm' or '*.arr' file as POV-Ray can not read them directly. In this case a new <br>
mesh will be generated, but the existing files will _not_ be over-written. </dd>
<dt><code>Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)</code></dt>
<dd>Generates a mesh2 'coons surface' defined by four splines, all attached head to tail to the previous / next one.<br>
The uv_coordinates come from the square <0,0> - <1,1>.<br>
<code>Spl1 - 4</code> : The four spline that define the surface.<br>
The splines are evaluated from t=0 to t=1. <br>
<code>Iter_U</code> : The resolution for the splines 1 and 3.<br>
<code>Iter_V</code> : The resolution for the splines 2 and 4.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.<br>
If is an empty string (""), no file will be written.<br>
If the file extension is 'obj' a Wavefront objectfile will be written.<br>
If the extension is 'pcm' a compressed mesh file is written.<br>
If a file name is given, the macro will first check if it already exists.<br>
If that is so, it will try to parse the existing file unless it's a '*.obj',<br>
'*.pcm' or '*.arr' file as POV-Ray can not read them directly. In this case a new<br>
mesh will be generated, but the existing files will _not_ be over-written.</dd>
<dt><code>TwoVarSurf(__Fuv, Urange, Vrange, Iter_U, Iter_V, FileName)</code></dt>
<dd>Generates a mesh2 object by extruding an uv-function.
<code>Urange</code> : The range in x direction.<br>
<code>Vrange</code> : The range in y direction.<br>
<code>Iter_U</code> : The resolution in x direction.<br>
<code>Iter_V</code> : The resolution in y direction.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.<br>
If is an empty string (""), no file will be written. If a file name is given, the macro <br>
will first check if it already exists. If that is so, it will expect a <br>
mesh2 with the name "Surface" and try to parse the existing file.</dd>
<dt><code>SweepSpline1(Track,Shape,Waist,U,V,Filename)</code></dt>
<dd>Generates a mesh2 object by extruding a spline <code>Shape</code> along <code>Track</code>
and optionally writes it as a file with method 1.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.
If is an empty string (""), no file will be written. If a file name is given, the macro <br>
will first check if it already exists. If that is so, it will expect a <br>
mesh2 with the name "Surface" and try to parse the existing file.</dd>
<dt><code>SweepSpline2(Track,Shape,Waist,U,V,Filename)</code></dt>
<dd>Generates a mesh2 object by extruding a spline <code>Shape</code> along <code>Track</code>
and optionally writes it as a file with method 2.<br>
<code>FileName</code> : The name of the file to which the mesh will be written.
If is an empty string (""), no file will be written. If a file name is given, the macro <br>
will first check if it already exists. If that is so, it will expect a <br>
mesh2 with the name "Surface" and try to parse the existing file.</dd>
<br>
</dl></div>
<a name="r3_8_1_1_15"></a>
<div class="content-level-h5" contains="Metals.inc" id="r3_8_1_1_15">
<h5>3.8.1.1.15 Metals.inc</h5>
<p>These files define several metal textures. The file metals.inc contains copper, silver, chrome, and brass textures, and golds.inc contains the gold textures. Rendering the demo files will come in useful in using these textures.</p>
<p><strong>Pigments:</strong></p>
<dl>
<dt><code>P_Brass1</code></dt>
<dd>Dark brown bronze.</dd>
<dt><code>P_Brass2</code></dt>
<dd>Somewhat lighter brown than Brass4. Old penny, in soft finishes.</dd>
<dt><code>P_Brass3</code></dt>
<dd>Used by Steve Anger's Polished_Brass. Slightly coppery.</dd>
<dt><code>P_Brass4</code></dt>
<dd>A little yellower than Brass1.</dd>
<dt><code>P_Brass5</code></dt>
<dd>Very light bronze, ranges from med tan to almost white.</dd>
</dl>
<dl>
<dt><code>P_Copper1</code></dt>
<dd>Bronze-like. Best in finish #C.</dd>
<dt><code>P_Copper2</code></dt>
<dd>Slightly brownish copper/bronze. Best in finishes #B-#D.</dd>
<dt><code>P_Copper3</code></dt>
<dd>Reddish-brown copper. Best in finishes #C-#E.</dd>
<dt><code>P_Copper4</code></dt>
<dd>Pink copper, like new tubing. Best in finishes #C-#E.</dd>
<dt><code>P_Copper5</code></dt>
<dd>Bronze in softer finishes, gold in harder finishes.</dd>
</dl>
<dl>
<dt><code>P_Chrome1</code></dt>
<dd>20% Gray. Used in Steve Anger's Polished_Chrome.</dd>
<dt><code>P_Chrome2</code></dt>
<dd>Slightly blueish 60% gray. Good steel w/finish #A.</dd>
<dt><code>P_Chrome3</code></dt>
<dd>50% neutral gray.</dd>
<dt><code>P_Chrome4</code></dt>
<dd>75% neutral gray.</dd>
<dt><code>P_Chrome5</code></dt>
<dd>95% neutral gray.</dd>
</dl>
<dl>
<dt><code>P_Silver1</code></dt>
<dd>Yellowish silverplate. Somewhat tarnished looking.</dd>
<dt><code>P_Silver2</code></dt>
<dd>Not quite as yellowish as Silver1 but more so than Silver3.</dd>
<dt><code>P_Silver3</code></dt>
<dd>Reasonably neutral silver.</dd>
<dt><code>P_Silver4</code></dt>
<dt><code>P_Silver5</code></dt>
</dl>
<p><strong>Finishes:</strong></p>
<dl>
<dt><code>F_MetalA</code></dt>
<dd>Very soft and dull.</dd>
<dt><code>F_MetalB</code></dt>
<dd>Fairly soft and dull.</dd>
<dt><code>F_MetalC</code></dt>
<dd>Medium reflectivity. Holds color well.</dd>
<dt><code>F_MetalD</code></dt>
<dd>Very hard and highly polished. High reflectivity.</dd>
<dt><code>F_MetalE</code></dt>
<dd>Very highly polished and reflective.</dd>
</dl>
<p><strong>Textures:</strong></p>
<dl>
<dt><code>T_Brass_1A to T_Brass_5E</code></dt>
<dt><code>T_Copper_1A to T_Copper_5E</code></dt>
<dt><code>T_Chrome_1A to T_Chrome_5E</code></dt>
<dt><code>T_Silver_1A to T_Silver_5E</code></dt>
</dl></div>
<a name="r3_8_1_1_16"></a>
<div class="content-level-h5" contains="Rad_def.inc" id="r3_8_1_1_16">
<h5>3.8.1.1.16 Rad_def.inc</h5>
<p>This file defines a macro that sets some common radiosity settings. These settings are extremely general and are intended for ease of use, and do not necessarily give the best results.</p>
<p>Usage:</p>
<pre>
#include "rad_def.inc"
global_settings {
...
radiosity {
Rad_Settings(Setting, Normal, Media)
}
}
</pre>
<p>Parameters:</p>
<ul>
<li>Setting = Quality setting. Use one of the predefined constants:</li>
<ul>
<li>Radiosity_Default</li>
<li>Radiosity_Debug</li>
<li>Radiosity_Fast</li>
<li>Radiosity_Normal</li>
<li>Radiosity_2Bounce</li>
<li>Radiosity_Final</li>
<li>Radiosity_OutdoorLQ</li>
<li>Radiosity_OutdoorHQ</li>
<li>Radiosity_OutdoorLight</li>
<li>Radiosity_IndoorLQ</li>
<li>Radiosity_IndoorHQ</li>
</ul>
<li>Normal = Boolean value, whether or not to use surface normal modifiers for radiosity samples.</li>
<li>Media = Boolean value, whether or not to calculate media for radiosity samples.</li>
</ul></div>
<a name="r3_8_1_1_17"></a>
<div class="content-level-h5" contains="Rand.inc" id="r3_8_1_1_17">
<h5>3.8.1.1.17 Rand.inc</h5>
<p>A collection of macros for generating random numbers, as well as 4 predefined random number streams: <code>RdmA, RdmB, RdmC,</code> and <code>RdmD</code>. There are macros for creating random numbers in a flat distribution (all numbers equally likely) in various ranges, and a variety of other distributions.</p>
</div>
<a name="r3_8_1_1_17_1"></a>
<div class="content-level-h6" contains="Flat Distributions" id="r3_8_1_1_17_1">
<h6>3.8.1.1.17.1 Flat Distributions</h6>
<p><code>SRand(Stream)</code>: <em>Signed rand()</em>, returns random numbers in the range [-1, 1].</p>
<p>Parameters:</p>
<ul>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>RRand(Min, Max, Stream)</code>: Returns random numbers in the range [Min, Max].</p>
<p>Parameters:</p>
<ul>
<li><code>Min</code> = The lower end of the output range.</li>
<li><code>Max</code> = The upper end of the output range.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>VRand(Stream)</code>: Returns random vectors in a box from < 0, 0, 0> to < 1, 1, 1></p>
<p>Parameters:</p>
<ul>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>VRand_In_Box(PtA, PtB, Stream)</code>: Like VRand(), this macro returns a random vector in a box, but this version lets you specify the two corners of the box.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA</code> = Lower-left-bottom corner of box.</li>
<li><code>PtB</code> = Upper-right-top corner of box.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>VRand_In_Sphere(Stream)</code>: Returns a random vector in a unit-radius sphere located at the origin.</p>
<p>Parameters:</p>
<ul>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>VRand_On_Sphere(Stream)</code>: Returns a random vector on the surface of a unit-radius sphere located at the origin.</p>
<p>Parameters:</p>
<ul>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>VRand_In_Obj(Object, Stream)</code>: This macro takes a solid object and returns a random point that is inside it. It does this by randomly sampling the bounding box of the object, and can be quite slow if the object occupies a small percentage of the volume of its bounding box (because it will take more attempts to find a point inside the object). This macro is best used on finite, solid objects (non-solid objects, such as meshes and bezier patches, do not have a defined <em>inside</em>, and will not work).</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object the macro chooses the points from.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
</div>
<a name="r3_8_1_1_17_2"></a>
<div class="content-level-h6" contains="Other Distributions" id="r3_8_1_1_17_2">
<h6>3.8.1.1.17.2 Other Distributions</h6>
</div>
<a name="r3_8_1_1_17_3"></a>
<div class="content-level-h6" contains="Continuous Symmetric Distributions" id="r3_8_1_1_17_3">
<h6>3.8.1.1.17.3 Continuous Symmetric Distributions</h6>
<p><code>Rand_Cauchy(Mu, Sigma, Stream)</code>: Cauchy distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean.</li>
<li><code>Sigma</code> = Standard deviation.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Student(N, Stream)</code>: Student's distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>N</code> = degrees of freedom.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Normal(Mu, Sigma, Stream)</code>: Normal distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean.</li>
<li><code>Sigma</code> = Standard deviation.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Gauss(Mu, Sigma, Stream)</code>: Gaussian distribution. Like Rand_Normal(), but a bit faster.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean.</li>
<li><code>Sigma</code> = Standard deviation.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
</div>
<a name="r3_8_1_1_17_4"></a>
<div class="content-level-h6" contains="Continuous Skewed Distributions" id="r3_8_1_1_17_4">
<h6>3.8.1.1.17.4 Continuous Skewed Distributions</h6>
<p><code>Rand_Spline(Spline, Stream)</code>: This macro takes a spline describing the desired distribution. The T value of the spline is the output value, and the .y value its chance of occuring.</p>
<p>Parameters:</p>
<ul>
<li><code>Spline</code> = A spline determining the distribution.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Gamma(Alpha, Beta, Stream)</code>: Gamma distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Alpha</code> = Shape parameter > 0.</li>
<li><code>Beta</code> = Scale parameter > 0.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Beta(Alpha, Beta, Stream)</code>: Beta variate.</p>
<p>Parameters:</p>
<ul>
<li><code>Alpha</code> = Shape Gamma1.</li>
<li><code>Beta</code> = Scale Gamma2.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Chi_Square(N, Stream)</code>: Chi Square random variate.</p>
<p>Parameters:</p>
<ul>
<li><code>N</code> = Degrees of freedom (integer).</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_F_Dist(N, M, Stream)</code>: F-distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>N, M</code> = Degrees of freedom.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Tri(Min, Max, Mode, Stream)</code>: Triangular distribution </p>
<p>Parameters:</p>
<ul>
<li><code>Min, Max, Mode</code>: Min < Mode < Max.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Erlang(Mu, K, Stream)</code>: Erlang variate.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean >= 0.</li>
<li><code>K</code> = Number of exponential samples.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Exp(Lambda, Stream)</code>: Exponential distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Lambda</code> = rate = 1/mean.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Lognormal(Mu, Sigma, Stream)</code>: Lognormal distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean.</li>
<li><code>Sigma</code> = Standard deviation.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Pareto(Alpha, Stream)</code>: Pareto distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Alpha</code> = ?</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Weibull(Alpha, Beta, Stream)</code>: Weibull distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Alpha</code> = ?</li>
<li><code>Beta</code> = ?</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
</div>
<a name="r3_8_1_1_17_5"></a>
<div class="content-level-h6" contains="Discrete Distributions " id="r3_8_1_1_17_5">
<h6>3.8.1.1.17.5 Discrete Distributions </h6>
<p><code>Rand_Bernoulli(P, Stream)</code> and <code>Prob(P, Stream)</code>: Bernoulli distribution. Output is true with probability equal to the value of P and false with a probability of 1 - P.</p>
<p>Parameters:</p>
<ul>
<li><code>P</code> = probability range (0-1).</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Binomial(N, P, Stream)</code>: Binomial distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>N</code> = Number of trials.</li>
<li><code>P</code> = Probability (0-1)</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Geo(P, Stream)</code>: Geometric distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>P</code> = Probability (0-1).</li>
<li><code>Stream</code> = Random number stream.</li>
</ul>
<p><code>Rand_Poisson(Mu, Stream)</code>: Poisson distribution.</p>
<p>Parameters:</p>
<ul>
<li><code>Mu</code> = Mean.</li>
<li><code>Stream</code> = Random number stream.</li>
</ul></div>
<a name="r3_8_1_1_18"></a>
<div class="content-level-h5" contains="Screen.inc" id="r3_8_1_1_18">
<h5>3.8.1.1.18 Screen.inc</h5>
<p>Screen.inc will enable you to place objects and textures right in front of the camera. When you move the camera, the objects placed with screen.inc will follow the movement and stay in the same position on the screen. One use of this is to place your signature or a logo in the corner of the image.</p>
<p>You can only use screen.inc with the perspective camera. Screen.inc will automatically create a default camera definition for you when it is included. All aspects of the camera can than be changed, by invoking the appropriate 'Set_Camera_...' macros in your scene. After calling these setup macros you can use the macros Screen_Object and Screen_Plane.</p>
<p class="Note"><strong>Note:</strong> Even though objects aligned using screen.inc follow the camera, they are still part of the scene. That means that they will be affected by perspective, lighting, the surroundings etc.</p>
<p>For an example of use, see the screen.pov demo file.</p>
<p><code>Set_Camera_Location(Loc)</code>: Changes the position of the default camera to a new location as specified by the <code>Loc</code> vector.</p>
<p><code>Set_Camera_Look_At(LookAt)</code>: Changes the position the default camera looks at to a new location as specified by the <code>LookAt</code> vector.</p>
<p><code>Set_Camera_Aspect_Ratio(Aspect)</code>: Changes the default aspect ratio, <code>Aspect</code> is a float value, usually width divided by the height of the image.</p>
<p><code>Set_Camera_Aspect(Width,Height)</code>: Changes the default aspect ratio of the camera.</p>
<p><code>Set_Camera_Sky(Sky)</code>: Sets a new Sky-vector for the camera.</p>
<p><code>Set_Camera_Zoom(Zoom)</code>: The amount to zoom in or out, <code>Zoom</code> is a float.</p>
<p><code>Set_Camera_Angle(Angle)</code>: Sets a new camera angle.</p>
<p><code>Set_Camera(Location, LookAt, Angle)</code>: Set <code>location</code>, <code>look_at</code> and <code>angle</code> in one go.</p>
<p><code>Reset_Camera()</code>: Resets the camera to its default values.</p>
<p><code>Screen_Object (Object, Position, Spacing, Confine, Scaling)</code>: Puts an object in front of the camera.</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object to place in front of the screen.</li>
<li><code>Position</code> = UV coordinates for the object. <0,0> is lower left corner of the screen and <1,1> is upper right corner.</li>
<li><code>Spacing</code> = Float describing minimum distance from object to the borders. UV vector can be used to get different horizontal and vertical spacing.</li>
<li><code>Confine</code> = Set to true to confine objects to visible screen area. Set to false to allow objects to be outside visible screen area.</li>
<li><code>Scaling</code> = If the object intersects or interacts with the scene, try to move it closer to the camera by decreasing Scaling.</li>
</ul>
<p><code>Screen_Plane (Texture, Scaling, BLCorner, TRCorner)</code>: Screen_Plane is a macro that will place a texture of your choice on a plane right in front of the camera.</p>
<p>Parameters:</p>
<ul>
<li><code>Texture </code> = The texture to be displayed on the camera plane. <0,0,0> is lower left corner and <1,1,0> is upper right corner.</li>
<li><code>Scaling </code> = If the plane intersects or interacts with the scene, try to move it closer to the camera by decreasing Scaling.</li>
<li><code>BLCorner </code> = The bottom left corner of the Screen_Plane.</li>
<li><code>TRCorner </code> = The top right corner of the Screen_Plane.</li>
</ul></div>
<a name="r3_8_1_1_19"></a>
<div class="content-level-h5" contains="Shapes.inc" id="r3_8_1_1_19">
<h5>3.8.1.1.19 Shapes.inc</h5>
<p>These files contain predefined shapes and shape-generation macros.</p>
<p><em>shapes.inc</em> includes <em>shapes_old.inc</em> and contains many macros for working
with objects, and for creating special objects, such as bevelled text, spherical height fields,
and rounded shapes.</p>
<p>Many of the objects in <em>shapes_old.inc</em> are not very useful in the newer versions of
POV-Ray, and are kept for backwards compatability with old scenes written for versions of POV-Ray
that lacked primitives like cones, disks, planes, etc.</p>
<p>The file <em>shapes2.inc</em> contains some more useful shapes, including regular polyhedrons,
and <em>shapesq.inc</em> contains several quartic and cubic shape definitions.</p>
<p>Some of the shapes in <em>shapesq.inc</em> would be much easier to generate, more flexible,
and possibly faster rendering as isosurfaces, but are still useful for two reasons: backwards
compatability, and the fact that isosurfaces are always finite.</p>
<p><code>Isect(Pt, Dir, Obj, OPt)</code> and <code>IsectN(Pt, Dir, Obj, OPt, ONorm)</code>: These macros are interfaces to the trace() function. Isect() only returns the intersection point, IsectN() returns the surface normal as well. These macros return the point and normal information through their parameters, and true or false depending on whether an intersection was found: If an intersection is found, they return true and set OPt to the intersection point, and ONorm to the normal. Otherwise they return false, and do not modify OPt or ONorm.</p>
<p>Parameters:</p>
<ul>
<li><code>Pt</code> = The origin (starting point) of the ray.</li>
<li><code>Dir</code> = The direction of the ray.</li>
<li><code>Obj</code> = The object to test for intersection with.</li>
<li><code>OPt</code> = A declared variable, the macro will set this to the intersection point.</li>
<li><code>ONorm</code> = A declared variable, the macro will set this to the surface normal at the intersection point.</li>
</ul>
<p><code>Extents(Obj, Min, Max)</code>: This macro is a shortcut for calling both min_extent() and max_extent() to get the corners of the bounding box of an object. It returns these values through the Min and Max parameters.</p>
<p>Parameters:</p>
<ul>
<li><code>Obj</code> = The object you are getting the extents of.</li>
<li><code>Min</code> = A declared variable, the macro will set this to the min_extent of the object.</li>
<li><code>Max</code> = A declared variable, the macro will set this to the max_extent of the object.</li>
</ul>
<p><code>Center_Object(Object, Axis)</code>: A shortcut for using the Center_Trans() macro with an object.</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object to be centered.</li>
<li><code>Axis</code> = See Center_Trans() in the transforms.inc documentation.</li>
</ul>
<p><code>Align_Object(Object, Axis, Pt)</code>: A shortcut for using the <a href="r3_8.html#r3_8_1_1_30">Align_Trans()</a> macro with an object.</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object to be aligned.</li>
<li><code>Axis</code> = See Align_Trans() in the transforms.inc documentation.</li>
<li><code>Point</code> = The point to which to align the bounding box of the object. </li>
</ul>
<p><code>Bevelled_Text(Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge)</code>: This macro attempts to <em>bevel</em> the front edges of a text object. It accomplishes this by making an intersection of multiple copies of the text object, each sheared in a different direction. The results are no perfect, but may be entirely acceptable for some purposes. Warning: the object generated may render considerably more slowly than an ordinary text object.</p>
<p>Parameters:</p>
<ul>
<li><code>Font</code> = A string specifying the font to use.</li>
<li><code>String</code> = The text string the object is generated from.</li>
<li><code>Cuts</code> = The number of intersections to use in bevelling the text.
More cuts give smoother results, but take more memory and are slower rendering.</li>
<li><code>BevelAng</code> = The angle of the bevelled edge.</li>
<li><code>BevelDepth</code> = The thickness of the bevelled portion.</li>
<li><code>Depth</code> = The total thickness of the resulting text object.</li>
<li><code>Offset</code> = The offset parameter for the text object. The z value
of this vector will be ignored, because the front faces of all the letters need
to be coplanar for the bevelling to work.</li>
<li><code>UseMerge</code> = Switch between merge (1) and union (0).</li>
</ul>
<p><code>Text_Space(Font, String, Size, Spacing)</code>: Computes the width of a text string, including <em>white space</em>, it returns the advance widths of all n letters. Text_Space gives the space a text, or a glyph, occupies in regard to its surroundings.</p>
<p>Parameters:</p>
<ul>
<li><code>Font</code> = A string specifying the font to use.</li>
<li><code>String</code> = The text string the object is generated from.</li>
<li><code>Size</code> = A scaling value.</li>
<li><code>Spacing</code> = The amount of space to add between the characters.</li>
</ul>
<p><code>Text_Width(Font, String, Size, Spacing)</code>: Computes the width of a text string, it returns the advance widths of the first n-1 letters, plus the glyph width of the last letter. Text_Width gives the <em>physical</em> width of the text and if you use only one letter the <em>physical</em> width of one glyph.</p>
<p>Parameters:</p>
<ul>
<li><code>Font</code> = A string specifying the font to use.</li>
<li><code>String</code> = The text string the object is generated from.</li>
<li><code>Size</code> = A scaling value.</li>
<li><code>Spacing</code> = The amount of space to add between the characters.</li>
</ul>
<p><code>Align_Left, Align_Right, Align_Center</code>: These constants are used by the
<code>Circle_Text()</code> macro.
</p>
<p><code>Circle_Text(Font, String, Size, Spacing, Depth, Radius, Inverted, Justification, Angle)</code>: Creates a text object with the bottom (or top) of the character cells aligned with all or part of a circle. This macro should be used inside an <code>object{...}</code> block.</p>
<p>Parameters:</p>
<ul>
<li><code>Font</code> = A string specifying the font to use.</li>
<li><code>String</code> = The text string the object is generated from.</li>
<li><code>Size</code> = A scaling value.</li>
<li><code>Spacing</code> = The amount of space to add between the characters.</li>
<li><code>Depth</code> = The thickness of the text object.</li>
<li><code>Radius</code> = The radius of the circle the letters are aligned to.</li>
<li><code>Inverted</code> = Controls what part of the text faces <em>outside</em>.
If this parameter is nonzero, the tops of the letters will point toward the center
of the circle. Otherwise, the bottoms of the letters will do so.</li>
<li><code>Justification</code> = Align_Left, Align_Right, or Align_Center.</li>
<li><code>Angle</code> = The point on the circle from which rendering will begin. The +x
direction is 0 and the +y direction is 90 (i.e. the angle increases
anti-clockwise).</li>
</ul>
<p><code>Wedge(Angle)</code>: This macro creates an infinite wedge shape, an intersection of two planes. It is mainly useful in CSG, for example to obtain a specific arc of a torus. The edge of the wedge is positioned along the y axis, and one side is fixed to the zy plane, the other side rotates clockwise around the y axis.</p>
<p>Parameters:</p>
<ul>
<li><code>Angle</code> = The angle, in degrees, between the sides of the wedge shape.</li>
</ul>
<p><code>Spheroid(Center, Radius)</code>: This macro creates an unevenly scaled sphere. Radius is a vector where each component is the radius along that axis.</p>
<p>Parameters:</p>
<ul>
<li><code>Center</code> = Center of the spheroid.</li>
<li><code>Radius</code> = A vector specifying the radii of the spheroid.</li>
</ul>
<p><code>Supertorus(MajorRadius, MinorRadius, MajorControl, MinorControl, Accuracy, MaxGradient)</code>: This macro creates an isosurface of the torus equivalent of a superellipsoid. If you specify a MaxGradient of less than 1, evaluate will be used. You will have to adjust MaxGradient to fit the parameters you choose, a squarer supertorus will have a higher gradient. You may want to use the function alone in your own isosurface.</p>
<p>Parameters:</p>
<ul>
<li><code>MajorRadius, MinorRadius</code> = Base radii for the torus.</li>
<li><code>MajorControl, MinorControl</code> = Controls for the roundness of the supertorus. Use numbers in the range [0, 1].</li>
<li><code>Accuracy</code> = The accuracy parameter.</li>
<li><code>MaxGradient</code> = The max_gradient parameter.</li>
</ul>
<p><code>Supercone(EndA, A, B, EndB, C, D)</code>: This macro creates an object similar to a cone, but where the end points are ellipses. The actual object is an intersection of a quartic with a cylinder.</p>
<p>Parameters:</p>
<ul>
<li><code>EndA</code> = Center of end A.</li>
<li><code>A, B</code> = Controls for the radii of end A.</li>
<li><code>EndB</code> = Center of end B.</li>
<li><code>C, D</code> = Controls for the radii of end B.</li>
</ul>
<p><code>Connect_Spheres(PtA, RadiusA, PtB, RadiusB)</code>: This macro creates a cone that will smoothly join two spheres. It creates only the cone object, however, you will have to supply the spheres yourself or use the Round_Cone2() macro instead.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA</code> = Center of sphere A.</li>
<li><code>RadiusA</code> = Radius of sphere A.</li>
<li><code>PtB</code> = Center of sphere B.</li>
<li><code>RadiusB</code> = Radius of sphere B.</li>
</ul>
<p><code>Wire_Box_Union(PtA, PtB, Radius)</code>,</p>
<p><code>Wire_Box_Merge(PtA, PtB, Radius)</code>,</p>
<p><code>Wire_Box(PtA, PtB, Radius, UseMerge)</code>: Creates a wire-frame box from cylinders and spheres. The resulting object will fit entirely within a box object with the same corner points.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA</code> = Lower-left-front corner of box.</li>
<li><code>PtB</code> = Upper-right-back corner of box.</li>
<li><code>Radius</code> = The radius of the cylinders and spheres composing the object.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Round_Box_Union(PtA, PtB, EdgeRadius)</code>,</p>
<p><code>Round_Box_Merge(PtA, PtB, EdgeRadius)</code>,</p>
<p><code>Round_Box(PtA, PtB, EdgeRadius, UseMerge)</code>: Creates a box with rounded edges from boxes, cylinders and spheres. The resulting object will fit entirely within a box object with the same corner points. The result is slightly different from a superellipsoid, which has no truely flat areas.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA</code> = Lower-left-front corner of box.</li>
<li><code>PtB</code> = Upper-right-back corner of box.</li>
<li><code>EdgeRadius</code> = The radius of the edges of the box.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Round_Cylinder_Union(PtA, PtB, Radius, EdgeRadius)</code>,</p>
<p><code>Round_Cylinder_Merge(PtA, PtB, Radius, EdgeRadius)</code>,</p>
<p><code>Round_Cylinder(PtA, PtB, Radius, EdgeRadius, UseMerge)</code>: Creates a cylinder with rounded edges from cylinders and tori. The resulting object will fit entirely within a cylinder object with the same end points and radius. The result is slightly different from a superellipsoid, which has no truely flat areas.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA, PtB</code> = The end points of the cylinder.</li>
<li><code>Radius</code> = The radius of the cylinder.</li>
<li><code>EdgeRadius</code> = The radius of the edges of the cylinder.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Round_Cone_Union(PtA, RadiusA, PtB, RadiusB, EdgeRadius)</code>,</p>
<p><code>Round_Cone_Merge(PtA, RadiusA, PtB, RadiusB, EdgeRadius)</code>,</p>
<p><code>Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge)</code>: Creates a cone with rounded edges from cones and tori. The resulting object will fit entirely within a cone object with the same end points and radii.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA, PtB</code> = The end points of the cone.</li>
<li><code>RadiusA, RadiusB</code> = The radii of the cone.</li>
<li><code>EdgeRadius</code> = The radius of the edges of the cone.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Round_Cone2_Union(PtA, RadiusA, PtB, RadiusB)</code>,</p>
<p><code>Round_Cone2_Merge(PtA, RadiusA, PtB, RadiusB)</code>,</p>
<p><code>Round_Cone2(PtA, RadiusA, PtB, RadiusB, UseMerge)</code>: Creates a cone with rounded edges from a cone and two spheres. The resulting object will not fit entirely within a cone object with the same end points and radii because of the spherical caps. The end points are not used for the conical portion, but for the spheres, a suitable cone is then generated to smoothly join them.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA, PtB</code> = The centers of the sphere caps.</li>
<li><code>RadiusA, RadiusB</code> = The radii of the sphere caps.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Round_Cone3_Union(PtA, RadiusA, PtB, RadiusB)</code>,</p>
<p><code>Round_Cone3_Merge(PtA, RadiusA, PtB, RadiusB)</code>,</p>
<p><code>Round_Cone3(PtA, RadiusA, PtB, RadiusB, UseMerge)</code>: Like Round_Cone2(), this creates a cone with rounded edges from a cone and two spheres, and the resulting object will not fit entirely within a cone object with the same end points and radii because of the spherical caps. The difference is that this macro takes the end points of the conical portion and moves the spheres to be flush with the surface, instead of putting the spheres at the end points and generating a cone to join them.</p>
<p>Parameters:</p>
<ul>
<li><code>PtA, PtB</code> = The end points of the cone.</li>
<li><code>RadiusA, RadiusB</code> = The radii of the cone.</li>
<li><code>UseMerge</code> = Whether or not to use a merge.</li>
</ul>
<p><code>Quad(A, B, C, D)</code> and <code>Smooth_Quad(A, NA, B, NB, C, NC, D, ND)</code>: These macros create <em>quads</em>, 4-sided polygonal objects, using triangle pairs.</p>
<p>Parameters:</p>
<ul>
<li><code>A, B, C, D</code> = Vertices of the quad.</li>
<li><code>NA, NB, NC, ND</code> = Vertex normals of the quad.</li>
</ul>
</div>
<a name="r3_8_1_1_19_1"></a>
<div class="content-level-h6" contains="The HF Macros" id="r3_8_1_1_19_1">
<h6>3.8.1.1.19.1 The HF Macros</h6>
<p>There are several HF macros in shapes.inc, which generate meshes in various shapes. All the HF macros have these things in common: </p>
<ul>
<li>The HF macros do not directly use an image for input, but evaluate a user-defined function. The macros deform the surface based on the function values.</li>
<li>The macros can either write to a file to be included later, or create an object directly. If you want to output to a file, simply specify a filename. If you want to create an object directly, specify "" as the file name (an empty string).</li>
<li>The function values used for the heights will be taken from the square that goes from <0,0,0> to <1,1,0> if UV height mapping is on. Otherwise the function values will be taken from the points where the surface is (before the deformation).</li>
<li>The texture you apply to the shape will be evaluated in the square that goes from <0,0,0> to <1,1,0> if UV texture mapping is on. Otherwise the texture is evaluated at the points where the surface is (after the deformation.</li>
</ul>
<p>The usage of the different HF macros is described below.</p>
<p><code>HF_Square (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, MnExt, MxExt)</code>: This macro generates a mesh in the form of a square height field, similar to the built-in height_field primitive. Also see the general description of the HF macros above.</p>
<p>Parameters:</p>
<ul>
<li><code>Function</code> = The function to use for deforming the height field.</li>
<li><code>UseUVheight</code> = A boolean value telling the macro whether or not to use UV height mapping.</li>
<li><code>UseUVtexture</code> = A boolean value telling the macro whether or not to use UV texture mapping.</li>
<li><code>Res</code> = A 2D vector specifying the resolution of the generated mesh.</li>
<li><code>Smooth</code> = A boolean value telling the macro whether or not to smooth the generated mesh.</li>
<li><code>FileName</code> = The name of the output file.</li>
<li><code>MnExt</code> = Lower-left-front corner of a box containing the height field.</li>
<li><code>MxExt</code> = Upper-right-back corner of a box containing the height field.</li>
</ul>
<p><code>HF_Sphere(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Center, Radius, Depth)</code>: This macro generates a mesh in the form of a spherical height field. When UV-mapping is used, the UV square will be wrapped around the sphere starting at +x and going anti-clockwise around the y axis. Also see the general description of the HF macros above.</p>
<p>Parameters:</p>
<ul>
<li><code>Function</code> = The function to use for deforming the height field.</li>
<li><code>UseUVheight</code> = A boolean value telling the macro whether or not to use UV height mapping.</li>
<li><code>UseUVtexture</code> = A boolean value telling the macro whether or not to use UV texture mapping.</li>
<li><code>Res</code> = A 2D vector specifying the resolution of the generated mesh.</li>
<li><code>Smooth</code> = A boolean value telling the macro whether or not to smooth the generated mesh.</li>
<li><code>FileName</code> = The name of the output file.</li>
<li><code>Center</code> = The center of the height field before being displaced, the displacement can, and most likely will, make the object off-center.</li>
<li><code>Radius</code> = The starting radius of the sphere, before being displaced.</li>
<li><code>Depth</code> = The depth of the height field.</li>
</ul>
<p><code>HF_Cylinder(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, EndA, EndB, Radius,Depth)</code>: This macro generates a mesh in the form of an open-ended cylindrical height field. When UV-mapping is used, the UV square will be wrapped around the cylinder. Also see the general description of the HF macros above.</p>
<p>Parameters:</p>
<ul>
<li><code>Function</code> = The function to use for deforming the height field.</li>
<li><code>UseUVheight</code> = A boolean value telling the macro whether or not to use UV height mapping.</li>
<li><code>UseUVtexture</code> = A boolean value telling the macro whether or not to use UV texture mapping.</li>
<li><code>Res</code> = A 2D vector specifying the resolution of the generated mesh.</li>
<li><code>Smooth</code> = A boolean value telling the macro whether or not to smooth the generated mesh.</li>
<li><code>FileName</code> = The name of the output file.</li>
<li><code>EndA, EndB</code> = The end points of the cylinder.</li>
<li><code>Radius</code> = The (pre-displacement) radius of the cylinder.</li>
<li><code>Depth</code> = The depth of the height field.</li>
</ul>
<p><code>HF_Torus (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Major, Minor, Depth)</code>: This macro generates a mesh in the form of a torus-shaped height field. When UV-mapping is used, the UV square is wrapped around similar to spherical or cylindrical mapping. However the top and bottom edges of the map wrap over and under the torus where they meet each other on the inner rim. Also see the general description of the HF macros above.</p>
<p>Parameters:</p>
<ul>
<li><code>Function</code> = The function to use for deforming the height field.</li>
<li><code>UseUVheight</code> = A boolean value telling the macro whether or not to use UV height mapping.</li>
<li><code>UseUVtexture</code> = A boolean value telling the macro whether or not to use UV texture mapping.</li>
<li><code>Res</code> = A 2D vector specifying the resolution of the generated mesh.</li>
<li><code>Smooth</code> = A boolean value telling the macro whether or not to smooth the generated mesh.</li>
<li><code>FileName</code> = The name of the output file.</li>
<li><code>Major</code> = The major radius of the torus.</li>
<li><code>Minor</code> = The minor radius of the torus.</li>
</ul></div>
<a name="r3_8_1_1_20"></a>
<div class="content-level-h5" contains="Shapes2.inc" id="r3_8_1_1_20">
<h5>3.8.1.1.20 Shapes2.inc</h5>
<dl>
<dt><code>Tetrahedron</code></dt>
<dd>4-sided regular polyhedron.</dd>
<dt><code>Octahedron</code></dt>
<dd>8-sided regular polyhedron.</dd>
<dt><code>Dodecahedron</code></dt>
<dd>12-sided regular polyhedron.</dd>
<dt><code>Icosahedron</code></dt>
<dd>20-sided regular polyhedron.</dd>
<dt><code>Rhomboid</code></dt>
<dd>Three dimensional 4-sided diamond, basically a sheared box.</dd>
<dt><code>Hexagon</code></dt>
<dd>6-sided regular polygonal solid, axis along x.</dd>
<dt><code>HalfCone_Y</code></dt>
<dd>Convenient finite cone primitive, pointing up in the Y axis.</dd>
<dt><code>Pyramid</code></dt>
<dd>4-sided pyramid (union of triangles, can not be used in CSG).</dd>
<dt><code>Pyramid2</code></dt>
<dd>4-sided pyramid (intersection of planes, can be used in CSG).</dd>
<dt><code>Square_X, Square_Y, Square_Z</code></dt>
<dd>Finite planes stretching 1 unit along each axis. In other words, 2X2 unit squares.</dd>
</dl></div>
<a name="r3_8_1_1_21"></a>
<div class="content-level-h5" contains="Shapes3.inc" id="r3_8_1_1_21">
<h5>3.8.1.1.21 Shapes3.inc</h5>
<p>This file contains macros for segments of shapes, facetted shapes and others.</p>
<p><strong>Segments of shapes:</strong></p>
<dl>
<dt><code>Segment_of_Torus ( R_major, R_minor, Segment_Angle )</code></dt>
<dd>Segment of a torus around the y axis. The angle starts at positive x axis.</dd>
<dt><code>Segment_of_CylinderRing ( R_out, R_in, Height, Segment_Angle )</code></dt>
<dd>Segment of a cylindrical ring around the y axis. The angle starts at positive x axis.</dd>
<dt><code>Segment_of_Object ( Segment_Object, Segment_Angle )</code></dt>
<dd>Segment of an object around the y axis. The angle starts at positive x axis.<br>
Based on min_extend and max_extend.</dd>
</dl>
<p><strong>Angular shapes:</strong></p>
<dl>
<dt><code>Column_N (N, R_in, Height )</code></dt>
<dd>A regular n-sided column around the y axis, defined by the incircle radius <code>R_in</code>. <code>Height</code> is the height in y direction.</dd>
<dt><code>Column_N_AB (N, A, B, R_in)</code></dt>
<dd>A regular n-sided column from point <code>A</code> to point <code>B</code>, defined by the incircle radius <code>R_in</code>.</dd>
<dt><code>Pyramid_N (N, R_in_1, R_in_2, Height )</code></dt>
<dd>A regular n-sided pyramid around the y axis, defined by the incircle radii:<br>
<code>R_in_1</code> at y = 0 and <code>R_in_2</code> at y = <code>Height</code>.</dd>
<dt><code>Pyramid_N_AB(N, A, R_in_A, B, R_in_B)</code></dt>
<dd>A regular n-sided column from point <code>A</code> to point <code>B</code>,
defined by the incircle radii:<br>
<code>R_in_A</code> at point <code>A</code> and <code>R_in_B</code> at point <code>B</code>.</dd>
</dl>
<p><strong>Facetted shapes:</strong></p>
<dl>
<dt><code>Facetted_Sphere (Quarter_Segments, Radial_Segments)</code></dt>
<dd>A facetted sphere with incircle radius 1.<br>
<code>Quarter_Segments</code> = number of equitorial facetts in one quarter (1/2 of the total number).<br>
<code>Radial_Segments</code> = number of radial facetts.</dd>
<dt><code>Facetted_Egg_Shape (Quarter_Segments, Radial_Segments, Lower_Scale, Upper_Scale)</code></dt>
<dd>A facetted egg shape. The number of facetts are defined analog to <code>Facetted_Egg_Shape()</code>.<br>
Equitorial incircle radius = 1. Lower half scaled in y by <code>Lower_Scale</code>,
Upper half scaled in y by <code>Upper_Scale</code>.</dd>
<dt><code>Facetted_Egg (N_Quarter_Segments, N_Radial_Segments)</code></dt>
<dd>A facetted egg with total height = 2. Lower half scaled in y by 1.15, Upper half scaled in y by 1.55.</dd>
</dl>
<p><strong>Round shapes:</strong></p>
<dl>
<dt><code>Egg_Shape (Lower_Scale, Upper_Scale)</code></dt>
<dd>An egg shape with equitorial radius 1. <br>
Lower half scaled in y by <code>Lower_Scale</code>,
Upper half scaled in y by <code>Upper_Scale</code>.</dd>
<dt><code>Egg</code></dt>
<dd>Uses the macro Egg_Shape.<br>
Lower half scaled in y by 1.15, upper half scaled in y by 1.55.</dd>
</dl>
Wireframe shape (mostly also optionally filled:
<dl>
<dt><code>Ring_Sphere (Rmaj_H, Rmaj_V, Rmin_H, Rmin_V, Number_of_Rings_horizontal, Number_of_Rings_vertical)</code></dt>
<dd>A wireframe sphere by vertical and horizontal torii. <br>
Horizontal tori: equatorial radius major <code>Rmaj_H</code>, radius minor <code>Rmin_H</code>.<br>
Vertical tori: radius major <code>Rmaj_V</code>, radius minor <code>Rmin_V</code>.</dd>
<dt><code>Round_Pyramid_N_out (N, A, CornerR_out_A, B, CornerR_out_B, R_Border, Filled, Merge )</code></dt>
<dd>A regular n-sided column from point <code>A</code> to point <code>B</code>,
defined by the outcircle radii:
<code>R_in_A</code> at point <code>A</code> and <code>R_in_B</code> at point <code>B</code>.</dd>
<dt><code>Round_Pyramid_N_in (N, A, FaceR_in_A, B, FaceR_in_B, R_Border, Filled, Merge_On )</code></dt>
<dd>A regular n-sided column from point <code>A</code> to point <code>B</code>,
defined by the incircle radii:
<code>R_in_A</code> at point <code>A</code> and <code>R_in_B</code> at point <code>B</code>..</dd>
<dt><code>Round_Cylinder_Tube( A, B, R_out, R_border, Filled, Merge)</code></dt>
<dd>A cylindrical tube from point <code>A</code> to point <code>B</code>,
with the outer radius <code>R_out</code> and the border radius <code>R_border</code>.
The inner radius is <code>R_out - R_border</code>.<br>
With <code>Filled</code> = 1 we get a <code>Round_Cylinder</code>.</dd>
<dt><code>Rounded_Tube( R_out, R_in, R_Border, Height, Merge)</code></dt>
<dd>A cylindrical tube around the y axis with the <code>Height</code> in y, with the outer radius <code>R_out</code>, the inner radius <code>R_in</code> and the radius of the rounded borders <code>R_border</code>.</dd>
<dt><code>Rounded_Tube_AB( A, B, R_out, R_in, R_Border, Merge)</code></dt>
<dd>A cylindrical tube from point <code>A</code> to point <code>B</code>.<br>
The outer radius is <code>R_out</code>, the inner radius is <code>R_in</code>
and the radius of the rounded borders is <code>R_border</code>.</dd>
<dt><code>Round_Conic_Torus( Center_Distance, R_upper, R_lower, R_border, Merge)</code></dt>
<dd>A toroid ring the z axis,
with the lower torus part at y = 0 and the upper part at y = Center_Distance.<br>
The radius of the lower part is <code>R_lower</code>,
the radius of the lower part is <code>R_lower</code>
The minor radius of the toroid is <code>R_border</code>.</dd>
<dt><code>Round_Conic_Prism( Center_Distance, R_upper, R_lower, Length_Zminus, R_Border, Merge)</code></dt>
<dd>A shape of the toroidal form like <code>Round_Conic_Torus()</code>,
but filled and in the negativ z direction with the length <code> Length_Zminus</code>.</dd>
<dt><code>Half_Hollowed_Rounded_Cylinder1( Length, R_out, R_border, BorderScale, Merge)</code></dt>
<dd>A hollowed half rounded cylinder with the <code>Length</code> in x, of the outer radius <code>R_out</code>, with round ends.
The borders have a minor radius <code>R_border</code> with the scale in y <code>BorderScale</code>.<br>
The inner radius is <code>R_out - R_border</code>.</dd>
<dt><code>Half_Hollowed_Rounded_Cylinder2( Length, R_out, R_corner, R_border, BorderScale, Merge)</code></dt>
<dd>A hollowed half rounded cylinder with the <code>Length</code> in x, of the outer radius <code>R_out</code>, with flat ends.
The corners have a minor radius of <code>R_corner</code>,
the borders have a minor radius of <code>R_border</code> with the scale in y <code>BorderScale</code>.<br>
The inner radius is <code>R_out - R_border</code>, the inner lenght is <code>Length - 2*R_border</code>.</dd>
<dt><code>Round_N_Tube_Polygon (N, Tube_R, R_incircle, Edge_R, Filled, Merge)</code></dt>
<dd>A regular polygon with <code>N</code> edges (or corners) with incircle radius <code>R_incircle</code>,
formed by a tube with the minor radius <code>Tube_R</code>.
The corners are formed by torus segments with the major radius <code>Edge_R</code>.</dd>
</dl></div>
<a name="r3_8_1_1_22"></a>
<div class="content-level-h5" contains="Shapesq.inc" id="r3_8_1_1_22">
<h5>3.8.1.1.22 Shapesq.inc</h5>
<dl>
<dt><code>Bicorn</code></dt>
<dd>This curve looks like the top part of a paraboloid, bounded from below by another paraboloid.
The basic equation is: </dd>
<dd>y^2 - (x^2 + z^2) y^2 - (x^2 + z^2 + 2 y - 1)^2 = 0</dd>
<dt><code>Crossed_Trough</code></dt>
<dd>This is a surface with four pieces that sweep up from the x-z plane.</dd>
<dd>The equation is: y = x^2 z^2</dd>
<dt><code>Cubic_Cylinder</code></dt>
<dd>A drop coming out of water? This is a curve formed by using the equation:</dd>
<dd>y = 1/2 x^2 (x + 1)</dd>
<dd>as the radius of a cylinder having the x-axis as its central axis. The final form of the equation is:</dd>
<dd>y^2 + z^2 = 0.5 (x^3 + x^2)</dd>
<dt><code>Cubic_Saddle_1</code></dt>
<dd>A cubic saddle. The equation is: z = x^3 - y^3</dd>
<dt><code>Devils_Curve</code></dt>
<dd>Variant of a devil's curve in 3-space. This figure has a top and bottom part that are very similar to a hyperboloid of one sheet, however the central region is pinched in the middle leaving two teardrop shaped holes.
The equation is:</dd>
<dd>x^4 + 2 x^2 z^2 - 0.36 x^2 - y^4 + 0.25 y^2 + z^4 = 0</dd>
<dt><code>Folium</code></dt>
<dd>This is a folium rotated about the x-axis. The formula is:</dd>
<dd>2 x^2 - 3 x y^2 - 3 x z^2 + y^2 + z^2 = 0</dd>
<dt><code>Glob_5</code></dt>
<dd>Glob - sort of like basic teardrop shape. The equation is:</dd>
<dd>y^2 + z^2 = 0.5 x^5 + 0.5 x^4</dd>
<dt><code>Twin_Glob</code></dt>
<dd>Variant of a lemniscate - the two lobes are much more teardrop-like.</dd>
<dt><code>Helix, Helix_1</code></dt>
<dd>Approximation to the helix z = arctan(y/x).
The helix can be approximated with an algebraic equation (kept to the range of a quartic) with the following steps:</dd>
<dd>tan(z) = y/x => sin(z)/cos(z) = y/x =><br>
(1) x sin(z) - y cos(z) = 0
Using the taylor expansions for sin, cos about z = 0,<br>
sin(z) = z - z^3/3! + z^5/5! - ...<br>
cos(z) = 1 - z^2/2! + z^6/6! - ...<br>
Throwing out the high order terms, the expression (1) can be written as:<br>
x (z - z^3/6) - y (1 + z^2/2) = 0, or<br><br>
(2) -1/6 x z^3 + x z + 1/2 y z^2 - y = 0<br>
This helix (2) turns 90 degrees in the range 0 <= z <= sqrt(2)/2.
By using scale <2 2 2>, the helix defined below turns 90 degrees in the range 0 <= z <= sqrt(2) = 1.4042.</dd>
<dt><code>Hyperbolic_Torus</code></dt>
<dd>Hyperbolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is
generated by sweeping a circle along the arms of a hyperbola. The equation is:</dd>
<dd>x^4 + 2 x^2 y^2 - 2 x^2 z^2 - 104 x^2 + y^4 - 2 y^2 z^2 + 56 y^2 + z^4 + 104 z^2 + 784 = 0</dd>
<dt><code>Lemniscate</code></dt>
<dd>Lemniscate of Gerono. This figure looks like two teardrops with their pointed ends connected. It is formed by rotating the Lemniscate of Gerono about the x-axis. The formula is:</dd>
<dd>x^4 - x^2 + y^2 + z^2 = 0</dd>
<dt><code>Quartic_Loop_1</code></dt>
<dd>This is a figure with a bumpy sheet on one side and something that looks like a paraboloid (but with an internal bubble). The formula is:</dd>
<dd>(x^2 + y^2 + a c x)^2 - (x^2 + y^2)(c - a x)^2</dd>
<dd>-99*x^4+40*x^3-98*x^2*y^2-98*x^2*z^2+99*x^2+40*x*y^2</dd>
<dd>+40*x*z^2+y^4+2*y^2*z^2-y^2+z^4-z^2</dd>
<dt><code>Monkey_Saddle</code></dt>
<dd>This surface has three parts that sweep up and three down. This gives a saddle that has a place for two legs and a tail. The equation is:</dd>
<dd><code>z = c (x^3 - 3 x y^2)</code></dd>
<dd>The value c gives a vertical scale to the surface - the smaller the value of c, the flatter the surface will be (near the origin).</dd>
<dt><code>Parabolic_Torus_40_12</code></dt>
<dd>Parabolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by sweeping a circle along the arms of a parabola. The equation is:</dd>
<dd>x^4 + 2 x^2 y^2 - 2 x^2 z - 104 x^2 + y^4 - 2 y^2 z + 56 y^2 + z^2 + 104 z + 784 = 0</dd>
<dt><code>Piriform</code></dt>
<dd>This figure looks like a hersheys kiss. It is formed by sweeping a Piriform about the x-axis. A basic form of the equation is:</dd>
<dd>(x^4 - x^3) + y^2 + z^2 = 0.</dd>
<dt><code>Quartic_Paraboloid</code></dt>
<dd>Quartic parabola - a 4th degree polynomial (has two bumps at the bottom) that has been swept around the z axis. The equation is:</dd>
<dd>0.1 x^4 - x^2 - y^2 - z^2 + 0.9 = 0</dd>
<dt><code>Quartic_Cylinder</code></dt>
<dd>Quartic Cylinder - a Space Needle?</dd>
<dt><code>Steiner_Surface</code></dt>
<dd>Steiners quartic surface</dd>
<dt><code>Torus_40_12</code></dt>
<dd>Torus having major radius sqrt(40), minor radius sqrt(12).</dd>
<dt><code>Witch_Hat</code></dt>
<dd>Witch of Agnesi.</dd>
<dt><code>Sinsurf</code></dt>
<dd>Very rough approximation to the sin-wave surface z = sin(2 pi x y).</dd>
<dd>In order to get an approximation good to 7 decimals at a distance of 1 from the origin would require a polynomial of degree around 60, which would require around 200,000 coefficients. For best results, scale by something like <1 1 0.2>.</dd>
</dl></div>
<a name="r3_8_1_1_23"></a>
<div class="content-level-h5" contains="Skies.inc" id="r3_8_1_1_23">
<h5>3.8.1.1.23 Skies.inc</h5>
<p>These files contain some predefined skies for you to use in your scenes.</p>
<p>skies.inc: There are textures and pigment definitions in this file.</p>
<ul>
<li>all pigment definitions start with "P_"</li>
<li>all sky_spheres start with "S_"</li>
<li>all textures start with "T_"</li>
<li>and all objects start with "O_"</li>
</ul>
<p>Pigments:</p>
<dl>
<dt><code>P_Cloud1</code></dt>
<dt><code>P_Cloud2</code></dt>
<dt><code>P_Cloud3</code></dt>
</dl>
<p>Sky Spheres:</p>
<dl>
<dt><code>S_Cloud1</code></dt>
<dd>This sky_sphere uses P_Cloud2 and P_Cloud3.</dd>
<dt><code>S_Cloud2</code></dt>
<dd>This sky_sphere uses P_Cloud4.</dd>
<dt><code>S_Cloud3</code></dt>
<dd>This sky_sphere uses P_Cloud2.</dd>
<dt><code>S_Cloud4</code></dt>
<dd>This sky_sphere uses P_Cloud3.</dd>
<dt><code>S_Cloud5</code></dt>
<dd>This sky_sphere uses a custom pigment.</dd>
</dl>
<p>Textures:</p>
<dl>
<dt><code>T_Cloud1</code></dt>
<dd>2-layer texture using P_Cloud1 pigment, contains clear regions.</dd>
<dt><code>T_Cloud2</code></dt>
<dd>1-layer texture, contains clear regions.</dd>
<dt><code>T_Cloud3</code></dt>
<dd>2-layer texture, contains clear regions.</dd>
</dl>
<p>Objects:</p>
<dl>
<dt><code>O_Cloud1</code></dt>
<dd>Sphere, radius 10000 with T_Cloud1 texture.</dd>
<dt><code>O_Cloud2</code></dt>
<dd>Union of 2 planes, with T_Cloud2 and T_Cloud3.</dd>
</dl></div>
<a name="r3_8_1_1_24"></a>
<div class="content-level-h5" contains="Stars.inc" id="r3_8_1_1_24">
<h5>3.8.1.1.24 Stars.inc</h5>
<p>stars.inc: This file contains predefined starfield textures. The starfields become denser and more colorful with the number, with Starfield6 being the densest and most colorful.</p>
<dl>
<dt><code>Starfield1</code></dt>
<dt><code>Starfield2</code></dt>
<dt><code>Starfield3</code></dt>
<dt><code>Starfield4</code></dt>
<dt><code>Starfield5</code></dt>
<dt><code>Starfield6</code></dt>
</dl></div>
<a name="r3_8_1_1_25"></a>
<div class="content-level-h5" contains="Stones.inc" id="r3_8_1_1_25">
<h5>3.8.1.1.25 Stones.inc</h5>
<p>The file <em>stones.inc</em> simply includes both <em>stones1.inc</em> and <em>stones2.inc</em>, and the file <em>stoneold.inc</em> provides backwards compatability for old scenes, the user is advised to use the textures in <em>stones1.inc</em> instead.</p>
<p>The two files stones1.inc and stones2.inc contain lists of predefined stone textures.</p>
<p>The file <em>stones1.inc</em> contains texture definitions for:</p>
<ul>
<li>T_Grnt0 to T_Grnt29</li>
<li>T_Grnt1a to T_Grnt24a</li>
<li>T_Stone0 to T_Stone24</li>
</ul>
<p>The T_GrntXX, T_GrntXXa, and CrackX textures are building blocks that are used to create the final <em>usable</em> T_StoneX textures (and other textures that *you* design, of course!)</p>
<p>The T_GrntXX textures generally contain no transparency, but the T_GrntXXa textures <em>DO</em> contain transparency. The CrackX textures are clear with thin opaque bands, simulating cracks.</p>
<p>The file <em>stones2.inc</em> provides additional stone textures, and contains texture definitions for T_Stone25 to T_Stone44.</p></div>
<a name="r3_8_1_1_26"></a>
<div class="content-level-h5" contains="Stdinc.inc" id="r3_8_1_1_26">
<h5>3.8.1.1.26 Stdinc.inc</h5>
<p>This file simply includes the most commonly used include files,
so you can get all of them with a single #include.
The files included are:</p>
<ul>
<li>colors.inc</li>
<li>shapes.inc</li>
<li>transforms.inc</li>
<li>consts.inc</li>
<li>functions.inc</li>
<li>math.inc</li>
<li>rand.inc</li>
</ul></div>
<a name="r3_8_1_1_27"></a>
<div class="content-level-h5" contains="Strings.inc" id="r3_8_1_1_27">
<h5>3.8.1.1.27 Strings.inc</h5>
<p>This include contains macros for manipulating and generating text strings.</p>
<p><code>CRGBStr(C, MinLen, Padding)</code> and <code>CRGBFTStr(C, MinLen, Padding)</code>: These macros convert a color to a string. The format of the output string is "rgb < R, G, B>" or "rgbft < R, G, B, F, T>", depending on the macro being called.</p>
<p>Parameters:</p>
<ul>
<li><code>C</code> = The color to be turned into a string.</li>
<li><code>MinLen</code> = The minimum length of the individual components, analogous to the second parameter of str().</li>
<li><code>Padding</code> = The padding to use for the components, see the third parameter of the str() function for details.</li>
</ul>
<p><code>Str(A)</code>: This macro creates a string containing a float with the systems default precision. It is a shortcut for using the str() function.</p>
<p>Parameters:</p><ul>
<li><code>A</code> = The float to be converted to a string.</li>
</ul>
<p><code>VStr2D(V), VStr(V)</code>: These macros create strings containing vectors using POV syntax (<X,Y,Z>) with the default system precision. VStr2D() works with 2D vectors, VStr() with 3D vectors. They are shortcuts for using the <code>vstr()</code> function.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = The vector to be converted to a string.</li>
</ul>
<p><code>Vstr2D(V,L,P), Vstr(V,L,P)</code>: These macros create strings containing vectors using POV syntax (<X,Y,Z>) with user specified precision. Vstr2D() works with 2D vectors, Vstr() with 3D vectors. They are shortcuts for using the vstr() function. The function of L and P is the same as in <code>vstr</code> specified in <a href="r3_3.html#r3_3_1_9_4">String Functions</a>.</p>
<p>Parameters:</p>
<ul>
<li><code>V</code> = The vector to be converted to a string.</li>
<li><code>L</code> = Minimum length of the string and the type of left padding used if the string's representation is shorter than the minimum.</li>
<li><code>P</code> = Number of digits after the decimal point.</li>
</ul>
<p><code>Triangle_Str(A, B, C)</code> and <code>Smooth_Triangle_Str(A, NA, B, NB, C, NC)</code>: These macros take vertex and normal information and return a string representing a triangle in POV-Ray syntax. They are mainly useful for generating mesh files.</p>
<p>Parameters:</p>
<ul>
<li><code>A, B, C</code> = Triangle vertex points.</li>
<li><code>NA, NB, NC</code> = Triangle vertex normals (Smooth_Triangle_Str() only).</li>
</ul>
<p><code>Parse_String(String)</code>: This macro takes a string, writes it to a file, and then includes that file. This has the effect of parsing that string: "<code>Parse_String("MyColor")</code>" will be seen by POV-Ray as "<code>MyColor</code>".</p>
<p>Parameters:</p>
<ul>
<li><code>String</code> = The string to be parsed.</li>
</ul></div>
<a name="r3_8_1_1_28"></a>
<div class="content-level-h5" contains="Sunpos.inc" id="r3_8_1_1_28">
<h5>3.8.1.1.28 Sunpos.inc</h5>
<p> This file only contains the sunpos() macro</p>
<p><code>sunpos(Year, Month, Day, Hour, Minute, Lstm, LAT, LONG)</code>: The macro returns the position of the sun, for a given date, time, and location on earth. The suns position is also globally declared as the vector <code>SolarPosition</code>. Two other declared vectors are the <code>Az</code> (Azimuth) and <code>Al</code> (Altitude), these can be useful for aligning an object (media container) with the sunlight. Assumption: in the scene north is in the +Z direction, south is -Z.</p>
<p>Parameters:</p>
<ul>
<li><code>Year</code>= The year in four digits.</li>
<li><code>Month</code>= The month number (1-12).</li>
<li><code>Day</code>= The day number (1-31).</li>
<li><code>Hour</code>= The hour of day in 24 hour format (0-23).</li>
<li><code>Minute</code>= The minutes (0-59). </li>
<li><code>Lstm</code>= Meridian of your local time zone in degrees (+1 hour = +15 deg, east = positive, west = negative)</li>
<li><code>LAT</code>= Lattitude in degrees.decimal, northern hemisphere = positive, southern = negative</li>
<li><code>LONG</code>= Longitude in degrees.decimal, east = positive, west is negative</li>
</ul>
<p>Usage:</p>
<pre>
#include "sunpos.inc"
light_source {
//Greenwich, noon on the longest day of 2000
SunPos(2000, 6, 21, 12, 2, 0, 51.4667, 0.00)
rgb 1
}
cylinder{
<-2,0,0>,<2,0,0>,0.1
rotate <0, Az-90, Al> //align cylinder with sun
texture {...}
}
</pre>
<p class="Note"><strong>Note:</strong> The default distance of the sun from the origin is 1e+9 units.</p></div>
<a name="r3_8_1_1_29"></a>
<div class="content-level-h5" contains="Textures.inc" id="r3_8_1_1_29">
<h5>3.8.1.1.29 Textures.inc</h5>
<p>This file contains many predefined textures, including wood, glass, and metal textures, and a few texture/pattern generation macros.</p>
</div>
<a name="r3_8_1_1_29_1"></a>
<div class="content-level-h6" contains="Stones" id="r3_8_1_1_29_1">
<h6>3.8.1.1.29.1 Stones</h6>
<p>Stone Pigments:</p>
<dl>
<dt><code>Jade_Map, Jade</code></dt>
<dd>Drew Wells' superb Jade. Color map works nicely with other textures, too.</dd>
<dt><code>Red_Marble_Map, Red_Marble</code></dt>
<dd>Classic white marble with red veins. Over-worked, like checkers.</dd>
<dt><code>White_Marble_Map, White_Marble</code></dt>
<dd>White marble with black veins.</dd>
<dt><code>Blood_Marble_Map, Blood_Marble</code></dt>
<dd>Light blue and black marble with a thin red vein.</dd>
<dt><code>Blue_Agate_Map, Blue_Agate</code></dt>
<dd>A grey blue agate -- kind of purplish.</dd>
<dt><code>Sapphire_Agate_Map, Sapphire_Agate</code></dt>
<dd>Deep blue agate -- almost glows.</dd>
<dt><code>Brown_Agate_Map, Brown_Agate</code></dt>
<dd>Brown and white agate -- very pretty.</dd>
<dt><code>Pink_Granite_Map, Pink_Granite</code></dt>
<dd>Umm, well, pink granite.</dd>
</dl>
<p>Stone textures:</p>
<dl>
<dt><code>PinkAlabaster</code></dt>
<dd>Gray-pink alabaster or marble. Layers are scaled for a unit object and relative to each other.</dd>
<dd><p class="Note"><strong>Note:</strong> This texture has very tiny dark blue specks that are often mistaken for rendering errors.</p></dd>
<dd>Underlying surface is very subtly mottled with bozo.</dd>
<dd>Second layer texture has some transmit values, yet a fair amount of color.</dd>
<dd>Veining is kept quite thin in color map and by the largish scale.</dd>
</dl>
</div>
<a name="r3_8_1_1_29_2"></a>
<div class="content-level-h6" contains="Skies" id="r3_8_1_1_29_2">
<h6>3.8.1.1.29.2 Skies</h6>
<p>Sky pigments:</p>
<dl>
<dt><code>Blue_Sky_Map, Blue_Sky</code></dt>
<dd>Basic blue sky with clouds.</dd>
<dt><code>Bright_Blue_Sky</code></dt>
<dd>Bright blue sky with very white clouds.</dd>
<dt><code>Blue_Sky2</code></dt>
<dd>Another sky.</dd>
<dt><code>Blue_Sky3</code></dt>
<dd>Small puffs of white clouds.</dd>
<dt><code>Blood_Sky</code></dt>
<dd>Red sky with yellow clouds -- very surreal.</dd>
<dt><code>Apocalypse</code></dt>
<dd>Black sky with red and purple clouds.</dd>
<dd>Try adding turbulence values from 0.1 - 5.0</dd>
<dt><code>Clouds</code></dt>
<dd>White clouds with transparent sky.</dd>
<dt><code>FBM_Clouds</code></dt>
<dt><code>Shadow_Clouds</code></dt>
<dd>A multilayered cloud texture (a real texture, not a pigment).</dd>
</dl>
</div>
<a name="r3_8_1_1_29_3"></a>
<div class="content-level-h6" contains="Woods" id="r3_8_1_1_29_3">
<h6>3.8.1.1.29.3 Woods</h6>
<p>Wood pigments:</p>
<p>Several wooden pigments by Tom Price:</p>
<dl>
<dt><code>Cherry_Wood</code></dt>
<dd>A light reddish wood.</dd>
<dt><code>Pine_Wood</code></dt>
<dd>A light tan wood whiteish rings.</dd>
<dt><code>Dark_Wood</code></dt>
<dd>Dark wood with a,ish hue to it.</dd>
<dt><code>Tan_Wood</code></dt>
<dd>Light tan wood with brown rings.</dd>
<dt><code>White_Wood</code></dt>
<dd>A very pale wood with tan rings -- kind of balsa-ish.</dd>
<dt><code>Tom_Wood</code></dt>
<dd>Brown wood - looks stained.</dd>
</dl>
<dl>
<dt><code>DMFWood1, DMFWood2, DMFWood3, DMFWood4, DMFWood5</code></dt>
<dd>The scaling in these definitions is relative to a unit-sized object (radius 1).
<p class="Note"><strong>Note:</strong> These wood definitions are functionally equivalent to a log lying along the z axis. For best results, think like a woodcutter trying to extract the nicest board out of that log. A little tilt along the x axis will give elliptical rings of grain like you would expect to find on most boards.</p></dd>
</dl>
<p>Wood textures:</p>
<dl>
<dt><code>DMFWood6</code></dt>
<dd>This is a three-layer wood texture. Renders rather slowly because of the transparent layers and the two layers of turbulence, but it looks great. Try other colors of <em>varnish</em> for simple variations.</dd>
<dt><code>DMFLightOak</code></dt>
<dd>Is this really oak? I dunno. Quite light, maybe more like spruce.</dd>
<dt><code>DMFDarkOak</code></dt>
<dd>Looks like old desk oak if used correctly.</dd>
<dt><code>EMBWood1</code></dt>
<dd>Wood by Eric Barish</dd>
</dl>
<p>Doug Otwell woods:</p>
<dl>
<dt><code>Yellow_Pine</code></dt>
<dd>Yellow pine, close grained.</dd>
<dt><code>Rosewood</code></dt>
<dt><code>Sandalwood</code></dt>
<dd>makes a great burled maple, too</dd>
</dl>
</div>
<a name="r3_8_1_1_29_4"></a>
<div class="content-level-h6" contains="Glass" id="r3_8_1_1_29_4">
<h6>3.8.1.1.29.4 Glass</h6>
<p><code>Glass_Finish</code> is a generic glass finish, <code>Glass_Interior</code> is a generic glass interior, it just adds an ior of 1.5.</p>
<p>Glass materials:</p>
<dl>
<dt><code>M_Glass</code></dt>
<dd>Just glass.</dd>
<dt><code>M_Glass2</code></dt>
<dd>Probably more of a <em>Plexiglas</em> than glass.</dd>
<dt><code>M_Glass3</code></dt>
<dd>An excellent lead crystal glass!</dd>
<dt><code>M_Green_Glass</code></dt>
</dl>
<p>Glass textures contributed by Norm Bowler, of Richland WA. NBglass_finish is used by these materials.
</p>
<dl>
<dt><code>M_NBglass</code></dt>
<dt><code>M_NBoldglass</code></dt>
<dt><code>M_NBwinebottle</code></dt>
<dt><code>M_NBbeerbottle</code></dt>
</dl>
<p>A few color variations on Norm's glass.</p>
<dl>
<dt><code>M_Ruby_Glass</code></dt>
<dt><code>M_Dark_Green_Glass</code></dt>
<dt><code>M_Yellow_Glass</code></dt>
<dt><code>M_Orange_Glass</code></dt>
<dt><code>M_Vicks_Bottle_Glass</code></dt>
</dl>
</div>
<a name="r3_8_1_1_29_5"></a>
<div class="content-level-h6" contains="Metals" id="r3_8_1_1_29_5">
<h6>3.8.1.1.29.5 Metals</h6>
<p>Metal finishes:</p>
<dl>
<dt><code>Metal</code></dt>
<dd>Generic metal finish.</dd>
<dt><code>SilverFinish</code></dt>
<dd>Basic silver finish</dd>
<dt><code>Metallic_Finish</code></dt>
</dl>
<p>
Metal textures:
</p>
<dl>
<dt><code>Chrome_Metal, Brass_Metal, Bronze_Metal, Gold_Metal, Silver_Metal, Copper_Metal</code></dt>
<dd>A series of metallic textures using the Metal finish (except for Chrome_Metal, which has a custom finish). There are identical textures ending in _Texture instead of _Metal, but use of those names is discouraged.</dd>
<dt><code>Polished_Chrome</code></dt>
<dd>A highly reflective Chrome texture.</dd>
<dt><code>Polished_Brass</code></dt>
<dd>A highly reflective brass texture.</dd>
<dt><code>New_Brass</code></dt>
<dd>Beautiful military brass texture!</dd>
<dt><code>Spun_Brass</code></dt>
<dd>Spun Brass texture for cymbals & such</dd>
<dt><code>Brushed_Aluminum</code></dt>
<dd>Brushed aluminum (brushed along X axis)</dd>
<dt><code>Silver1</code></dt>
<dt><code>Silver2</code></dt>
<dt><code>Silver3</code></dt>
<dt><code>Brass_Valley</code></dt>
<dd>Sort of a <em>Black Hills Gold</em>, black, white, and orange specks or splotches.</dd>
<dt><code>Rust</code></dt>
<dt><code>Rusty_Iron</code></dt>
<dt><code>Soft_Silver</code></dt>
<dt><code>New_Penny</code></dt>
<dt><code>Tinny_Brass</code></dt>
<dt><code>Gold_Nugget</code></dt>
<dt><code>Aluminum</code></dt>
<dt><code>Bright_Bronze</code></dt>
</dl>
</div>
<a name="r3_8_1_1_29_6"></a>
<div class="content-level-h6" contains="Special textures" id="r3_8_1_1_29_6">
<h6>3.8.1.1.29.6 Special textures</h6>
<dl>
<dt><code>Candy_Cane</code></dt>
<dd>Red and white stripes - Looks best on a y axis Cylinder.</dd>
<dd>It <em>spirals</em> because it's gradient on two axis.</dd>
<dt><code>Peel</code></dt>
<dd>Orange and Clear stripes spiral around the texture to make an object look like it was <em>Peeled</em>. Now, you too can be M.C. Escher!</dd>
<dt><code>Y_Gradient</code></dt>
<dt><code>X_Gradient</code></dt>
<dt><code>M_Water</code></dt>
<dd>Wavy water material. Requires a sub-plane, and may require scaling to fit your scene.</dd>
<dd><p class="Warning"><strong>Warning:</strong> Water texture has been changed to M_Water material, see explanation in the <em>glass</em> section of this file.</p></dd>
<dt><code>Cork</code></dt>
<dt><code>Lightning_CMap1, Lightning1, and Lightning_CMap2, Lightning2</code></dt>
<dd>These are just lightning textures, they look like arcing electricity...earlier versions misspelled them as <em>Lightening</em>.</dd>
<dt><code>Starfield</code></dt>
<dd>A starfield texture by Jeff Burton</dd>
</dl>
</div>
<a name="r3_8_1_1_29_7"></a>
<div class="content-level-h6" contains="Texture and pattern macros" id="r3_8_1_1_29_7">
<h6>3.8.1.1.29.7 Texture and pattern macros</h6>
<p><code>Irregular_Bricks_Ptrn (Mortar Thickness, X-scaling, Variation, Roundness)</code>: This function pattern creates a pattern of bricks of varying lengths on the x-y plane. This can be useful in building walls that do not look like they were built by a computer. Note that mortar thickness between bricks can vary somewhat, too.</p>
<p>Parameters:</p>
<ul>
<li><code>Mortar Thickness</code> = Thickness of the mortar (0-1).</li>
<li><code>X-scaling</code> = The scaling of the bricks (but not the mortar) in the x direction.</li>
<li><code>Variation</code> = The amount by which brick lengths will vary (0=none, 1=100%).</li>
<li><code>Roundness</code> = The roundness of the bricks (0.01=almost rectangular, 1=very round).</li>
</ul>
<p><code>Tiles_Ptrn()</code>: This macro creates a repeating box pattern on the x-y plane. It can be useful for creating grids. The cells shade continuously from the center to the edges.</p>
<p>Parameters: None.</p>
<p><code>Hex_Tiles_Ptrn()</code>: This macro creates a pattern that is a sort of cross between the hexagon pattern and a repeating box pattern. The hexagonal cells shade continuously from the center to the edges.</p>
<p>Parameters: None.</p>
<p><code>Star_Ptrn (Radius, Points, Skip)</code>: This macro creates a pattern that resembles a star. The pattern is in the x-y plane, centered around the origin.</p>
<p>Parameters:</p>
<ul>
<li><code>Radius</code> = The radius of a circle drawn through the points of the star.</li>
<li><code>Points</code> = The number of points on the star.</li>
<li><code>Skip</code> = The number of points to skip when drawing lines between points to form the star.
A normal 5-pointed star skips 2 points. A Star of David also skips 2 points. Skip
must be less than Points/2 and greater than 0. Integers are preferred but not
required. Skipping 1 point makes a regular polygon with Points sides.</li>
<li><code>Pigment</code> = The pigment to be applied to the star.</li>
<li><code>Background</code> = The pigment to be applied to the background.</li>
</ul></div>
<a name="r3_8_1_1_30"></a>
<div class="content-level-h5" contains="Transforms.inc" id="r3_8_1_1_30">
<h5>3.8.1.1.30 Transforms.inc</h5>
<p>Several useful transformation macros. All these macros produce transformations, you can use them anywhere you can use scale, rotate, etc. The descriptions will assume you are working with an object, but the macros will work fine for textures, etc.</p>
<p><code>Shear_Trans(A, B, C)</code>: This macro reorients and deforms an object so its original XYZ axes point along A, B, and C, resulting in a shearing effect when the vectors are not perpendicular. You can also use vectors of different lengths to affect scaling, or use perpendicular vectors to reorient the object.</p>
<p>Parameters:</p>
<ul>
<li><code>A, B, C</code> = Vectors representing the new XYZ axes for the transformation.</li>
</ul>
<p><code>Matrix_Trans(A, B, C, D)</code>: This macro provides a way to specify a matrix transform with 4 vectors. The effects are very similar to that of the Shear_Trans() macro, but the fourth parameter controls translation.</p>
<p>Parameters:</p>
<ul>
<li><code>A, B, C, D</code> = Vectors for each row of the resulting matrix.</li>
</ul>
<p><code>Axial_Scale_Trans(Axis, Amt)</code>: A kind of directional scale, this macro will <em>stretch</em> an object along a specified axis.</p>
<p>Parameters:</p>
<ul>
<li><code>Axis</code> = A vector indicating the direction to stretch along.</li>
<li>Amt = The amount to stretch.</li>
</ul>
<p><code>Axis_Rotate_Trans(Axis, Angle)</code>: This is equivalent to the transformation done by the vaxis_rotate() function, it rotates around an arbitrary axis.</p>
<p>Parameters:</p>
<ul>
<li><code>Axis</code> = A vector representing the axis to rotate around.</li>
<li><code>Angle</code> = The amount to rotate by.</li>
</ul>
<p><code>Rotate_Around_Trans(Rotation, Point)</code>: Ordinary rotation operates around the origin, this macro rotates around a specific point.</p>
<p>Parameters:</p>
<ul>
<li><code>Rotation</code> = The rotation vector, the same as the parameter to the rotate keyword.</li>
<li><code>Point</code> = The point to rotate around.</li>
</ul>
<p><code>Reorient_Trans(Axis1, Axis2)</code>: This aligns <code>Axis1</code> to <code>Axis2</code> by rotating the object around a vector perpendicular to both axis1 and axis2.</p>
<p>Parameters:</p>
<ul>
<li><code>Axis1</code> = Vector to be rotated.</li>
<li><code>Axis2</code> = Vectors to be rotated towards.</li>
</ul>
<p><code>Point_At_Trans(YAxis)</code>: This macro is similar to Reorient_Trans(), but it points the y axis along Axis.</p>
<p>Parameters:</p>
<ul>
<li><code>YAxis</code> = The direction to point the y axis in.</li>
</ul>
<p><code>Center_Trans(Object, Axis)</code>: Calculates a transformation which will center an object along a specified axis. You indicate the axes you want to center along by adding "x", "y", and "z" together in the Axis parameter.</p>
<p class="Note"><strong>Note:</strong> This macro actually computes the transform to center the bounding box of the object, which may not be entirely accurate. There is no way to define the <em>center</em> of an arbitrary object.</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object the center transform is being computed for.</li>
<li><code>Axis</code> = The axes to center the object on.</li>
</ul>
<p>Usage:</p>
<pre>
object {MyObj Center_Trans(MyObj, x)} //center along x axis
</pre>
<p> You can also center along multiple axes:</p>
<pre>
object {MyObj Center_Trans(MyObj, x+y)} //center along x and y axis
</pre>
<p><code>Align_Trans(Object, Axis, Pt)</code>: Calculates a transformation which will align the sides of the bounding box of an object to a point. Negative values on Axis will align to the sides facing the negative ends of the coordinate system, positive values will align to the opposite sides, 0 means not to do any alignment on that axis.</p>
<p>Parameters:</p>
<ul>
<li><code>Object</code> = The object being aligned.</li>
<li><code>Axis</code> = A combination of +x, +y, +z, -x, -y, and -z, or a vector where each component is -1, 0, or +1 specifying the faces of the bounding box to align to the point.</li>
<li><code>Point</code> = The point to which to align the bounding box of the object.</li>
</ul>
<p>Usage:</p>
<pre>
object {
MyObj
Align_Trans(MyObj, x, Pt) //Align right side of object to be
//coplanar with Pt
Align_Trans(MyObj,-y, Pt) //Align bottom of object to be
// coplanar with Pt
}
</pre>
<p><code>vtransform(Vect, Trans)</code> and <code>vinv_transform(Vect, Trans)</code>: The <code>vtransform()</code> macro takes a transformation (rotate, scale, translate, etc...) and a point, and returns the result of applying the transformation to the point. The <code>vinv_transform()</code> macro is similar, but applies the inverse of the transform, in effect <em>undoing</em> the transformation. You can combine transformations by enclosing them in a transform block.</p>
<p>Parameters:</p>
<ul>
<li><code>Vect</code> = The vector to which to apply the transformation.</li>
<li><code>Trans</code> = The transformation to apply to Vect.</li>
</ul>
<p><code>Spline_Trans(Spline, Time, SkyVector, ForeSight, Banking)</code>: This macro aligns an object to a spline for a given time value. The Z axis of the object will point in the forward direction of the spline and the Y axis of the object will point upwards.</p>
<p>Parameters:</p>
<ul>
<li><code>Spline</code> = The spline that the object is aligned to.</li>
<li><code>Time</code> = The time value to feed to the spline, for example clock.</li>
<li><code>Sky</code> = The vector that is upwards in your scene, usually y.</li>
<li><code>Foresight</code> = A positive value that controls how much in advance the object will turn and bank. Values close to 0 will give precise results, while higher values give smoother results. It will not affect parsing speed, so just find the value that looks best.</li>
<li><code>Banking</code> = How much the object tilts when turning. The amount of tilting is equally much controlled by the ForeSight value.</li>
</ul>
<p>Usage:</p>
<pre>
object {MyObj Spline_Trans(MySpline, clock, y, 0.1, 0.5)}
</pre></div>
<a name="r3_8_1_1_31"></a>
<div class="content-level-h5" contains="Woods.inc" id="r3_8_1_1_31">
<h5>3.8.1.1.31 Woods.inc</h5>
<p>The file woods.inc contains predefined wood textures and pigments.</p>
<p>The pigments are prefixed with P_, and do not have color_maps, allowing you to specify a color map from woodmaps.inc or create your own. There are two groups, "A" and "B": the A series is designed to work better on the bottom texture layer, and the
B series is designed for the upper layers, with semitransparent color maps. The pigments with the same number were designed to work well together, but you do not necessarily have to use them that way.</p>
<p>The textures are prefixed with T_, and are ready to use. They are designed with the major axis of the woodgrain <em>cylinder</em> aligned along the Z axis. With the exception of the few of the textures which have a small amount of rotation built-in, the textures will exhibit a very straight grain pattern unless you apply a small amount of x-axis rotation to them (generally 2 to 4 degrees seems to work well).</p>
<p>Pigments:</p>
<dl>
<dt><code>P_WoodGrain1A, ..., P_WoodGrainA</code></dt>
<dt><code>P_WoodGrain1B, ..., P_WoodGrainB</code></dt>
</dl>
<p>Textures:</p>
<dl>
<dt><code>T_Wood1</code></dt>
<dd>Natural oak (light)</dd>
<dt><code>T_Wood2</code></dt>
<dd>Dark brown </dd>
<dt><code>T_Wood3</code></dt>
<dd>Bleached oak (white)</dd>
<dt><code>T_Wood4</code></dt>
<dd>Mahogany (purplish-red)</dd>
<dt><code>T_Wood5</code></dt>
<dd>Dark yellow with reddish overgrain</dd>
<dt><code>T_Wood6</code></dt>
<dd>Cocabola (red)</dd>
<dt><code>T_Wood7</code></dt>
<dd>Yellow pine (ragged grain)</dd>
<dt><code>T_Wood8</code></dt>
<dd>Dark brown. Walnut? </dd>
<dt><code>T_Wood9</code></dt>
<dd>Yellowish-brown burl (heavily turbulated)</dd>
<dt><code>T_Wood10</code></dt>
<dd>Soft pine (light yellow, smooth grain)</dd>
<dt><code>T_Wood11</code></dt>
<dd>Spruce (yellowish, very straight, fine grain)</dd>
<dt><code>T_Wood12</code></dt>
<dd>Another very dark brown. Walnut-stained pine, perhaps?</dd>
<dt><code>T_Wood13</code></dt>
<dd>Very straight grained, whitish</dd>
<dt><code>T_Wood14</code></dt>
<dd>Red, rough grain</dd>
<dt><code>T_Wood15</code></dt>
<dd>Medium brown</dd>
<dt><code>T_Wood16</code></dt>
<dd>Medium brown</dd>
<dt><code>T_Wood17</code></dt>
<dd>Medium brown</dd>
<dt><code>T_Wood18</code></dt>
<dd>Orange</dd>
<dt><code>T_Wood19, ..., T_Wood30</code></dt>
<dd>Golden Oak.</dd>
<dt><code>T_Wood31</code></dt>
<dd>A light tan wood - heavily grained (variable coloration)</dd>
<dt><code>T_Wood32</code></dt>
<dd>A rich dark reddish wood, like rosewood, with smooth-flowing grain</dd>
<dt><code>T_Wood33</code></dt>
<dd>Similar to T_WoodB, but brighter</dd>
<dt><code>T_Wood34</code></dt>
<dd>Reddish-orange, large, smooth grain.</dd>
<dt><code>T_Wood35</code></dt>
<dd>Orangish, with a grain more like a veneer than a plank</dd>
</dl></div>
<a name="r3_8_1_1_32"></a>
<div class="content-level-h5" contains="Woodmaps.inc" id="r3_8_1_1_32">
<h5>3.8.1.1.32 Woodmaps.inc</h5>
<p>The file woodmaps.inc contains color_maps designed for use in wood textures. The M_WoodXA maps are intended to be used in the first layer of a multilayer texture, but can be used in single-layer textures. The M_WoodXB maps contain transparent areas, and are intended to be used in upper texture layers.</p>
<p>Color maps:</p>
<dl>
<dt><code>M_Wood1A, ..., M_Wood19A</code></dt>
<dt><code>M_Wood1B, ..., M_Wood19B</code></dt>
</dl></div>
<a name="r3_8_1_2"></a>
<div class="content-level-h4" contains="Old Files" id="r3_8_1_2">
<h4>3.8.1.2 Old Files</h4>
<p>These files could be considered either <em>obsolete</em> or <em>deprecated</em>. They have been included for <em>legacy</em> reasons.</p></div>
<a name="r3_8_1_2_1"></a>
<div class="content-level-h5" contains="Glass_old.inc" id="r3_8_1_2_1">
<h5>3.8.1.2.1 Glass_old.inc</h5>
<p>This file contains glass textures for POV-Ray versions 3.1 and earlier.
These textures do not take advantage of the new features introduced with POV-Ray 3.5 and are
included for backwards compatability, you will get better results with the
materials in glass.inc.</p>
<p class="Note"><strong>Note:</strong> As of version 3.7 the definitions in <code>glass_old.inc</code> have been <code><a href="r3_3.html#r3_3_2_2_5">deprecated</a></code>. To suppress warnings generated from using these textures you should consider converting them to materials.</p>
<p>Using the following example:</p>
<pre>texture {T_Glass4} interior {I_Glass caustics 1}</pre>
<p>should be rewritten as:</p>
<pre>
material {
texture {
pigment { color rgbf <0.98, 1.0, 0.99, 0.75> }
finish { F_Glass4 }
}
interior { I_Glass caustics 1 }
}
</pre>
</div>
<a name="r3_8_1_2_1_1"></a>
<div class="content-level-h6" contains="Glass finishes" id="r3_8_1_2_1_1">
<h6>3.8.1.2.1.1 Glass finishes</h6>
<p><code>F_Glass1, ..., F_Glass4</code></p>
</div>
<a name="r3_8_1_2_1_2"></a>
<div class="content-level-h6" contains="Glass textures" id="r3_8_1_2_1_2">
<h6>3.8.1.2.1.2 Glass textures</h6>
<dl>
<dt><code>T_Glass1</code></dt>
<dd>Simple clear glass.</dd>
<dt><code>T_Glass2</code></dt>
<dd>More like an acrylic plastic.</dd>
<dt><code>T_Glass3</code></dt>
<dd>An excellent lead crystal glass.</dd>
<dt><code>T_Glass4</code></dt>
<dt><code>T_Old_Glass</code></dt>
<dt><code>T_Winebottle_Glass</code></dt>
<dt><code>T_Beerbottle_Glass</code></dt>
<dt><code>T_Ruby_Glass</code></dt>
<dt><code>T_Green_Glass</code></dt>
<dt><code>T_Dark_Green_Glass</code></dt>
<dt><code>T_Yellow_Glass</code></dt>
<dt><code>T_Orange_Glass</code></dt>
<dd>Orange/amber glass.</dd>
<dt><code>T_Vicksbottle_Glass</code></dt>
</dl></div>
<a name="r3_8_1_2_2"></a>
<div class="content-level-h5" contains="Shapes_old.inc" id="r3_8_1_2_2">
<h5>3.8.1.2.2 Shapes_old.inc</h5>
<dl>
<dt><code>Ellipsoid, Sphere</code></dt>
<dd>Unit-radius sphere at the origin.</dd>
<dt><code>Cylinder_X, Cylinder_Y, Cylinder_Z</code></dt>
<dd>Infinite cylinders.</dd>
<dt><code>QCone_X, QCone_Y, QCone_Z</code></dt>
<dd>Infinite cones.</dd>
<dt><code>Cone_X, Cone_Y, Cone_Z</code></dt>
<dd>Closed capped cones: unit-radius at -1 and 0 radius at +1 along each axis.</dd>
<dt><code>Plane_YZ, Plane_XZ, Plane_XY</code></dt>
<dd>Infinite planes passing through the origin.</dd>
<dt><code>Paraboloid_X, Paraboloid_Y, Paraboloid_Z</code></dt>
<dd>y^2 + z^2 - x = 0</dd>
<dt><code>Hyperboloid, Hyperboloid_Y</code></dt>
<dd>y - x^2 + z^2 = 0</dd>
<dt><code>UnitBox, Cube</code></dt>
<dd>A cube 2 units on each side, centered on the origin.</dd>
<dt><code>Disk_X, Disk_Y, Disk_Z</code></dt>
<dd><em>Capped</em> cylinders, with a radius of 1 unit and a length of 2 units, centered on the origin.</dd>
</dl></div>
<a name="r3_8_1_2_3"></a>
<div class="content-level-h5" contains="Stage1.inc" id="r3_8_1_2_3">
<h5>3.8.1.2.3 Stage1.inc</h5>
<p>This file simply contains a camera, a light_source, and a ground plane, and includes colors.inc, textures.inc, and shapes.inc.</p></div>
<a name="r3_8_1_2_4"></a>
<div class="content-level-h5" contains="Stdcam.inc" id="r3_8_1_2_4">
<h5>3.8.1.2.4 Stdcam.inc</h5>
<p>This file simply contains a camera, a light_source, and a ground plane.</p></div>
<a name="r3_8_1_2_5"></a>
<div class="content-level-h5" contains="Stones1.inc" id="r3_8_1_2_5">
<h5>3.8.1.2.5 Stones1.inc</h5>
<dl>
<dt><code>T_Grnt0</code></dt>
<dd>Gray/Tan with Rose.</dd>
<dt><code>T_Grnt1</code></dt>
<dd>Creamy Whites with Yellow & Light Gray.</dd>
<dt><code>T_Grnt2</code></dt>
<dd>Deep Cream with Light Rose, Yellow, Orchid, & Tan.</dd>
<dt><code>T_Grnt3</code></dt>
<dd>Warm tans olive & light rose with cream.</dd>
<dt><code>T_Grnt4</code></dt>
<dd>Orchid, Sand & Mauve.</dd>
<dt><code>T_Grnt5</code></dt>
<dd>Medium Mauve Med.Rose & Deep Cream.</dd>
<dt><code>T_Grnt6</code></dt>
<dd>Med. Orchid, Olive & Dark Tan <em>mud pie</em>.</dd>
<dt><code>T_Grnt7</code></dt>
<dd>Dark Orchid, Olive & Dark Putty.</dd>
<dt><code>T_Grnt8</code></dt>
<dd>Rose & Light Cream Yellows</dd>
<dt><code>T_Grnt9</code></dt>
<dd>Light Steely Grays</dd>
<dt><code>T_Grnt10</code></dt>
<dd>Gray Creams & Lavender Tans</dd>
<dt><code>T_Grnt11</code></dt>
<dd>Creams & Grays Kahki</dd>
<dt><code>T_Grnt12</code></dt>
<dd>Tan Cream & Red Rose</dd>
<dt><code>T_Grnt13</code></dt>
<dd>Cream Rose Orange</dd>
<dt><code>T_Grnt14</code></dt>
<dd>Cream Rose & Light Moss w/Light Violet</dd>
<dt><code>T_Grnt15</code></dt>
<dd>Black with subtle chroma</dd>
<dt><code>T_Grnt16</code></dt>
<dd>White Cream & Peach</dd>
<dt><code>T_Grnt17</code></dt>
<dd>Bug Juice & Green</dd>
<dt><code>T_Grnt18</code></dt>
<dd>Rose & Creamy Yellow</dd>
<dt><code>T_Grnt19</code></dt>
<dd>Gray Marble with White feather Viens</dd>
<dt><code>T_Grnt20</code></dt>
<dd>White Marble with Gray feather Viens</dd>
<dt><code>T_Grnt21</code></dt>
<dd>Green Jade</dd>
<dt><code>T_Grnt22</code></dt>
<dd>Clear with White feather Viens (has some transparency)</dd>
<dt><code>T_Grnt23</code></dt>
<dd>Light Tan to Mauve</dd>
<dt><code>T_Grnt24</code></dt>
<dd>Light Grays</dd>
<dt><code>T_Grnt25</code></dt>
<dd>Moss Greens & Tan</dd>
<dt><code>T_Grnt26</code></dt>
<dd>Salmon with thin Green Viens</dd>
<dt><code>T_Grnt27</code></dt>
<dd>Dark Green & Browns</dd>
<dt><code>T_Grnt28</code></dt>
<dd>Red Swirl</dd>
<dt><code>T_Grnt29</code></dt>
<dd>White, Tan, w/ thin Red Viens</dd>
</dl>
<dl>
<dt><code>T_Grnt0a</code></dt>
<dd>Translucent T_Grnt0</dd>
<dt><code>T_Grnt1a</code></dt>
<dd>Translucent T_Grnt1</dd>
<dt><code>T_Grnt2a</code></dt>
<dd>Translucent T_Grnt2</dd>
<dt><code>T_Grnt3a</code></dt>
<dd>Translucent T_Grnt3</dd>
<dt><code>T_Grnt4a</code></dt>
<dd>Translucent T_Grnt4</dd>
<dt><code>T_Grnt5a</code></dt>
<dd>Translucent T_Grnt5</dd>
<dt><code>T_Grnt6a</code></dt>
<dd>Translucent T_Grnt6</dd>
<dt><code>T_Grnt7a</code></dt>
<dd>Translucent T_Grnt7</dd>
<dt><code>T_Grnt8a</code></dt>
<dd>Aqua Tints</dd>
<dt><code>T_Grnt9a</code></dt>
<dd>Transmit Creams With Cracks</dd>
<dt><code>T_Grnt10a</code></dt>
<dd>Transmit Cream Rose & light yellow</dd>
<dt><code>T_Grnt11a</code></dt>
<dd>Transmit Light Grays</dd>
<dt><code>T_Grnt12a</code></dt>
<dd>Transmit Creams & Tans</dd>
<dt><code>T_Grnt13a</code></dt>
<dd>Transmit Creams & Grays</dd>
<dt><code>T_Grnt14a</code></dt>
<dd>Cream Rose & light moss</dd>
<dt><code>T_Grnt15a</code></dt>
<dd>Transmit Sand & light Orange</dd>
<dt><code>T_Grnt16a</code></dt>
<dd>Cream Rose & light moss (again?)</dd>
<dt><code>T_Grnt17a</code></dt>
<dd>???</dd>
<dt><code>T_Grnt18a</code></dt>
<dd>???</dd>
<dt><code>T_Grnt19a</code></dt>
<dd>Gray Marble with White feather Viens with Transmit</dd>
<dt><code>T_Grnt20a</code></dt>
<dd>White Feather Viens</dd>
<dt><code>T_Grnt21a</code></dt>
<dd>Thin White Feather Viens</dd>
<dt><code>T_Grnt22a</code></dt>
<dd>???</dd>
<dt><code>T_Grnt23a</code></dt>
<dd>Transparent Green Moss</dd>
<dt><code>T_Grnt24a</code></dt>
<dd>???</dd>
</dl>
<dl>
<dt><code>T_Crack1</code></dt>
<dd>T_Crack & Red Overtint</dd>
<dt><code>T_Crack2</code></dt>
<dd>Translucent Dark T_Cracks</dd>
<dt><code>T_Crack3</code></dt>
<dd>Overtint Green w/ Black T_Cracks</dd>
<dt><code>T_Crack4</code></dt>
<dd>Overtint w/ White T_Crack</dd>
</dl>
<p>The StoneXX textures are the complete textures, ready to use.</p>
<dl>
<dt><code>T_Stone1</code></dt>
<dd>Deep Rose & Green Marble with large White Swirls</dd>
<dt><code>T_Stone2</code></dt>
<dd>Light Greenish Tan Marble with Agate style veining</dd>
<dt><code>T_Stone3</code></dt>
<dd>Rose & Yellow Marble with fog white veining</dd>
<dt><code>T_Stone4</code></dt>
<dd>Tan Marble with Rose patches</dd>
<dt><code>T_Stone5</code></dt>
<dd>White Cream Marble with Pink veining</dd>
<dt><code>T_Stone6</code></dt>
<dd>Rose & Yellow Cream Marble</dd>
<dt><code>T_Stone7</code></dt>
<dd>Light Coffee Marble with darker patches</dd>
<dt><code>T_Stone8</code></dt>
<dd>Gray Granite with white patches</dd>
<dt><code>T_Stone9</code></dt>
<dd>White & Light Blue Marble with light violets</dd>
<dt><code>T_Stone10</code></dt>
<dd>Dark Brown & Tan swirl Granite with gray undertones</dd>
<dt><code>T_Stone11</code></dt>
<dd>Rose & White Marble with dark tan swirl</dd>
<dt><code>T_Stone12</code></dt>
<dd>White & Pinkish Tan Marble</dd>
<dt><code>T_Stone13</code></dt>
<dd>Medium Gray Blue Marble</dd>
<dt><code>T_Stone14</code></dt>
<dd>Tan & Olive Marble with gray white veins</dd>
<dt><code>T_Stone15</code></dt>
<dd>Deep Gray Marble with white veining</dd>
<dt><code>T_Stone16</code></dt>
<dd>Peach & Yellow Marble with white veining</dd>
<dt><code>T_Stone17</code></dt>
<dd>White Marble with gray veining</dd>
<dt><code>T_Stone18</code></dt>
<dd>Green Jade with white veining</dd>
<dt><code>T_Stone19</code></dt>
<dd>Peach Granite with white patches & green trim</dd>
<dt><code>T_Stone20</code></dt>
<dd>Brown & Olive Marble with white veining</dd>
<dt><code>T_Stone21</code></dt>
<dd>Red Marble with gray & white veining</dd>
<dt><code>T_Stone22</code></dt>
<dd>Dark Tan Marble with gray & white veining</dd>
<dt><code>T_Stone23</code></dt>
<dd>Peach & Cream Marble with orange veining</dd>
<dt><code>T_Stone24</code></dt>
<dd>Green & Tan Moss Marble</dd>
</dl></div>
<a name="r3_8_1_2_6"></a>
<div class="content-level-h5" contains="Stones2.inc" id="r3_8_1_2_6">
<h5>3.8.1.2.6 Stones2.inc</h5>
<p><code>T_Stone25, ..., T_Stone44</code>
</p></div>
<a name="r3_8_1_3"></a>
<div class="content-level-h4" contains="Other Files" id="r3_8_1_3">
<h4>3.8.1.3 Other Files</h4>
<p>There are various other files in the include files collection. For example font files, color maps, and images for use in height fields or image maps.</p></div>
<a name="r3_8_1_3_1"></a>
<div class="content-level-h5" contains="Font Files" id="r3_8_1_3_1">
<h5>3.8.1.3.1 Font Files</h5>
<p>The fonts cyrvetic.ttf and timrom.ttf were donated to the POV-Team by their creator, Ted Harrison (CompuServe:70220,344) and were built using his FontLab for Windows by SoftUnion, Ltd. of St. Petersburg, Russia.</p>
<p>The font crystal.ttf was donated courtesy of Jerry Fitzpatrick, Red Mountain Corporation, redmtn [at] ix.netcom.com</p>
<p>The font povlogo.ttf is created by Fabien Mosen and based on the POV-Ray logo design by Chris Colefax.</p>
<dl>
<dt><code>crystal.ttf</code></dt>
<dd>A fixed space programmer's font.</dd>
<dt><code>cyrvetic.ttf</code></dt>
<dd>A proportional spaces sans-serif font.</dd>
<dt><code>timrom.ttf</code></dt>
<dd>A proportional spaces serif font.</dd>
<dt><code>povlogo.ttf</code></dt>
<dd>Only contains the POV-Ray logo.</dd>
</dl>
<p class="Note"><strong>Note:</strong> In version 3.7 these fonts were <em>built-in</em> to the application. See the <code><a href="r3_5.html#r3_5_1_1_17">text</a></code> object for more details.</p></div>
<a name="r3_8_1_3_2"></a>
<div class="content-level-h5" contains="Color Map Files" id="r3_8_1_3_2">
<h5>3.8.1.3.2 Color Map Files</h5>
<p>These are 255-color color_maps, and are in individual files because of their size.</p>
<dl>
<dt><code>ash.map</code></dt>
<dt><code>benediti.map</code></dt>
<dt><code>bubinga.map</code></dt>
<dt><code>cedar.map</code></dt>
<dt><code>marbteal.map</code></dt>
<dt><code>orngwood.map</code></dt>
<dt><code>pinkmarb.map</code></dt>
<dt><code>rdgranit.map</code></dt>
<dt><code>teak.map</code></dt>
<dt><code>whiteash.map</code></dt>
</dl></div>
<a name="r3_8_1_3_3"></a>
<div class="content-level-h5" contains="Image Files" id="r3_8_1_3_3">
<h5>3.8.1.3.3 Image Files</h5>
<dl>
<dt><code>bumpmap_.png</code></dt>
<dd>A color mandelbrot fractal image, presumably intended for use as a bumpmap.</dd>
<dt><code>fract003.png</code></dt>
<dd>Some kind of fractal landscape, with color for blue water, brown land, and white peaks.</dd>
<dt><code>maze.png</code></dt>
<dd>A maze.</dd>
<dt><code>mtmand.pot</code></dt>
<dd>A grayscale mandelbrot fractal.</dd>
<dt><code>mtmandj.png</code></dt>
<dd>A 2D color julia fractal.</dd>
<dt><code>plasma2.png, plasma3.png</code></dt>
<dd><em>Plasma fractal</em> images, mainly useful for landscape height fields. The file plasma3.png
is a smoother version of plasma2.png, plasma1.png does not exist.</dd>
<dt><code>povmap.png</code></dt>
<dd>The text "Persistance of Vision" in green on a blue background, framed in black and red.</dd>
<dt><code>test.png</code></dt>
<dd>A <em>test image</em>, the image is divided into 4 areas of different colors (magenta, yellow,
cyan, red) with black text on them, and the text "POV-Ray" is centered on the image in white.</dd>
<dt><code>spiral.df3</code></dt>
<dd>A 3D bitmap density file. A spiral, <em>galaxy</em> shape.</dd>
</dl></div>
</div>
</div>
</body>
</html>
|